CN108530806B - 具有高输出的双层结构柔性压电薄膜及其制备和应用方法 - Google Patents

具有高输出的双层结构柔性压电薄膜及其制备和应用方法 Download PDF

Info

Publication number
CN108530806B
CN108530806B CN201810307873.5A CN201810307873A CN108530806B CN 108530806 B CN108530806 B CN 108530806B CN 201810307873 A CN201810307873 A CN 201810307873A CN 108530806 B CN108530806 B CN 108530806B
Authority
CN
China
Prior art keywords
layer
film
double
filler
piezoelectric film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810307873.5A
Other languages
English (en)
Other versions
CN108530806A (zh
Inventor
胡澎浩
牛津
闫丽丽
赵朝贤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN201810307873.5A priority Critical patent/CN108530806B/zh
Publication of CN108530806A publication Critical patent/CN108530806A/zh
Application granted granted Critical
Publication of CN108530806B publication Critical patent/CN108530806B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/077Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by liquid phase deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/302Sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/308Membrane type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8536Alkaline earth metal based oxides, e.g. barium titanates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • H10N30/8554Lead-zirconium titanate [PZT] based
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Laminated Bodies (AREA)

Abstract

一种具有高输出的双层结构柔性压电薄膜及其制备和应用方法,属于电子复合材料及纳米功能材料领域。采用溶液逐层旋涂‑热处理的工艺,使用无机压电材料作为填料提升复合薄膜额压电输出,利用双层结构同时获得较高的输出和较好的机械性能。所述无机填料为钛酸钡、钛酸锶钡、锆钛酸铅等压电陶瓷的纳米颗粒或纳米纤维,或氧化镁、氧化锌等金属氧化物纳米颗粒或纳米纤维,或多壁碳纳米管。所述聚合物基体可为聚偏氟乙烯、聚偏氟乙烯‑三氟乙烯、聚偏氟乙烯‑三氟乙烯‑六氟丙烯等材料。通过调节填料含量及其在双层中的分布,可以提升填料的效率。该复合材料具有柔性好、压电输出高、灵敏度高、重量轻的特点,可以作为可穿戴设备的电源、作为柔性传感器检测人体的活动等。

Description

具有高输出的双层结构柔性压电薄膜及其制备和应用方法
技术领域
本发明属于电子复合材料及纳米功能材料技术领域,涉及采用溶液旋涂的工艺,使用纳米压电陶瓷、金属氧化物、多壁碳纳米管等无机材料作为填料的双层结构聚合物基复合薄膜及其制备方法。该复合材料具有机械性能好、压电输出高、灵敏度高、重量轻的特点。
背景技术
压电材料是指受到外力的作用时在两端出现电压的晶体材料,能够实现机械能和电能之间的相互转化。利用压电材料的特性,可以将其用于制作各种传感器元件、微纳米能源器件。
钛酸钡(BT)、锆钛酸铅(PZT)都是典型的压电陶瓷材料,具有价格低、易合成、压电系数高等优点,目前都已经得到大量的应用。但是由于其成型温度较高、不易制得复杂形状、脆性高等不足限制了其特别是在快速发展的柔性电子器件领域的应用。聚偏氟乙烯(PVDF)作为一种聚合物压电材料,因其材质柔韧、密度低、响应灵敏等优点备受关注。PVDF是一种半结晶聚合物,具有α、β、γ、δ、ε五种晶相,其中β晶相具有较高的偶极矩,表现出明显的压电效应,α晶相是PVDF最稳定的晶相但没有压电性能,通过极化可转变为β晶相。PVDF的二元、三元共聚物如聚偏氟乙烯-三氟乙烯(P(VDF-TrFE))、聚偏氟乙烯-三氟乙烯-六氟丙烯(P(VDF-TrFE-HFP))等在室温下更容易表现为β晶相。PVDF基压电材料克服了陶瓷压电材料硬而脆、难于加工等困难,具有广阔的应用前景。不过纯PVDF基聚合物的压电效应远低于传统的陶瓷材料,机电转化效率不高,限制了其应用。
为综合解决陶瓷压电材料的脆性问题和聚合物压电材料的效率问题,普遍的做法是将陶瓷材料与聚合物进行复合,结合二者的优点(Nano Energy,15(2015)177-185.)。在之前的报道中,研究者将压电陶瓷与压电聚合物复合从而得到同时具有柔性和较高压电效应的材料,取得了一定进展(Composites Part B:Engineering,72(2015)130-136;SmartMaterials and Structures,26(2017)095060.)。不过对复合材料的压电性能贡献较大的纳米填料同时也会带来不足。一是相比聚合物基体,无机纳米填料的密度普遍较大,使得相同体积下的复合材料的重量增加。二是无机纳米填料本身模量较高,填充后使得复合材料的模量增高,柔韧性下降。三是无机填料与有机基体间往往会产生界面缺陷,降低应力和电荷传导效率,使得复合效果“1+1<2”。因此此类复合压电材料还有很大的提升空间。
本发明通过对复合压电材料中纳米填料的分布和材料构型进行优化在复合薄膜中获得更好的压电性能。我们利用溶液旋涂的工艺,制备具有双层结构的复合压电薄膜。将纳米尺度的压电陶瓷填料更多分布在其中一层中,依靠优化界面和应力分布提升机电转换的效率,同时利用填料较少的聚合物层提升整体薄膜材料的力学性能。获得的压电薄膜材料重量轻、柔性佳、输出高、循环性好,可以作为可穿戴设备的供能电源、作为柔性传感器检测人体的生理活动等。
发明内容
本发明的目的是提供一种有高压电输出、良好机械性能的双层结构纳米复合薄膜及其制备和应用方法。
一种具有高输出的双层结构柔性压电薄膜,其特征在于所述柔性压电薄膜由纳米无机填料和聚合物基体组成,纳米无机填料的含量为10-50%(体积比);压电薄膜为双层结构,分为低填料含量层和高填料含量层,压电薄膜总厚度在10~100μm,单层薄膜厚度在5~90μm。
进一步地,所述的聚合物基体由聚偏氟乙烯(PVDF)、聚偏氟-三氟乙烯(P(VDF-TrFE))、聚偏氟乙烯-三氟乙烯-六氟丙烯(P(VDF-TrFE-HFP))等材料中的一种或两种组成。
进一步地,所述的无机填料为钛酸钡(BT)、钛酸锶钡(BST)、锆钛酸铅(PZT)等压电陶瓷的纳米颗粒或纳米纤维,或氧化镁(MgO)、氧化锌(ZnO)等金属氧化物纳米颗粒或纳米纤维,或多壁碳纳米管(MWCNT)等材料中的一种或两种构成,低填料含量层与高填料含量层的无机填料相同。
进一步地,所述的颗粒填料的直径范围为50~300nm,纤维填料的直径范围为50~500nm,长径比为10~100。
进一步地,所述低填料含量层填料体积比含量为0-5%(体积比),高填料含量层填料含量为10-50%(体积比)。
如上所述的双层结构柔性压电薄膜的制造方法,包括以下步骤:
1)混合溶液的配制;
2)单层薄膜的制备;
3)双层薄膜的制备。
进一步地,步骤1)所述混合溶液的配制是由表面改性后的无机填料在溶剂中超声分散均匀,再加入聚合物基体充分搅拌后而成的。
进一步地,步骤2)所述单层薄膜的制备是:将混合液至于真空干燥箱中抽气泡,打开匀胶机,放上洗净且在乙醇中超声处理过的玻璃片,滴加混合溶液进行旋涂,旋涂速度500~3000rpm,旋涂时间5~30s,之后将其置于烘胶台上快速烘干,烘干温度120~160℃,烘干时间0.5~2h。
进一步地,步骤3)所述双层薄膜的制备是:在烘干的第一层薄膜上滴加混合溶液继续旋涂,旋涂速度500~2000rpm,旋涂时间5~20s,之后在烘胶台上快速烘干后转入烘箱中,40~70℃烘干10~20h,彻底烘干溶剂残留。
一种双层结构柔性压电薄膜的应用方法,其特征在于:将上述方法制备好的薄膜两侧贴上铝箔或镀铜作为电极,夹在两层PET板中间,用导线从电极上引出后则可作为压电传感器或压电发电机使用。
本发明的有益效果是:复合材料中的无机填料能够提升复合薄膜的介电常数和极化强度,有利于增强压电输出,但会降低聚合物的机械性能。设计双层复合结构,在其中一层中填充较高含量的无机填料,使得受力更容易集中,从而提升其机-电转换的压电输出;在另一层中填充较低含量的无机填料,维持复合薄膜的柔韧性。双层复合结构与单层结构的薄膜相比,压电输出有明细的提升。
附图说明
图1:制备双层纳米复合薄膜的工艺示意图。
图2:单层中BT纳米颗粒含量10~20vol%的双层结构复合薄膜截面扫描电镜照片。
图3:双层结构复合薄膜BT/PVDF-PVDF红外光谱图。
图4:BT纳米颗粒含量20vol%的BT/PVDF-PVDF双层结构复合薄膜极化前后的X射线衍射图谱。
图5:组装得到的压电器件(a)示意图和(b)实物图。
图6:BT/PVDF单层(SL)复合薄膜与BT/PVDF-PVDF双层(DL)结构复合薄膜的压电输出(a)电压(b)电流测试结果。
图7:BT纳米颗粒含量20vol%的BT/PVDF-PVDF双层结构复合薄膜的循环压电输出(a)电压(b)电流测试结果。
具体实施方式
实施例1
称取0.5618g的表面改性后的BT纳米颗粒于烧杯中,加入7.5mL的氮氮二甲基甲酰胺(DMF),超声分散2h形成均匀的悬浮液,然后向其中加入1.5g PVDF粉末,30℃磁力搅拌12h,使其完全溶解。旋涂-热处理工艺如附图1所示:将混合液至于真空干燥箱中抽气泡,打开匀胶机,放上洗净且在乙醇中超声处理过的玻璃片,然后用吸管吸取2mL混合液,滴加到玻璃片上,进行单层薄膜旋涂。采用500rpm旋涂10s,再1000rpm旋涂15s的条件进行旋涂,慢速是为了溶液在玻璃片上缓慢匀开,快速是为了保证薄膜厚度均匀。将单层膜至于烘胶台上,150℃烘2h(保证溶剂烘干),退温至40℃(使第一层膜与第二层PVDF有更好附着力),将在玻璃片上的单层膜进行第二层纯PVDF旋涂,旋涂条件相同,最后70℃下保温10h彻底烘干溶剂。将双层薄膜从玻璃基板上取下来,即得到BT纳米颗粒单层中10vol%含量的BT/PVDF-PVDF双层薄膜。其截面电镜照片如附图2所示,双层结构明显。
实施例2
称取0.8923g的表面改性后的BT纳米颗粒于烧杯中,加入7.5mL的DMF,超声分散2h形成均匀的悬浮液,然后向其中加入1.5g PVDF粉末,30℃磁力搅拌12h,使其完全溶解。将混合液至于真空干燥箱中抽气泡,打开匀胶机,放上洗净且在乙醇中超声处理过的玻璃片,然后用吸管吸取2mL混合液,滴加到玻璃片上,进行单层薄膜旋涂。采用600rpm旋涂10s,再1200rpm旋涂10s的条件进行旋涂,将单层膜至于烘胶台上,160℃烘2h,退温至40℃,将在玻璃片上的单层膜进行第二层纯PVDF旋涂,旋涂条件相同,最后70℃下保温10h彻底烘干溶剂。将双层薄膜从玻璃基板上取下来,即得到BT纳米颗粒单层中15vol%含量的BT/PVDF-PVDF双层薄膜,红外测试结果如附图3所示,可见样品中PVDF的铁电活性β相含量较高。以此极化后的薄膜为压电材料组装力-电转换装置的示意图与实物图如附图5所示。
实施例3
称取1.2640g的表面改性后的BT纳米颗粒于烧杯中,加入7.5mL的氮氮二甲基甲酰胺(DMF),超声分散2h形成均匀的悬浮液,然后向其中加入1.5g PVDF粉末,30℃磁力搅拌12h,使其完全溶解。将混合液至于真空干燥箱中抽气泡,打开匀胶机,放上洗净且在乙醇中超声处理过的玻璃片,然后用吸管吸取2mL混合液,滴加到玻璃片上,进行单层薄膜旋涂。采用600rpm旋涂10s,再1500rpm旋涂10s的条件进行旋涂,将单层膜至于烘胶台上,150℃烘2h,退温至40℃,将在玻璃片上的单层膜进行第二层纯PVDF旋涂,旋涂条件相同,最后70℃下保温10h彻底烘干溶剂。将双层薄膜从玻璃基板上取下来,即得到BT纳米颗粒单层中20vol%含量的BT/PVDF-PVDF双层薄膜,其极化前后的X射线衍射图谱如附图4所示。进行力-电输出测试的结果如附图6、7所示,相比同成分的单层薄膜,双层薄膜的压电输出得到了提升,且循环稳定性良好。

Claims (10)

1.一种具有高输出的双层结构柔性压电薄膜,其特征在于所述柔性压电薄膜由纳米无机填料和聚合物基体组成,纳米无机填料的含量为10-50%;压电薄膜为双层结构,分为低填料含量层和高填料含量层,压电薄膜总厚度在10~100 μm,单层薄膜厚度在5~90 μm。
2.根据权利要求1所述的具有高输出的双层结构柔性压电薄膜,其特征在于所述的聚合物基体由聚偏氟乙烯(PVDF)、聚偏氟乙烯-三氟乙烯(P(VDF-TrFE))、聚偏氟乙烯-三氟乙烯-六氟丙烯(P(VDF-TrFE-HFP))中的一种或两种材料组成。
3.根据权利要求1所述的具有高输出的双层结构柔性压电薄膜,其特征在于所述的无机填料为钛酸钡(BT)、钛酸锶钡(BST)、锆钛酸铅(PZT)压电陶瓷的纳米颗粒或纳米纤维,或氧化镁(MgO)、氧化锌(ZnO)金属氧化物纳米颗粒或纳米纤维,或多壁碳纳米管(MWCNT)中的一种或两种材料构成,低填料含量层与高填料含量层的无机填料相同。
4.根据权利要求3所述的具有高输出的双层结构柔性压电薄膜,其特征在于所述的颗粒填料的直径范围为50~300 nm,纤维填料的直径范围为50~500 nm,长径比为10~100。
5.根据权利要求1所述的具有高输出的双层结构柔性压电薄膜,其特征在于所述低填料含量层填料含量为0-5%,高填料含量层填料含量为10-50%。
6.根据权利要求1所述的双层结构柔性压电薄膜的制造方法,包括以下步骤:
1)混合溶液的配制;
2)单层薄膜的制备;
3)双层薄膜的制备。
7.根据权利要求6所述的双层结构柔性压电薄膜的制造方法,其特征在于步骤1)所述混合溶液的配制是由表面改性后的无机填料在溶剂中超声分散均匀,再加入聚合物基体充分搅拌后而成的。
8.根据权利要求6所述的双层结构柔性压电薄膜的制造方法,其特征在于步骤2)所述单层薄膜的制备是:将混合液至于真空干燥箱中抽气泡,打开匀胶机,放上洗净且在乙醇中超声处理过的玻璃片,滴加混合溶液进行旋涂,旋涂速度500~3000 rpm,旋涂时间5~30 s,之后将其置于烘胶台上快速烘干,烘干温度120~160℃,烘干时间0.5~2 h。
9.根据权利要求6所述的双层结构柔性压电薄膜的制造方法,其特征在于步骤3)所述双层薄膜的制备是:在烘干的第一层薄膜上滴加纯PVDF溶液继续旋涂,旋涂速度500~2000rpm,旋涂时间5~20 s,之后在烘胶台上快速烘干后转入烘箱中,40~70℃烘干10~20 h,彻底烘干溶剂残留。
10.根据权利要求6所述方法制造的双层结构柔性压电薄膜的应用方法,其特征在于:将制备好的薄膜两侧贴上铝箔或镀铜作为电极,夹在两层PET板中间,用导线从电极上引出后则可作为压电传感器或压电发电机使用。
CN201810307873.5A 2018-04-08 2018-04-08 具有高输出的双层结构柔性压电薄膜及其制备和应用方法 Active CN108530806B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810307873.5A CN108530806B (zh) 2018-04-08 2018-04-08 具有高输出的双层结构柔性压电薄膜及其制备和应用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810307873.5A CN108530806B (zh) 2018-04-08 2018-04-08 具有高输出的双层结构柔性压电薄膜及其制备和应用方法

Publications (2)

Publication Number Publication Date
CN108530806A CN108530806A (zh) 2018-09-14
CN108530806B true CN108530806B (zh) 2020-04-10

Family

ID=63483253

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810307873.5A Active CN108530806B (zh) 2018-04-08 2018-04-08 具有高输出的双层结构柔性压电薄膜及其制备和应用方法

Country Status (1)

Country Link
CN (1) CN108530806B (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109624488A (zh) * 2019-02-28 2019-04-16 业成科技(成都)有限公司 网印喷头装置
WO2020201922A1 (en) * 2019-04-02 2020-10-08 Sabic Global Technologies B.V. Flexible and low cost lead-free piezoelectric composites with high d33 values
CN110350081B (zh) * 2019-06-19 2021-09-17 南京航空航天大学 一种有序结构的多功能柔性压电复合薄膜及其制备方法
CN110690342B (zh) * 2019-10-13 2021-05-14 浙江大学 一种基于碳包覆钛酸钡/pvdf的柔性压电能量转化器件
CN111081863B (zh) * 2019-12-23 2022-12-27 太原理工大学 一种柔性复合薄膜纳米发电机及其制备方法
CN112646215A (zh) * 2020-12-08 2021-04-13 之江实验室 一种基于PVDF-TrFE的压电薄膜的制备方法
CN112611317A (zh) * 2020-12-12 2021-04-06 西安交通大学 一种挠曲电柔性纳米曲率传感器及其制备和测试方法
CN112852077B (zh) * 2021-01-13 2023-10-27 业成科技(成都)有限公司 压电复合材料薄膜及其制造方法及压电式扬声器
CN112928199B (zh) * 2021-01-29 2022-09-06 上海交通大学 一种高灵敏柔性传感器及其制备方法和应用
WO2023276131A1 (ja) * 2021-07-02 2023-01-05 国立大学法人東北大学 発電用複合材料および発電用複合材料の製造方法
WO2023009828A1 (en) * 2021-07-29 2023-02-02 Trustees Of Dartmouth College Flexible piezoelectric array for wearable blood pressure sensing
CN114410039B (zh) * 2022-01-28 2023-02-28 中国地质大学(北京) 一种以pvdf-hfp为基底共混纳米填料的抗菌薄膜及其制备方法和应用
CN114989469A (zh) * 2022-05-19 2022-09-02 乌镇实验室 一种具有高温储能性能的三层pei柔性复合薄膜及其制备方法
CN114959933B (zh) * 2022-07-08 2023-08-15 北京大学口腔医学院 一种电活性抗菌牙线及其制备方法
CN115536964B (zh) * 2022-09-16 2023-08-01 中国人民解放军南部战区空军医院 一种柔性压电纳米发电机
CN115491815A (zh) * 2022-10-20 2022-12-20 璞里新材料科技(苏州)有限公司 一种增强型柔性聚偏二氟乙烯纳米纤维材料及摩擦纳米发电机

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106366519A (zh) * 2016-09-19 2017-02-01 浙江凯阳新材料股份有限公司 一种聚偏氟乙烯薄膜及其制备方法
CN107778514A (zh) * 2017-10-16 2018-03-09 西南科技大学 一种石墨烯双层电致动膜及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106366519A (zh) * 2016-09-19 2017-02-01 浙江凯阳新材料股份有限公司 一种聚偏氟乙烯薄膜及其制备方法
CN107778514A (zh) * 2017-10-16 2018-03-09 西南科技大学 一种石墨烯双层电致动膜及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Construction of a Fish-like Robot Based on High Performance Graphene/PVDF Bimorph Actuation Materials;Xiao, Peishuang等;《ADVANCED SCIENCE》;20160630;第3卷(第6期);1500438 *
双层PVDF薄膜压电俘能器的效能分析;蒋树农;《中国力学学会学术大会论文集》;20071231 *

Also Published As

Publication number Publication date
CN108530806A (zh) 2018-09-14

Similar Documents

Publication Publication Date Title
CN108530806B (zh) 具有高输出的双层结构柔性压电薄膜及其制备和应用方法
Bhatta et al. High-performance triboelectric nanogenerator based on MXene functionalized polyvinylidene fluoride composite nanofibers
Choi et al. Microstructures and piezoelectric performance of eco-friendly composite films based on nanocellulose and barium titanate nanoparticle
Singh et al. Engineered thiol anchored Au-BaTiO3/PVDF polymer nanocomposite as efficient dielectric for electronic applications
Chamankar et al. A flexible piezoelectric pressure sensor based on PVDF nanocomposite fibers doped with PZT particles for energy harvesting applications
Hu et al. Double-layer structured PVDF nanocomposite film designed for flexible nanogenerator exhibiting enhanced piezoelectric output and mechanical property
CN108442038B (zh) 一种具有高输出的柔性压电纤维薄膜及其制备方法
Lao et al. Flexible regenerated cellulose/boron nitride nanosheet high-temperature dielectric nanocomposite films with high energy density and breakdown strength
Liu et al. Enhanced dielectric and energy storage density induced by surface-modified BaTiO3 nanofibers in poly (vinylidene fluoride) nanocomposites
US8803406B2 (en) Flexible nanocomposite generator and method for manufacturing the same
CN109461577B (zh) 一种介电储能复合材料的制备方法及应用
Choi et al. Improving piezoelectric performance of lead-free polymer composites with high aspect ratio BaTiO3 nanowires
CN109486106A (zh) 高储能密度电介质材料及其制备方法
Chen et al. Enhanced energy density of polymer composites filled with BaTiO 3@ Ag nanofibers for pulse power application
CN111082701B (zh) 一种基于层间电场效应的柔性纳米发电机设计方法
Feng et al. Enhanced energy storage characteristics in PVDF-based nanodielectrics with core-shell structured and optimized shape fillers
Yang et al. A high-performance dielectric elastomer consisting of bio-based polyester elastomer and titanium dioxide powder
Xu et al. Achieving high-performance energy harvesting and self-powered sensing in a flexible cellulose nanofibril/MoS 2/BaTiO 3 composite piezoelectric nanogenerator
CN104194020A (zh) 一种具有高介电性能的柔性无机/聚合物复合薄膜的制备方法
CN111081863B (zh) 一种柔性复合薄膜纳米发电机及其制备方法
Thakur et al. Polymer nanocomposites: New advanced dielectric materials for energy storage applications
CN107512909A (zh) 一种完全可卷曲的压电纳米复合发电器的制备方法
Tao et al. High dielectric thin films based on barium titanate and cellulose nanofibrils
CN108866819A (zh) 一种聚合物纳米复合材料及其制备方法
Wang et al. Enhanced permittivity and energy density of P (VDF-HFP)-based capacitor using core-shell structured BaTiO 3@ TiO 2 fillers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant