CN108506110A - 一种冷热电联供系统 - Google Patents

一种冷热电联供系统 Download PDF

Info

Publication number
CN108506110A
CN108506110A CN201810168997.XA CN201810168997A CN108506110A CN 108506110 A CN108506110 A CN 108506110A CN 201810168997 A CN201810168997 A CN 201810168997A CN 108506110 A CN108506110 A CN 108506110A
Authority
CN
China
Prior art keywords
enters
cycle
working medium
condenser
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810168997.XA
Other languages
English (en)
Other versions
CN108506110B (zh
Inventor
韩吉田
刘洋
游怀亮
段炼
邵莉
陈常念
于泽庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN201810168997.XA priority Critical patent/CN108506110B/zh
Publication of CN108506110A publication Critical patent/CN108506110A/zh
Priority to US16/976,535 priority patent/US11614003B2/en
Priority to PCT/CN2018/117515 priority patent/WO2019165807A1/zh
Application granted granted Critical
Publication of CN108506110B publication Critical patent/CN108506110B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/08Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with working fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/103Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with afterburner in exhaust boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • F01K25/103Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/14Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours using industrial or other waste gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/32Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines using steam of critical or overcritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/003Plants characterised by condensers arranged or modified to co-operate with the engines condenser cooling circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/04Plants characterised by condensers arranged or modified to co-operate with the engines with dump valves to by-pass stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/007Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid combination of cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/224Heating fuel before feeding to the burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B3/00Other methods of steam generation; Steam boilers not provided for in other groups of this subclass
    • F22B3/08Other methods of steam generation; Steam boilers not provided for in other groups of this subclass at critical or supercritical pressure values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/04Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled condensation heat from one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/10Carbon or carbon oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • F02C1/05Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly characterised by the type or source of heat, e.g. using nuclear or solar energy
    • F02C1/06Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly characterised by the type or source of heat, e.g. using nuclear or solar energy using reheated exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/76Application in combination with an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/08Purpose of the control system to produce clean exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/50Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2900/00Special arrangements for conducting or purifying combustion fumes; Treatment of fumes or ashes
    • F23J2900/15061Deep cooling or freezing of flue gas rich of CO2 to deliver CO2-free emissions, or to deliver liquid CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

本发明以SOFC/GT混合发电系统为基准系统,通过引入CO2循环、ORC循环和LNG冷能利用系统而构成一种冷热电联供系统,该冷热电联供系统可以实现能量的高效梯级利用和低碳排放。本发明以SOFC/GT为原动机,分别通过CO2循环和ORC循环回收系统的高温余热、中温余热和低温余热,以LNG为CO2循环和ORC循环的冷源,可对外供冷(空调和冷冻)、供热、供电、供天然气及提供冰和干冰,并通过对烟气中的CO2冷凝分离实现系统的低碳排放,可有效减少联供系统的可用能损失,实现能量的梯级高效利用,具有良好的节能和减排效果。

Description

一种冷热电联供系统
技术领域
本发明涉及一种冷热电联供系统。
背景技术
固体氧化物燃料电池(SOFC)是一种高效的能量转换装置,它利用电化学反应将存储在燃料中的化学能直接转化为电能。因其能量转换过程不受卡诺循环的限制,发电效率高,同时还具有模块化结构、污染物排放低、燃料适应性强等优点。由SOFC和燃气轮机(GT)组成的混合发电系统(SOFC/GT)被认为是实现“可燃多种燃料、联产多种产品、转换效率高、污染物排放低”目标的关键技术。SOFC/GT混合发电系统的工作温度高,通过构建联供系统回收利用其排气中的高品位余热,可实现能量的梯级有效利用。已有研究表明,与有机朗肯循环(ORC)和空气布雷顿循环相比,CO2循环具有更高的发电功率,在余热利用、太阳能利用和核反应堆等领域前景广阔。目前,在国内外关于SOFC/GT与CO2联合循环发电系统中,配有常规冷源的CO2循环系统的发电效率仍有提高的余地;在已有的以液化天然气(LNG)为冷源的CO2循环系统中,虽然可有效提高系统的发电效率,但是其损很大,有待改进以减小系统的可用能损失。因此,由SOFC/GT/CO2和ORC联合循环及LNG冷源利用系统集成的冷热电联供系统,可以实现能量的梯级有效利用和碳减排。
发明内容
针对上述现有技术中存在的问题,本发明的一个目的是提供一种基于SOFC/GT/CO2和 ORC联合循环发电及LNG冷能利用的冷热电联供系统。以SOFC/GT混合发电系统为基准系统,通过引入CO2循环、ORC循环和LNG冷源而构成一个分布式冷热电联供系统,该系统可对外供冷、供热、供电,并提供天然气、冰和干冰,可减少系统的可用能损失和CO2排放量,实现能量的梯级有效利用。
为了解决以上技术问题,本发明的技术方案为:
一种基于SOFC/GT/CO2和ORC联合循环发电及LNG冷能利用的冷热电联供系统,包括:SOFC/GT混合发电子系统、CO2循环子系统、ORC循环子系统、LNG冷源子系统、对外供热子系统、CO2捕集与空调供冷子系统。
所述SOFC和GT组成的混合发电子系统由空气压缩机、第一预热器、SOFC、第二预热器、水泵、第三预热器、混合器、逆变器、后燃室和燃气轮机组成。
空气压缩机和第一预热器串联后与SOFC的阴极相连;水泵和第三预热器相连,第二预热器和第三预热器接入混合器,混合器与SOFC的阳极相连;SOFC电池堆与逆变器相连,将直流电转变为交流电;SOFC的阴极排气和阳极排气进入后燃室;燃烧室的高温排气进入燃气轮机中做功,带动发电机发电;燃气轮机排气依次进入第一预热器、第二预热器和第三预热器,分别对空气、燃料和水进行预热;
所述CO2循环子系统分为超临界CO2循环(SCO2循环)和跨临界CO2循环(TCO2循环);
所述SCO2循环由余热锅炉、发电机、SCO2透平、气体冷却器、SCO2压缩机组成。
第三预热器的排气进入余热锅炉加热CO2工质;被加热的CO2工质进入超临界CO2循环(SCO2循环)的SCO2透平中做功,带动发电机发电;SCO2透平排气进入气体冷却器中加热跨临界CO2循环(TCO2循环)的CO2工质;SCO2循环的气体冷却器排气进入SCO2压缩机压缩后送入余热锅炉再次加热,完成一个超临界CO2循环。
所述TCO2循环由气体冷却器、TCO2透平、发电机、第一冷凝器、第二冷凝器、第三冷凝器、CO2工质泵和预冷器组成。
TCO2循环的CO2工质在气体冷却器中加热后进入TCO2透平中做功,带动发电机发电; TCO2透平排气在第一冷凝器、第二冷凝器和第三冷凝器中冷凝;第一冷凝器、第二冷凝器和第三冷凝器与CO2工质泵相连,CO2工质泵出口的CO2工质进入预冷器,对低温冷库供冷;预冷器出口的CO2工质进入气体冷却器,被SCO2循环中的CO2工质加热,完成一个跨临界CO2循环。
所述对外供热子系统包括第一换热器,余热锅炉出口的烟气进入第一换热器,对外供热。
所述ORC循环子系统的工质为R1150;ORC循环子系统由第一换热器、蒸发器、R1150透平、发电机、R1150冷凝器、R1150工质泵和第二换热器组成。
第一换热器出口的烟气进入蒸发器,加热ORC循环的R1150工质;蒸发器出口的R1150 工质进入R1150透平中做功,带动发电机发电;R1150透平排气在R1150冷凝器中冷凝; R1150冷凝器与R1150工质泵相连,R1150工质泵出口的R1150工质进入第二换热器中加热;第二换热器排出的R1150工质进入蒸发器,吸热蒸发,完成一个R1150工质循环。
所述CO2捕集与空调供冷子系统由蒸发器、第一分离器、第一空调供冷器、第二换热器、第二分离器、干冰贮存器、第三冷凝器、第三换热器、第二空调供冷器和第一冰贮存器组成,蒸发器出口的烟气进入第一分离器,在第一分离器中烟气与水分离,水进入第一空调供冷器对外供冷,烟气进入第二换热器中被R1150工质冷却,CO2气体凝华为干冰;
第二换热器出口的烟气进入第二分离器,在第二分离器中烟气与干冰分离,干冰保存在干冰贮存器中,烟气进入第三冷凝器中冷凝CO2工质;
第三冷凝器出口的烟气进入第三换热器中对水进行冷凝,生成的冰保存在第一冰贮存器中;第三换热器出口的烟气进入第二空调供冷器对外供冷后排入大气。
所述LNG冷源子系统由LNG罐、LNG泵、R1150冷凝器、第一冷凝器、第二冷凝器、第四换热器、第二冰贮存器和第三空调供冷器组成;
LNG罐与LNG泵相连,LNG泵出口的LNG分成两路,一路依次进入R1150冷凝器和第一冷凝器,另一路进入第二冷凝器,第一冷凝器和第二冷凝器出口的天然气汇合,进入第四换热器中对水进行冷凝,生成的冰保存在第二冰贮存器中;第四换热器出口的天然气进入第三空调供冷器对外供冷;第三空调供冷器出口的一部分天然气作为燃料送入第二预热器中预热,多余的天然气供给燃气管网。
本发明的有益效果:
本发明以SOFC为原动机,分别通过燃气轮机、CO2循环和ORC循环回收高温余热、中温余热和低温余热,以LNG为CO2循环和ORC循环的冷源,在减少了可用能损失的同时实现了能量的梯级高效利用,实现对外供冷(空调供冷和低温冷库供冷)、供热、供电、供天然气以及提供冰和干冰,并通过对烟气中的CO2分离实现了系统的低碳排放。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1是SOFC/GT/CO2和ORC联合循环发电及LNG冷能利用的冷热电联供系统构成示意图;
其中:1、空气压缩机;2、SOFC;3、后燃室;4、燃气轮机;5、第一预热器;6、第二预热器;7、水泵;8、第三预热器;9、混合器;10、余热锅炉;11、SCO2透平;12、气体冷却器;13、SCO2压缩机;14、TCO2透平;15、第一冷凝器;16、第二冷凝器;17、第三冷凝器;18、CO2工质泵;19、预冷器;20、第一换热器;21、蒸发器;22、R1150 透平;23、R1150冷凝器;24、R1150工质泵;25、第二换热器;26、第一分离器;27、第一空调供冷器;28、第二分离器;29、干冰贮存器;30、LNG罐;31、LNG泵;32、第四换热器;33、第三空调供冷器;34、第二冰贮存器;35、第三换热器;36、第二空调供冷器;37、第一冰贮存器;38、逆变器。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
如图1所示,空气压缩机1和第一预热器5串联后与SOFC 2的阴极相连;
水泵7和第三预热器8相连,第二预热器6和第三预热器8接入混合器9,混合器9与SOFC 2的阳极相连;
SOFC 2电池堆与逆变器38相连,将直流电转变为交流电;SOFC 2的阴极排气和阳极排气进入后燃室3;
燃烧室3的高温排气进入燃气轮机4中做功,带动发电机发电;
燃气轮机4排气依次进入第一预热器5、第二预热器6和第三预热器8,分别对空气、燃料和水进行预热;
第三预热器8的排气进入余热锅炉10加热CO2工质;被加热的CO2工质进入超临界CO2循环(SCO2循环)的SCO2透平11中做功,带动发电机发电;SCO2透平11排气进入气体冷却器12中加热跨临界CO2循环(TCO2循环)的CO2工质;SCO2循环的气体冷却器 12排气进入SCO2压缩机13压缩后送入余热锅炉10再次加热,完成一个超临界CO2循环。
TCO2循环的CO2工质在气体冷却器12中加热后进入TCO2透平14中做功,带动发电机发电;TCO2透平14排气在第一冷凝器15、第二冷凝器16和第三冷凝器17中冷凝;第一冷凝器15、第二冷凝器16和第三冷凝器17与CO2工质泵18相连,CO2工质泵18出口的CO2工质进入预冷器19,对低温冷库供冷;预冷器19出口的CO2工质进入气体冷却器 12,被SCO2循环中的CO2工质加热,完成一个跨临界CO2循环。
余热锅炉10出口的烟气进入第一换热器20,对外供热;
第一换热器20出口的烟气进入蒸发器21,加热ORC循环的R1150工质;蒸发器21 出口的R1150工质进入R1150透平22中做功,带动发电机发电;R1150透平22排气在R1150 冷凝器23中冷凝;R1150冷凝器23与R1150工质泵24相连,R1150工质泵24出口的R1150 工质进入第二换热器25中加热;第二换热器25排出的R1150工质进入蒸发器21,吸热蒸发,完成一个R1150工质循环。
蒸发器21出口的烟气进入第一分离器26,在第一分离器26中烟气与水分离,水进入第一空调供冷器27对外供冷,烟气进入第二换热器25中被R1150工质冷却,CO2气体凝华为干冰;
第二换热器25出口的烟气进入第二分离器28,在第二分离器28中烟气与干冰分离,干冰保存在干冰贮存器29中,烟气进入第三冷凝器17中冷凝CO2工质;
第三冷凝器17出口的烟气进入第三换热器35中对水进行冷凝,生成的冰保存在第一冰贮存器37中;第三换热器35出口的烟气进入第二空调供冷器36对外供冷后排入大气。
LNG罐30与LNG泵31相连,LNG泵31出口的LNG分成两路,一路依次进入R1150 冷凝器23和第一冷凝器15,另一路进入第二冷凝器16,第一冷凝器15和第二冷凝器16 出口的天然气汇合,进入第四换热器32中对水进行冷凝,生成的冰保存在第二冰贮存器34 中;第四换热器32出口的天然气进入第三空调供冷器33对外供冷;第三空调供冷器33出口的一部分天然气作为燃料送入第二预热器6中预热,多余的天然气供给燃气管网。
一种基于SOFC/GT/CO2和ORC联合循环发电及LNG冷能利用的冷热电联供系统模拟的初始条件和系统模拟结果分别如表1和表2所示。
表1系统初始条件
项目 取值 项目 取值
空气流率 6.618mol/s SCO2透平入口压力 20MPa
燃料流率 0.514mol/s SCO2透平出口压力 7.4MPa
环境压力 0.101325MPa TCO2透平入口压力 20MPa
环境温度 298.15K TCO2透平出口压力 1.4MPa
水泵压比 9 TCO2冷凝器出口温度 225.15K
空气压缩机压比 9 LNG温度 111.68K
空气压缩机绝热内效率 0.75 LNG压力 0.16968MPa
蒸汽碳比 2 SCO2透平等熵效率 0.9
燃料利用率 0.85 TCO2透平等熵效率 0.85
SOFC入口温度 700K SCO2压缩机等熵效率 0.89
SOFC单电池面积 0.027m2 TCO2泵绝热内效率 0.8
SOFC单电池数量 5000 R1150透平出口压力 0.11MPa
逆变器效率 0.98 R1150冷凝器出口温度 170.15K
余热锅炉传热温差 10K R1150透平等熵效率 0.89
SCO2压缩机入口温度 295.15K R1150泵绝热内效率 0.8
表2系统模拟结果
由表2可知,在额定工况下,本发明的系统净发电效率为80.45%,系统综合能源利用率为82.79%,系统总效率为63.21%,系统净发电量为331.280KW,低温冷库供冷量为20.360KW,空调供冷量为11.066KW,供热量为58.563KW,干冰冷量产量为14.987KW,冰冷量产量为14.692KW,对外天然气供应量为8.594mol/s,CO2减排量为0.514mol/s,实现了能量的梯级高效利用和低碳排放的目标。如果按照每年运行5000小时,则每年可减排 407.088吨的CO2
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

1.一种基于SOFC/GT/CO2和ORC联合循环发电及LNG冷能利用的冷热电联供系统,其特征在于,由SOFC/GT混合发电子系统、CO2循环子系统、ORC循环子系统、LNG冷源子系统、对外供热子系统、CO2捕集与空调供冷子系统;
所述CO2循环子系统包括SCO2循环和TCO2循环;
所述SCO2循环由余热锅炉、发电机、SCO2透平、气体冷却器、SCO2压缩机组成;第三预热器的排气进入余热锅炉加热CO2工质;被加热的CO2工质进入SCO2循环的SCO2透平中做功,带动发电机发电;SCO2透平排气进入气体冷却器中加热TCO2循环的CO2工质;SCO2循环的气体冷却器排气进入SCO2压缩机压缩后送入余热锅炉再次加热,完成一个超临界CO2循环。
2.如权利要求1所述冷热电联供系统,其特征在于,所述SOFC和GT组成的混合发电子系统由空气压缩机、第一预热器、SOFC、第二预热器、水泵、第三预热器、混合器、逆变器、后燃室、燃气轮机组成;空气压缩机和第一预热器串联后与SOFC的阴极相连;水泵和第三预热器相连,第二预热器和第三预热器接入混合器,混合器与SOFC的阳极相连;SOFC电池堆与逆变器相连,将直流电转变为交流电;SOFC的阴极排气和阳极排气进入后燃室;燃烧室的高温排气进入燃气轮机中做功,带动发电机发电;燃气轮机排气依次进入第一预热器、第二预热器和第三预热器,分别对空气、燃料和水进行预热。
3.如权利要求1所述冷热电联供系统,其特征在于,所述TCO2循环由气体冷却器、TCO2透平、发电机、第一冷凝器、第二冷凝器、第三冷凝器、CO2工质泵和预冷器组成;TCO2循环的CO2工质在气体冷却器中加热后进入TCO2透平中做功,带动发电机发电;TCO2透平排气在第一冷凝器、第二冷凝器和第三冷凝器中冷凝;第一冷凝器、第二冷凝器和第三冷凝器与CO2工质泵相连,CO2工质泵出口的CO2工质进入预冷器,对低温冷库供冷;预冷器出口的CO2工质进入气体冷却器,被SCO2循环中的CO2工质加热,完成一个跨临界CO2循环。
4.如权利要求1所述冷热电联供系统,其特征在于,所述对外供热子系统包括第一换热器;余热锅炉出口的烟气进入第一换热器,对外供热。
5.如权利要求1所述冷热电联供系统,其特征在于,所述ORC循环子系统的工质为R1150;ORC循环子系统由第一换热器、蒸发器、R1150透平、发电机、R1150冷凝器、R1150工质泵和第二换热器组成;第一换热器出口的烟气进入蒸发器,加热ORC循环的R1150工质;蒸发器出口的R1150工质进入R1150透平中做功,带动发电机发电;R1150透平排气在R1150冷凝器中冷凝;R1150冷凝器与R1150工质泵相连,R1150工质泵出口的R1150工质进入第二换热器中加热;第二换热器排出的R1150工质进入蒸发器,吸热蒸发,完成一个R1150工质循环。
6.如权利要求1所述冷热电联供系统,其特征在于,所述CO2捕集与空调供冷子系统由蒸发器、第一分离器、第一空调供冷器、第二换热器、第二分离器、干冰贮存器、第三冷凝器、第三换热器、第二空调供冷器和第一冰贮存器组成,蒸发器出口的烟气进入第一分离器,在第一分离器中烟气与水分离,水进入第一空调供冷器对外供冷,烟气进入第二换热器中被R1150工质冷却,CO2气体凝华为干冰。
7.如权利要求6所述冷热电联供系统,其特征在于,第二换热器出口的烟气进入第二分离器,在第二分离器中烟气与干冰分离,干冰保存在干冰贮存器中,烟气进入第三冷凝器中冷凝CO2工质。
8.如权利要求7所述冷热电联供系统,其特征在于,第三冷凝器出口的烟气进入第三换热器中对水进行冷凝,生成的冰保存在第一冰贮存器中;第三换热器出口的烟气进入第二空调供冷器对外供冷后排入大气。
9.如权利要求1所述冷热电联供系统,其特征在于,所述LNG冷源子系统由LNG罐、LNG泵、R1150冷凝器、第一冷凝器、第二冷凝器、第四换热器、第二冰贮存器和第三空调供冷器组成;LNG罐与LNG泵相连,LNG泵出口的LNG分成两路,一路依次进入R1150冷凝器和第一冷凝器,另一路进入第二冷凝器,第一冷凝器和第二冷凝器出口的天然气汇合,进入第四换热器中对水进行冷凝,生成的冰保存在第二冰贮存器中;第四换热器出口的天然气进入第三空调供冷器对外供冷;第三空调供冷器出口的一部分天然气作为燃料送入第二预热器中预热,多余的天然气供给燃气管网。
10.如权利要求1所述的冷热电联供系统,其特征在于,所述干冰贮存器可对外提供干冰,第三换热器和第四换热器通过制冰蓄冷,制成的冰储存在第一冰贮存器和第二冰贮存器中,可对外提供冰。
CN201810168997.XA 2018-02-28 2018-02-28 一种冷热电联供系统 Active CN108506110B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201810168997.XA CN108506110B (zh) 2018-02-28 2018-02-28 一种冷热电联供系统
US16/976,535 US11614003B2 (en) 2018-02-28 2018-11-26 Combined cooling, heating and power system
PCT/CN2018/117515 WO2019165807A1 (zh) 2018-02-28 2018-11-26 一种冷热电联供系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810168997.XA CN108506110B (zh) 2018-02-28 2018-02-28 一种冷热电联供系统

Publications (2)

Publication Number Publication Date
CN108506110A true CN108506110A (zh) 2018-09-07
CN108506110B CN108506110B (zh) 2019-11-01

Family

ID=63375978

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810168997.XA Active CN108506110B (zh) 2018-02-28 2018-02-28 一种冷热电联供系统

Country Status (3)

Country Link
US (1) US11614003B2 (zh)
CN (1) CN108506110B (zh)
WO (1) WO2019165807A1 (zh)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109339884A (zh) * 2018-11-01 2019-02-15 西南石油大学 一种lng卫星站冷能高效利用工艺
CN109346744A (zh) * 2018-11-15 2019-02-15 中国华能集团清洁能源技术研究院有限公司 一种采用超临界co2底循环的天然气燃料电池发电系统及方法
CN109356681A (zh) * 2018-11-01 2019-02-19 西南石油大学 一种lng卫星站冷电联产工艺
CN109681326A (zh) * 2019-01-16 2019-04-26 新奥数能科技有限公司 一种基于液化天然气冷能梯级利用的冷热电三联供系统
CN109854320A (zh) * 2019-01-03 2019-06-07 上海海事大学 一种二氧化碳储能与有机朗肯循环联合发电系统
CN109958534A (zh) * 2019-03-29 2019-07-02 山东大学 利用lng冷能的回流式燃料电池发电系统及其工作方法
WO2019165807A1 (zh) * 2018-02-28 2019-09-06 山东大学 一种冷热电联供系统
CN110332746A (zh) * 2019-06-28 2019-10-15 上海电力学院 一种基于lng能源梯级利用的冷链物流园区集合系统
CN110410289A (zh) * 2019-07-24 2019-11-05 中国科学院电工研究所 利用太阳能供热和高温热化学储热的sofc-gt联合发电系统
CN110544786A (zh) * 2019-08-12 2019-12-06 山东大学 高温质子交换膜燃料电池冷热电三联供系统及其工作方法
CN110701827A (zh) * 2019-11-05 2020-01-17 中国华电科工集团有限公司 一种紧凑型百kW-MW级SOFC冷热电系统及其运行方法
CN110849014A (zh) * 2019-10-17 2020-02-28 安徽正刚新能源科技有限公司 Mw级跨临界二氧化碳冷热联供装置能源回收系统
CN110905611A (zh) * 2019-11-28 2020-03-24 中南大学 一种基于有机朗肯循环和超临界二氧化碳循环的联供系统
FR3099206A1 (fr) * 2019-07-26 2021-01-29 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Procédé de production d’énergie électrique utilisant plusieurs cycles de Rankine combinés
CN112523825A (zh) * 2020-11-23 2021-03-19 江苏科技大学 一种液化天然气动力船冷能综合利用系统及方法
CN113046134A (zh) * 2021-02-05 2021-06-29 中国能源建设集团江苏省电力设计院有限公司 基于双联流化床气化和燃料电池的冷热电联产系统及方法
CN113202586A (zh) * 2021-06-09 2021-08-03 中国科学院理化技术研究所 与火电厂联合运行的液态空气储能发电系统
CN113482736A (zh) * 2021-06-30 2021-10-08 山东大学 一种低能耗捕集二氧化碳的多联供系统和方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201917011D0 (en) * 2019-11-22 2020-01-08 Rolls Royce Plc Power generation system with carbon capture
US11480102B2 (en) 2020-05-01 2022-10-25 Hamilton Sundstrand Corporation Gearbox mechanically coupled fuel cell and CO2 combined cycle power generation
US11719141B2 (en) * 2020-06-29 2023-08-08 Lummus Technology Llc Recuperative heat exchanger system
US11821699B2 (en) 2020-06-29 2023-11-21 Lummus Technology Llc Heat exchanger hanger system
US20210404350A1 (en) * 2020-06-29 2021-12-30 Lummus Technology Llc Power generation system
CN111828173B (zh) * 2020-07-14 2021-11-19 西安交通大学 一种微小型燃气轮机的冷热电联产装置及其工作、控制方法
CN113107622B (zh) * 2021-04-27 2022-07-12 中国能源建设集团广东省电力设计研究院有限公司 一种高效布雷顿-朗肯循环柔性发电系统
CN113357086A (zh) * 2021-06-07 2021-09-07 国网能源研究院有限公司 一种基于氢能的风-火耦合冷热电联供系统
CN113669158A (zh) * 2021-08-09 2021-11-19 中国舰船研究设计中心 基于布雷顿-朗肯联合余热循环的螺杆动力推进系统
CN114033518B (zh) * 2021-10-27 2023-06-16 中国长江三峡集团有限公司 一种基于二氧化碳卡诺电池的综合能源系统及运行方法
CN114198169B (zh) * 2021-12-06 2022-08-09 西安交通大学 一种利用干冰升华的储能系统
CN114272718A (zh) * 2021-12-28 2022-04-05 东北大学 一种零排放的综合能源系统和实现零排放的方法
CN114439560B (zh) * 2022-01-27 2022-12-09 西安交通大学 采用热电机组抽汽蓄热的热电式压缩空气储能系统及方法
CN114522509A (zh) * 2022-02-25 2022-05-24 中国电力工程顾问集团西北电力设计院有限公司 基于太阳能驱动及储能的二氧化碳捕集吸附系统与方法
CN114811990B (zh) * 2022-03-28 2023-03-31 西安交通大学 一种二氧化碳动力循环和热泵循环结合的联产系统及方法
CN114961899A (zh) * 2022-05-12 2022-08-30 江苏科技大学 带碳捕集功能的lng动力船余热和冷能综合利用系统
CN115014000B (zh) * 2022-06-10 2023-12-26 国网浙江省电力有限公司电力科学研究院 多能联供零碳排放系统及其运行控制方法
CN115075988B (zh) * 2022-06-28 2023-09-15 江苏科技大学 大规模低功耗lng动力船舶尾气碳捕集系统及运作方法
CN115419484B (zh) * 2022-07-26 2024-02-02 合肥通用机械研究院有限公司 一种应用于试车台燃气冷却流程的储能固碳系统
HUP2200394A1 (hu) * 2022-10-04 2024-04-28 Balazs Szabo Hõerõmû
CN115750005A (zh) * 2022-11-17 2023-03-07 中国核动力研究设计院 一种集供热、发电、制冷于一体的联合循环系统
CN117174949B (zh) * 2023-11-03 2024-02-02 合肥通用机械研究院有限公司 一种耦合跨临界co2冷热联供的sofc热管理系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104389680A (zh) * 2014-11-12 2015-03-04 山东大学 基于sofc/gt和膜分离技术的低碳排放功冷联供系统
EP2987970A1 (en) * 2014-07-14 2016-02-24 Doosan Heavy Industries & Construction Co., Ltd. Hybrid power generation system and method using supercritical co2 cycle
CN107630726A (zh) * 2017-09-26 2018-01-26 上海发电设备成套设计研究院有限责任公司 一种基于超临界二氧化碳循环的多能混合发电系统及方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201909409U (zh) * 2010-12-15 2011-07-27 武汉凯迪控股投资有限公司 节能型烟气废热利用供冷系统
CN102088099B (zh) 2010-12-16 2012-11-28 西安交通大学 一种固体氧化物燃料电池驱动的冷热电联供循环系统
CN102628402A (zh) * 2012-04-17 2012-08-08 西安交通大学 基于lng冷能利用的燃料电池和有机朗肯循环联合发电系统
CN102967099B (zh) * 2012-11-08 2014-12-31 暨南大学 一种液化天然气冷能的能量梯级综合利用方法
CN103161607A (zh) * 2013-03-04 2013-06-19 西安交通大学 一种基于内燃机余热利用的联合发电系统
WO2016195968A1 (en) * 2015-06-01 2016-12-08 Conlon William M Part load operation of liquid air power and storage system
CN205641713U (zh) * 2016-04-19 2016-10-12 广东九丰燃气科技股份有限公司 Lng冷能制冰系统
CN106499454A (zh) 2016-11-04 2017-03-15 厦门大学 动力产生方法和电力产生方法
CN106703918A (zh) 2017-02-08 2017-05-24 上海发电设备成套设计研究院 集成燃料电池与二氧化碳循环的热电联供系统及其方法
CN106839563B (zh) * 2017-03-21 2019-07-23 中冶西北工程技术有限公司 一种利用液化天然气冷能的制冷系统
CN108506110B (zh) 2018-02-28 2019-11-01 山东大学 一种冷热电联供系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2987970A1 (en) * 2014-07-14 2016-02-24 Doosan Heavy Industries & Construction Co., Ltd. Hybrid power generation system and method using supercritical co2 cycle
CN104389680A (zh) * 2014-11-12 2015-03-04 山东大学 基于sofc/gt和膜分离技术的低碳排放功冷联供系统
CN107630726A (zh) * 2017-09-26 2018-01-26 上海发电设备成套设计研究院有限责任公司 一种基于超临界二氧化碳循环的多能混合发电系统及方法

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019165807A1 (zh) * 2018-02-28 2019-09-06 山东大学 一种冷热电联供系统
US11614003B2 (en) 2018-02-28 2023-03-28 Shandong University Combined cooling, heating and power system
CN109356681A (zh) * 2018-11-01 2019-02-19 西南石油大学 一种lng卫星站冷电联产工艺
CN109339884A (zh) * 2018-11-01 2019-02-15 西南石油大学 一种lng卫星站冷能高效利用工艺
CN109346744A (zh) * 2018-11-15 2019-02-15 中国华能集团清洁能源技术研究院有限公司 一种采用超临界co2底循环的天然气燃料电池发电系统及方法
CN109346744B (zh) * 2018-11-15 2023-04-25 中国华能集团清洁能源技术研究院有限公司 一种采用超临界co2底循环的天然气燃料电池发电系统及方法
CN109854320A (zh) * 2019-01-03 2019-06-07 上海海事大学 一种二氧化碳储能与有机朗肯循环联合发电系统
CN109681326A (zh) * 2019-01-16 2019-04-26 新奥数能科技有限公司 一种基于液化天然气冷能梯级利用的冷热电三联供系统
CN109958534A (zh) * 2019-03-29 2019-07-02 山东大学 利用lng冷能的回流式燃料电池发电系统及其工作方法
CN110332746A (zh) * 2019-06-28 2019-10-15 上海电力学院 一种基于lng能源梯级利用的冷链物流园区集合系统
CN110410289A (zh) * 2019-07-24 2019-11-05 中国科学院电工研究所 利用太阳能供热和高温热化学储热的sofc-gt联合发电系统
FR3099206A1 (fr) * 2019-07-26 2021-01-29 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Procédé de production d’énergie électrique utilisant plusieurs cycles de Rankine combinés
WO2021019147A1 (fr) * 2019-07-26 2021-02-04 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé de production d'énergie électrique utilisant plusieurs cycles de rankine combinés
CN110544786A (zh) * 2019-08-12 2019-12-06 山东大学 高温质子交换膜燃料电池冷热电三联供系统及其工作方法
CN110544786B (zh) * 2019-08-12 2020-10-16 山东大学 高温质子交换膜燃料电池冷热电三联供系统及其工作方法
CN110849014A (zh) * 2019-10-17 2020-02-28 安徽正刚新能源科技有限公司 Mw级跨临界二氧化碳冷热联供装置能源回收系统
CN110701827A (zh) * 2019-11-05 2020-01-17 中国华电科工集团有限公司 一种紧凑型百kW-MW级SOFC冷热电系统及其运行方法
CN110701827B (zh) * 2019-11-05 2024-04-23 中国华电科工集团有限公司 一种紧凑型百kW-MW级SOFC冷热电系统及其运行方法
CN110905611A (zh) * 2019-11-28 2020-03-24 中南大学 一种基于有机朗肯循环和超临界二氧化碳循环的联供系统
CN110905611B (zh) * 2019-11-28 2021-08-17 中南大学 一种基于有机朗肯循环和超临界二氧化碳循环的联供系统
CN112523825A (zh) * 2020-11-23 2021-03-19 江苏科技大学 一种液化天然气动力船冷能综合利用系统及方法
CN113046134A (zh) * 2021-02-05 2021-06-29 中国能源建设集团江苏省电力设计院有限公司 基于双联流化床气化和燃料电池的冷热电联产系统及方法
CN113202586A (zh) * 2021-06-09 2021-08-03 中国科学院理化技术研究所 与火电厂联合运行的液态空气储能发电系统
CN113482736A (zh) * 2021-06-30 2021-10-08 山东大学 一种低能耗捕集二氧化碳的多联供系统和方法

Also Published As

Publication number Publication date
CN108506110B (zh) 2019-11-01
US20210087949A1 (en) 2021-03-25
US11614003B2 (en) 2023-03-28
WO2019165807A1 (zh) 2019-09-06

Similar Documents

Publication Publication Date Title
CN108506110B (zh) 一种冷热电联供系统
WO2021184773A1 (zh) 一种发电厂空气储能灵活性调峰系统及方法
CN106703918A (zh) 集成燃料电池与二氧化碳循环的热电联供系统及其方法
CN102628402A (zh) 基于lng冷能利用的燃料电池和有机朗肯循环联合发电系统
CN109915220B (zh) 集成燃料电池与超临界二氧化碳循环的分布式供能系统及方法
CN110171553B (zh) 一种氢燃料电池动力船余热综合利用系统
CN113482736B (zh) 一种低能耗捕集二氧化碳的多联供系统和方法
CN108979769A (zh) 基于双级orc和lng冷能利用的燃料电池联供发电系统
CN206468386U (zh) 集成燃料电池与二氧化碳循环的热电联供系统
WO2019114536A1 (zh) 构造冷源能量回收系统、热力发动机系统及能量回收方法
CN109958534A (zh) 利用lng冷能的回流式燃料电池发电系统及其工作方法
CN109681279A (zh) 一种含液态空气储能的超临界二氧化碳发电系统及方法
WO2023178872A1 (zh) 基于高低参数组合熔盐实现火电机组改造的系统及方法
CN113503531A (zh) 一种燃煤电厂改造的多电源储热调峰电站及调峰方法
CN110552750B (zh) 一种非共沸有机朗肯-双喷射冷热电联供系统
CN216408920U (zh) 一种双热源热工混合压缩热泵蒸汽系统
CN113623038A (zh) 一种空气-蒸汽联合循环发电系统和方法
Karaali et al. Efficiency improvement of gas turbine cogeneration systems
Bae et al. Hybrid system of Supercritical Carbon Dioxide Brayton cycle and carbon dioxide rankine cycle combined fuel cell
CN109944757B (zh) 一种应用在太空环境中的太阳能热发电系统及工作方法
CN102278205A (zh) 可用于分布式的空气及燃料湿化燃气轮机联合循环方法
CN114542218B (zh) 一种高温气冷堆热电水三联供系统及方法
CN102865112A (zh) 背热循环发电及多级背热循环发电及多联产系统
CN215808405U (zh) 一种燃煤电厂改造的多电源储热调峰电站
CN209539413U (zh) 一种低参数热回收系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant