WO2023178872A1 - 基于高低参数组合熔盐实现火电机组改造的系统及方法 - Google Patents

基于高低参数组合熔盐实现火电机组改造的系统及方法 Download PDF

Info

Publication number
WO2023178872A1
WO2023178872A1 PCT/CN2022/102303 CN2022102303W WO2023178872A1 WO 2023178872 A1 WO2023178872 A1 WO 2023178872A1 CN 2022102303 W CN2022102303 W CN 2022102303W WO 2023178872 A1 WO2023178872 A1 WO 2023178872A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
low
molten salt
temperature
steam
Prior art date
Application number
PCT/CN2022/102303
Other languages
English (en)
French (fr)
Inventor
宋晓辉
韩伟
付康丽
陆续
姬海民
姚明宇
于在松
赵亮
Original Assignee
西安热工研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安热工研究院有限公司 filed Critical 西安热工研究院有限公司
Priority to US18/350,306 priority Critical patent/US20240035396A1/en
Publication of WO2023178872A1 publication Critical patent/WO2023178872A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/18Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
    • F01K3/186Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters using electric heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K11/00Plants characterised by the engines being structurally combined with boilers or condensers
    • F01K11/02Plants characterised by the engines being structurally combined with boilers or condensers the engines being turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/12Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having two or more accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/18Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • F28D2020/0047Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material using molten salts or liquid metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the invention belongs to the technical field of molten salt energy storage, and specifically relates to a system and method for transforming thermal power units based on high and low parameter combination molten salt.
  • thermoelectric decoupling thermal/electrical energy storage
  • delayed reuse thermal energy storage and heating
  • Molten salt thermal storage and heating can solve the problem of deep frequency and peak shaving of ultra-low load thermal power units. Its scope of application includes low-cost and high-parameter thermoelectric decoupling peak shaving heating projects that require large-scale energy storage as well as typical large-capacity peak shaving of pure condensing units. Demand scenarios.
  • binary nitrate is mature and widely used, but it is limited by the maximum temperature and is difficult to match high-parameter units of 565°C and above; carbonate has a high melting point, but the operating temperature range is harsh (397°C to 650°C). °C); Chloride system molten salt has excellent cost advantages and can be matched with high-parameter units, but it is highly corrosive.
  • the heat source of the molten salt thermal storage system combined with the existing thermal power base mainly comes from the extraction of steam from the main steam pipeline, the extraction of steam from the reheated steam pipeline, or the extraction of steam from the exhaust pipe of the medium-pressure cylinder; the heat-released steam is connected according to different pressure levels.
  • the condenser, deaerator or auxiliary steam header, etc. The solution of using the medium-pressure cylinder exhaust pipe to extract steam has a small system modification and the overall project cost is lower. However, the system energy storage efficiency is lower than the solution of extracting main reheat steam.
  • the hydrophobic temperature of the return condenser is high, which affects The back pressure of the unit reduces the working capacity of the unit; on the other hand, due to the extraction of a large amount of low-grade steam, electric heating needs to be used to raise the temperature again. The electric heater consumes a large proportion of power, further reducing the overall efficiency of the system.
  • the present invention provides a system and method for transforming thermal power units based on a combination of high and low parameters of molten salt.
  • the low-temperature molten salt uses ternary nitrate
  • the high-temperature molten salt uses ternary carbonate.
  • steam is drawn from the main steam pipeline and the hot re-pipe respectively. Through salt-steam heat exchange, the main steam releases heat and returns to the cold re-pipe. The reheat steam releases heat and returns to the deaerator.
  • the peak-shaving depth can be adjusted down to Below 10% rated load, the molten salt electric heater configured at the same time has a high-power electrical load, which can realize rapid frequency regulation of the unit; in the energy release stage, high-pressure water is introduced from the outlet of the high-pressure heater, and high-grade steam is generated through cascade heat exchange. The heat returns to the pipeline and enters the medium-pressure cylinder to perform work to achieve peak regulation of the unit.
  • the technical solution adopted by the present invention is: a system for transforming thermal power units based on a combination of high and low parameters molten salt, a high-parameter molten salt energy storage system, a low-parameter molten salt energy storage system and existing thermal power units, and high-parameter molten salt energy storage systems.
  • the parametric molten salt energy storage system is equipped with an electric heater for heating molten salt. The electric energy input end of the electric heater is connected to the electric energy output end of the existing thermal power unit; a high-parameter molten salt energy storage system is equipped with a high-parameter molten salt heat absorption circuit.
  • a low-parameter molten salt endothermic circuit and a low-parameter molten salt method thermal circuit are set in the low-parameter molten salt energy storage system; in which the first steam inlet and the second steam inlet are set in the low-parameter molten salt endothermic circuit.
  • One exothermic steam outlet, the first steam inlet and the first exothermic steam outlet are respectively connected to the existing thermal power unit thermal resteam pipe and the deaerator inlet; a second steam inlet and a third steam inlet are provided in the high-parameter molten salt heat absorption circuit Two exothermic steam outlets.
  • the second steam inlet and the second exothermic steam outlet are respectively connected to the main steam pipeline and the cold re-pipe of the existing thermal power unit. There is a cold re-pipe between the cold re-pipe and the second exothermic steam outlet. regulating valve;
  • the low-parameter molten salt heat release circuit is provided with a water supply inlet and a steam outlet, and the water supply inlet is connected to the high-pressure outlet of the existing thermal power unit;
  • the high-parameter molten salt heat release circuit is provided with an endothermic steam inlet and an endothermic steam outlet, and an endothermic steam inlet. It is connected to the steam outlet of the low-parameter molten salt energy storage system, and the endothermic steam outlet is connected to the steam inlet of the medium-pressure cylinder of the existing thermal power unit.
  • a high-parameter low-temperature salt tank and a high-parameter high-temperature salt tank are set up in the high-parameter molten salt energy storage system.
  • a low-parameter low-temperature salt tank and a low-parameter high-temperature salt tank are set up in the low-parameter molten salt energy storage system; a low-parameter low-temperature salt tank and a low-parameter high-temperature salt tank.
  • the high-temperature salt tanks are connected to each other, and a low-parameter molten salt heat absorption circuit and a low-parameter molten salt heat release circuit are set up between the two.
  • the high-parameter low-temperature salt tank and the high-parameter high-temperature salt tank are connected to each other.
  • the high-parameter low-temperature salt tank and the high-parameter high-parameter salt tank are connected to each other.
  • a high-parameter molten salt heat absorption circuit and a high-parameter molten salt heat release circuit are set up between the high-temperature salt tanks; an electric heater and a salt-steam heat exchanger are set up in the high-parameter molten salt heat absorption circuit; the electric energy input end of the electric heater is connected
  • the electric energy output end of the generator in the existing thermal power unit and the hot side inlet and outlet of the salt-steam heat exchanger are respectively connected to the main steam pipeline and cold re-pipeline of the existing thermal power unit, and the cold side inlet and outlet of the salt-steam heat exchanger are respectively connected.
  • High-parameter low-temperature salt tank and electric heater the electric heater is connected to the high-parameter high-temperature salt tank;
  • the low-parameter molten salt heat absorption circuit is equipped with high-temperature heat exchangers, medium-temperature heat exchangers and low-temperature heat exchangers connected in sequence along the steam flow direction.
  • the exhaust side of the low-temperature heat exchanger is connected to the deaerator of the existing thermal power unit; a molten salt superheater is set up in the high-parameter molten salt heat release circuit, and a heat exchanger group is set up in the low-parameter molten salt heat release circuit.
  • the inlet of the unit is connected to the high-pressure outlet of the existing thermal power unit, the outlet of the heat exchanger unit is connected to the inlet of the molten salt superheater, and the outlet of the molten salt superheater is connected to the reheat steam pipe of the existing thermal power unit;
  • the cold side inlet and outlet are respectively connected to the low-parameter low-temperature salt tank and the low-parameter high-temperature salt tank.
  • the heat exchanger group includes a molten salt preheater and a molten salt steam generator connected in series.
  • the cold side inlet of the molten salt preheater is connected to the outlet of the high-pressure heater, and the cold side outlet of the molten salt preheater is connected to the molten salt steam.
  • the cold side inlet of the generator and the cold side outlet of the molten salt steam generator are connected to the inlet of the molten salt superheater.
  • the outlets of the high-parameter low-temperature salt tank and the low-parameter low-temperature salt tank are respectively equipped with high-temperature molten salt pumps and low-temperature molten salt pumps.
  • the exit lines of existing thermal power units are equipped with transformers to output voltages of 380V, 690V, 6000V or 10000V.
  • Ternary nitrate is used in the low-parameter molten salt energy storage system.
  • the temperature of the low-parameter low-temperature molten salt is 166°C.
  • the temperature of the low-parameter high-temperature molten salt is 450°C.
  • the high-parameter molten salt energy storage system uses ternary carbonate. , the temperature of high-parameter low-temperature molten salt is 450°C, and the temperature of high-parameter high-temperature molten salt is 600°C.
  • the operating method of the system based on the present invention includes an energy storage process and an energy release process.
  • the energy storage process the steam from the reheat steam pipe of the existing thermal power unit enters the low-parameter molten salt endothermic circuit to release heat and heat the molten salt.
  • the heat is stored in the low-parameter molten salt, and the reheated steam releases heat and enters the deaerator of the existing thermal power unit; part of the high-grade steam drawn from the main steam pipeline of the existing thermal power unit enters the high-parameter molten salt heat absorption circuit and releases heat.
  • Heating high-parameter molten salt, the heated high-parameter molten salt uses the electric energy of the existing thermal power unit to further heat the high-parameter molten salt, and stores the heat in the high-parameter molten salt;
  • the feed water in the existing thermal power unit enters the low-parameter molten salt exothermic circuit and absorbs heat to become steam.
  • the steam enters the high-parameter molten salt exothermic circuit and further absorbs heat to become superheated steam and is reheated by the existing thermal power unit.
  • the steam pipe enters the intermediate pressure cylinder to perform work.
  • the low-parameter low-temperature molten salt from the low-parameter low-temperature salt tank sequentially enters the low-temperature heat exchanger, the medium-temperature heat exchanger and the high-temperature heat exchanger to absorb heat.
  • the high-parameter low-temperature molten salt from the high-parameter low-temperature salt tank first absorbs the heat from the main steam in the salt-steam heat exchanger, Then it enters the electric heater to heat it into high-parameter high-temperature molten salt, and then enters the high-parameter high-temperature salt tank to store heat;
  • the feed water from the high-gas outlet of the existing thermal power unit is heated by the molten salt preheater and then enters the molten salt steam generator to absorb the heat of the low-parameter high-temperature molten salt to become steam.
  • the steam enters the molten salt superheater and absorbs The heat of the high-parameter high-temperature molten salt becomes superheated steam and then enters the medium-pressure cylinder to perform work.
  • the high-parameter high-temperature molten salt and the low-parameter high-temperature molten salt release heat and enter the high-parameter low-temperature salt tank and the low-parameter low-temperature salt tank respectively.
  • the present invention at least has the following beneficial effects:
  • the present invention has a simple system and reasonable process as a whole;
  • the extracted main reheat steam has high parameters, which can better match the high-parameter molten salt, and reduces the power consumption of the high-power electric heater, further improving the overall energy storage efficiency of the system.
  • Figure 1 is a schematic diagram of an implementable system energy storage structure of the present invention.
  • Figure 2 is a schematic diagram of an implementable system energy release structure of the present invention.
  • 1 is the boiler
  • 2 is the high-pressure cylinder
  • 3 is the medium-pressure cylinder
  • 4 is the medium-pressure cylinder exhaust control valve
  • 5 is the low-pressure cylinder
  • 6 is the generator
  • 7 is the condenser
  • 8 is the condensate pump
  • 9 is Low-pressure heater
  • 10 is deaerator
  • 11 is feed water pump
  • 12 is high-pressure heater
  • 13 is regulating valve
  • 14 is high-parameter low-temperature salt tank
  • 15 is high-parameter molten salt pump
  • 16 is salt-steam heat exchanger
  • 17 is an electric heater
  • 18 is a high parameter high temperature salt tank
  • 19 is a low parameter low temperature salt tank
  • 20 is a low parameter molten salt pump
  • 21 is a low temperature heat exchanger
  • 22 is a medium temperature heat exchanger
  • 23 is a high temperature heat exchanger
  • 24 is a low-parameter high-temperature salt tank.
  • an element When an element is referred to as being “on,” “on,” “connected to” or “coupled to” another element, it can be directly on, directly connected to, or directly connected to the other element. Either directly coupled to said other component, or intervening components may be present. However, when an element is referred to as being “directly on,” “directly connected to” or “directly coupled to” another element, there are no intervening elements present.
  • the term “connected” may refer to a physical connection, an electrical connection, etc., with or without intervening components.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
  • the process of the conventional thermal power unit is as follows: steam from the superheater outlet a of the boiler 1 enters the high-pressure cylinder 2 to perform work, the exhaust steam from the high-pressure cylinder enters the boiler reheater, and the steam from the reheater outlet b enters the medium-pressure cylinder. 3 does work.
  • the condensed water in the condenser 7 enters the deaerator 10 through the condensate pump 8 and the low-pressure heater 9. After being heated again in the deaerator, it is fed to the water supply pump. 11 is driven into the high-pressure heater 12, and finally enters the boiler 1 to complete the complete power cycle.
  • the technical solution adopted by the present invention is to add a molten salt energy storage system to the conventional thermal power unit process.
  • the molten salt uses a combination of high-parameter carbonate and low-melting-point nitrate; a is the outlet of the boiler superheater, b c is the main steam extraction port of the boiler reheater outlet, d is the steam side inlet of the salt-steam heat exchanger, e is the hot resteam extraction port, and f is the steam side inlet of the high temperature heat exchanger.
  • the high-parameter molten salt energy storage system is equipped with an electric heater for heating molten salt.
  • the electric energy input end of the electric heater is connected to the existing thermal power unit.
  • the high-parameter molten salt energy storage system is equipped with a high-parameter molten salt endothermic circuit and a high-parameter molten salt exothermic circuit;
  • the low-parameter molten salt energy storage system is provided with a low-parameter molten salt endothermic circuit and low parameters Molten salt method thermal circuit; wherein a first steam inlet and a first exothermic steam outlet are provided in the low-parameter molten salt endothermic circuit.
  • the first steam inlet and the first exothermic steam outlet are respectively connected to the thermal resteam of the existing thermal power unit.
  • Pipeline and deaerator inlet 10; a second steam inlet and a second exothermic steam outlet are provided in the high-parameter molten salt heat absorption circuit.
  • the second steam inlet and the second exothermic steam outlet are respectively connected to the main steam of the existing thermal power unit.
  • Pipe and cold re-pipe, a regulating valve 13 is provided between the cold re-pipe and the second exothermic steam outlet;
  • the low-parameter molten salt heat release circuit is provided with a water supply inlet and a steam outlet, and the water supply inlet is connected to the high-pressure outlet of the existing thermal power unit;
  • the high-parameter molten salt heat release circuit is provided with an endothermic steam inlet and an endothermic steam outlet, and an endothermic steam inlet. It is connected to the steam outlet of the low-parameter molten salt energy storage system, and the endothermic steam outlet is connected to the steam inlet of the medium-pressure cylinder of the existing thermal power unit.
  • the present invention provides a system for transforming thermal power units based on a combination of high and low parameters molten salt, including existing thermal power units and a molten salt energy storage system.
  • the molten salt energy storage system includes a low-parameter low-temperature salt tank 19, a low-parameter
  • the high-parameter low-temperature salt tank 24, the high-parameter low-temperature salt tank 14 and the high-parameter high-temperature salt tank 18 are connected to each other, and the low-parameter low-temperature salt tank 19 and the low-parameter high-temperature salt tank 19 are connected to each other, and a low-parameter molten salt heat absorption circuit and a low-parameter molten salt heat absorption circuit are set between them.
  • the low parameter molten salt heat absorption circuit is provided with a heat exchanger group, the hot side inlet of the heat exchanger group is connected to the hot resteam pipe, and the cold side outlet of the heat exchanger group is connected to the deaerator.
  • the parameter low-temperature molten salt is output by the low-temperature molten salt pump 20, and successively passes through the low-temperature heat exchanger 21, the medium-temperature heat exchanger 22 and the high-temperature heat exchanger 23 to absorb heat, and then enters the low-parameter high-temperature salt tank 24 to complete the heat absorption process.
  • a molten salt steam generator 26 and a molten salt preheater 25 are arranged in sequence along the flow direction of the exothermic medium.
  • the cold side inlet of the molten salt preheater 25 is connected to the outlet of the high-pressure heater 12.
  • the cold side outlet of the molten salt preheater 25 is connected to the cold side inlet of the molten salt steam generator 26, and the cold side outlet of the molten salt steam generator 26 is connected to the high parameter heat release circuit, so that the feed water is absorbed in the molten salt preheater 25. After heating, it continues to enter the molten salt steam generator 26 to absorb heat and generate steam.
  • the low-parameter high-temperature molten salt flows from the low-parameter high-temperature salt tank 24 through the hot side of the molten salt generator 26, flows to the hot side of the molten salt preheater 25, and then enters The low-parameter low-temperature salt tank 19; the high-parameter low-temperature salt tank 14 and the high-parameter high-temperature salt tank 18 are connected to each other.
  • a high-parameter molten salt heat absorption circuit and a high-parameter melting salt tank 18 are set between the high-parameter low-temperature salt tank 14 and the high-parameter high-temperature salt tank 18.
  • the high parameter molten salt heat absorption circuit is provided with a salt-steam heat exchanger 16 and an electric heater 17, the high parameter molten salt heat release circuit is provided with a molten salt superheater 27, a molten salt superheater
  • the cold side inlet of 27 is connected to the outlet of the molten salt steam generator 26, the cold side outlet of the molten salt superheater 27 is connected to the hot resteam pipeline from the boiler 1 to the medium pressure cylinder 3, and the hot side inlet and outlet of the molten salt superheater 27 are connected respectively.
  • the high-parameter high-temperature molten salt enters the molten salt superheater 27 and releases heat and then enters the high-parameter low-temperature salt tank 14.
  • the steam absorbs heat in the molten salt superheater 27. It becomes superheated steam and enters the medium pressure cylinder 3 to do work.
  • the specific process of the molten salt side of the energy storage stage is: the salt from the low-parameter low-temperature salt tank 19 enters the low-parameter through the low-temperature molten salt pump 20, the low-temperature heat exchanger 21, the medium-temperature heat exchanger 22, and the high-temperature heat exchanger 23 in sequence.
  • the salt from the high-parameter low-temperature salt tank 14 enters the high-parameter high-temperature salt tank 18 through the high-temperature molten salt pump 15, the salt-steam heat exchanger 16 and the electric heater 17.
  • the extraction steam in the energy storage stage comes from the main steam pipeline and the reheat steam pipeline respectively.
  • the extraction steam from the reheat steam pipeline and the low-parameter molten salt enter the deaerator 10 for recovery after heat exchange; the extraction steam from the main steam pipeline and After exchanging heat in the salt-to-gas heat exchanger 16, the high-parameter molten salt enters the cold re-pipe through the regulating valve 13.
  • the regulating valve 13 can match the pressure entering the cold re-pipe according to the different loads of the unit.
  • the energy release stage utilizes the feed water from the outlet of the high-pressure heater 12 to pass through the molten salt preheater 25 and the molten salt steam generator 26 to exchange heat with the high-parameter high-temperature molten salt and then enter the molten salt superheater 27. After heating, the high-temperature The high-pressure steam merges with the hot resteam at interface h and enters the medium-pressure cylinder 3 to perform work.
  • the outlets of the high-parameter low-temperature salt tank 14 and the low-parameter low-temperature salt tank 19 are respectively provided with a high-temperature molten salt pump 15 and a low-temperature molten salt pump 20.
  • the power supply of the electric heater 17 comes from the outlet line of the generator 6. Through voltage conversion, the power demand of different voltage levels can be realized, such as 380V, 690V, 6000V or 10000V. The factory power can be used to realize rapid frequency regulation of part of the electric load. .
  • the power is 276MW
  • the heat consumption is 8195.4kJ/kW.h
  • the steam consumption is 2.681kg/kW.h
  • the main feed water temperature is 222.1°C
  • the main reheat temperature is 566°C
  • the main steam pressure is 24.2MPa
  • the reheat steam pressure is 1.597MPa
  • the reheat cold section temperature is 325°C
  • the reheat cold section pressure is 1.77MPa
  • the medium pressure cylinder exhaust steam temperature is 374.6°C.
  • Extraction steam heat storage process Extract high-grade steam at 566°C and 24.2MPa from the main steam of the existing thermal power unit and enter the salt-steam heat exchanger of the high-parameter molten salt system.
  • the heat-exchanged steam enters the cold recirculation pipeline with the parameters: 1.74MPa, 218°C; high-temperature steam of 566°C, 1.74MPa is extracted from the existing thermal power unit thermal re-pipeline and enters the low-parameter molten salt system, where it exchanges heat with the low-parameter molten salt heat exchanger group and then enters the deaerator; low-parameter low temperature
  • the molten salt at 260°C is heated sequentially in the heat exchanger group and the temperature rises to 550°C and enters the low-parameter high-temperature salt tank.
  • the high-parameter low-temperature molten salt at 400°C is heated in the salt-steam heat exchanger and enters the electric heater again. Finally, the temperature rises. to 630°C and enters the high-temperature salt high-temperature tank; the electric heater 17 is connected to the outlet line of the motor 6.
  • 230°C feed water is introduced from the high-pressure heater outlet of the existing thermal power unit and enters the molten salt preheater 25 for heating, and then enters the molten salt steam generator 26 to absorb heat and become steam.
  • the low-parameter high-temperature molten salt of 550°C is converted from low-parameter
  • the high-temperature salt tank 24 enters the molten salt steam generator 26 and the molten salt preheater 25 and the temperature drops to 260°C and then enters the low-parameter low-temperature salt tank 19.
  • the steam enters the molten salt superheater 27 and absorbs heat and becomes 566°C.
  • Superheated steam enters the medium-pressure cylinder 3 from the outlet of the molten salt superheater 27 through the h port of the reheat steam pipe to perform work, and the high-parameter high-temperature molten salt enters the molten salt superheater 27 from the high-parameter high-temperature salt tank 18 After the hot side releases heat, the temperature drops to 400°C and enters the high-parameter low-temperature salt tank 14; based on the above extraction heat storage process and energy release process, the specific operating parameters of the existing thermal power units are as follows:

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

一种基于高低参数组合熔盐实现火电机组改造的系统,包括高参数熔盐储能系统、低参数熔盐储能系统及现有火电机组,高参数熔盐储能系统中设置高参数熔盐吸热回路和高参数熔盐放热回路;低参数熔盐储能系统中设置低参数熔盐吸热回路和低参数熔盐放热回路;低参数熔盐吸热回路中设置第一蒸汽入口(f)和第一放热蒸汽出口,第一蒸汽入口(f)和第一放热蒸汽出口分别连接现有火电机组再热蒸汽管道和除氧器(10)入口;高参数熔盐吸热回路中设置第二蒸汽入口(d)和第二放热蒸汽出口,第二蒸汽入口(d)和第二放热蒸汽出口分别连接现有火电机组主蒸汽管道和冷再管道,在冷再管道与第二放热蒸汽出口之间设置有调节阀(13);低参数熔盐放热回路中设置给水入口和蒸汽出口,给水入口连接现有火电机组高压加热器(12)出口;高参数熔盐放热回路中设置吸热蒸汽入口和吸热蒸汽出口,吸热蒸汽入口连接低参数熔盐储能系统的蒸汽出口,吸热蒸汽出口连接现有火电机组的中压缸(3)进汽口。

Description

基于高低参数组合熔盐实现火电机组改造的系统及方法 技术领域
本发明属于熔盐储能技术领域,具体涉及一种基于高低参数组合熔盐实现火电机组改造的系统及方法。
背景技术
火电机组灵活性改造是双碳目标下电源转型的大势所趋,更是当务之急。利用熔盐储能技术实现热电解耦、热能/电能存储及延时再利用,从而提升机组灵活性是较为成熟的方案之一。熔盐蓄热供热可解决超低负荷火电机组深度调频调峰,其适用范围包括大规模储能需求的低成本高参数热电解耦调峰供热项目以及典型的纯凝机组大容量调峰需求场景。在众多熔盐选择中,二元硝酸盐应用成熟广泛,但受最高温限制,与565℃及以上的高参数机组难以匹配;碳酸盐的熔点高,但使用温区苛刻(397℃~650℃);氯化物体系熔盐有极佳的成本优势,可与高参数机组匹配,但是其腐蚀性较强。
与现有火电基地的结合的熔盐蓄热系统热源主要来自主蒸汽管道抽汽、再热蒸气管道抽汽或利用中压缸排汽管抽汽;放热后的蒸汽根据不同的压力等级接至凝汽器、除氧器或辅助蒸汽联箱等。利用中压缸排汽管道抽汽的方案系统改动量小,工程造价整体较低,但是系统储能效率较抽取主再热蒸汽的方案偏低,另外回凝汽器的疏水温度较高,影响机组的背压、降低机组的做功能力;另一方面由于抽取大量低品位蒸汽,需要利用电加热再次提温,电加热器所耗电功率比例较大,进一步拉低系统整体效率。
发明内容
为了解决现有技术中存在的问题,本发明提供一种基于高低参数组合熔盐实现火电机组改造的系统及方法,低温熔盐采用三元硝酸盐,高温熔盐采用三元碳酸盐,储能阶段分别从主蒸 汽管道和热再管道引出蒸汽,通过盐-汽换热主蒸汽放热后回至冷再管道,再热蒸汽放热后回至除氧器,可将调峰深度下调至10%额定负荷以下,同时配置的熔盐电加热器具备大功率的用电负荷,可实现机组的快速调频;释能阶段从高压加热器出口引出高压给水,通过梯级换热产生高品位蒸汽最后回至热再管道进入中压缸做功,实现机组调峰。
为了实现上述目的,本发明采用的技术方案是:一种基于高低参数组合熔盐实现火电机组改造的系统,高参数熔盐储能系统、低参数熔盐储能系统及现有火电机组,高参数熔盐储能系统设置有用于加热熔盐的电加热器,电加热器的电能输入端连接现有火电机组的电能输出端;高参数熔盐储能系统中设置高参数熔盐吸热回路和高参数熔盐放热回路;低参数熔盐储能系统中设置低参数熔盐吸热回路和低参数熔盐方法热回路;其中低参数熔盐吸热回路中设置第一蒸汽入口和第一放热蒸汽出口,所述第一蒸汽入口和第一放热蒸汽出口分别连接现有火电机组热再蒸汽管道和除氧器入口;高参数熔盐吸热回路中设置第二蒸汽入口和第二放热蒸汽出口,所述第二蒸汽入口和第二放热蒸汽出口分别连接现有火电机组主蒸汽管道和冷再管道,在冷再管道与所述第二放热蒸汽出口之间设置有调节阀;
低参数熔盐放热回路中设置给水入口和蒸汽出口,所述给水入口连接现有火电机组高加出口;高参数熔盐放热回路中吸热蒸汽入口和吸热蒸汽出口,吸热蒸汽入口连接低参数熔盐储能系统的蒸汽出口,吸热蒸汽出口连接现有火电机组的中压缸进汽口。
高参数熔盐储能系统中设置高参数低温盐罐和高参数高温盐罐,低参数熔盐储能系统中设置低参数低温盐罐和低参数高温盐罐;低参数低温盐罐和低参数高温盐罐相互连通,并且两者之间设置低参数熔盐吸热回路和低参数熔盐放热回路,高参数低温盐罐和高参数高温盐罐相互连通,高参数低温盐罐和高参数高温盐罐之间设置高参数熔盐吸热回路和高参数熔盐放热回路;高参数熔盐吸热回路中设置电加热器和盐-汽换热器;电加热器的电能输入端连接现有火电机组中发电机的电能输出端,盐-汽换热器的热侧进出口分别连接现有火电机组的主蒸汽管道和 冷再管道,盐-汽换热器冷侧进出口分别连接高参数低温盐罐和电加热器,电加热器连接高参数高温盐罐;低参数熔盐吸热回路中沿着蒸汽流向设置依次连接的高温换热器、中温换热器和低温换热器,低温换热器排汽侧连接至现有火电机组的除氧器;高参数熔盐放热回路中设置熔盐过热器,低参数熔盐放热回路设置换热器组,所述换热器组的入口连接现有火电机组的高加出口,所述换热器组的出口连接熔盐过热器入口,熔盐过热器出口连接现有火电机组的再热蒸汽管道;换热器组的冷侧进出口分别连接低参数低温盐罐和低参数高温盐罐。
所述换热器组包括串联的熔盐预热器和熔盐蒸汽发生器,熔盐预热器的冷侧入口连接高压加热器的出口,熔盐预热器的冷侧出口连接熔盐蒸汽发生器的冷侧入口,熔盐蒸汽发生器的冷侧出口连接至熔盐过热器的入口。
高参数低温盐罐和低参数低温盐罐的出口分别设置高温熔盐泵和低温熔盐泵。
现有火电机组的出口线路设置变压器实现输出380V、690V、6000V或10000V电压。
低参数熔盐储能系统中采用三元硝酸盐,低参数低温熔盐的温度为166℃,低参数高温熔盐的温度为450℃,高参数熔盐储能系统中采用三元碳酸盐,高参数低温熔盐的温度为450℃,高参数高温熔盐的温度为600℃。
基于本发明所述系统的运行方法,包括储能过程和释能过程,储能过程:现有火电机组的再热蒸汽管道的蒸汽进入低参数熔盐吸热回路中放热加热熔盐,将热量存储在低参数熔盐中,再热蒸汽放热后进入现有火电机组的除氧器中;现有火电机组中主蒸汽管道引出部分高品位蒸汽进入高参数熔盐吸热回路中放热加热高参数熔盐,加热后的高参数熔盐利用现有火电机组的电能进一步加热高参数熔盐,将热量存储在高参数熔盐中;
释能过程:现有火电机组中的给水进入低参数熔盐放热回路中吸热成为蒸汽,所述蒸汽进入高参数熔盐放热回路中进一步吸热成为过热蒸汽经现有火电机组再热蒸汽管道进入其中压缸做功。
储能过程中:来自低参数低温盐罐的低参数低温熔盐依次进入低温换热器、中温换热器和高温换热器吸热,吸收热量后进入低参数高温盐罐中储热;来自主蒸汽管道的高温蒸汽在盐-汽换热器放热后进入除氧器回收;来自高参数低温盐罐的高参数低温熔盐首先在盐-汽换热器中吸收来自主蒸汽的热量,后进入电加热器中加热为高参数高温熔盐后进入高参数高温盐罐中储热;
释能过程:来自现有火电机组高加出口的给水经熔盐预热器加热后进入熔盐蒸汽发生器吸收低参数高温熔盐的热量成为蒸汽,所述蒸汽进入熔盐过热器中,吸收高参数高温熔盐热量成为过热蒸汽后进入中压缸做功,高参数高温熔盐和低参数高温熔盐经放热后分别进入高参数低温盐罐和低参数低温盐罐中。
与现有技术相比,本发明至少具有以下有益效果:
1)本发明整体上系统简单、流程合理;
2)主设备改造量小,经过改造后具备10%以下调峰能力;
3)利用分段式独立换热,减小了高品位热源换热过程的热损失,保证了各段换热的参数匹配;
4)采用高参数熔盐加低熔点盐的组合使用,一是解决了单一低温盐面临极限参数运行、高温下分解的风险;二是解决了全部采用高参数盐在参数下限运行,性价比低的问题;
5)抽取的主再热蒸汽参数高,可更好的与高参数熔盐匹配,并减小了高功率电加热器所占的耗功,进一步提高了系统整体的储能效率。
附图说明
图1为本发明一种可实施的系统储能结构示意图。
图2为本发明一种可实施的系统释能结构示意图。
其中:1为锅炉,2为高压缸,3为中压缸,4为中压缸排汽控制阀,5为低压缸,6为发 电机,7为凝汽器,8为凝结水泵,9为低压加热器,10为除氧器,11为给水泵,12为高压加热器,13为调节阀,14为高参数低温盐罐,15为高参数熔盐泵,16为盐-汽换热器,17为电加热器,18为高参数高温盐罐,19为低参数低温盐罐,20为低参数熔盐泵,21低温换热器,22中温换热器,23为高温换热器,24为低参数高温盐罐。
具体实施方式
下面结合附图和实施方式对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施方式仅用于解释相关内容,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分。
需要说明的是,在不冲突的情况下,本发明中的实施方式及实施方式中的特征可以相互组合。下面将参考附图并结合实施方式来详细说明本发明的技术方案。
除非另有说明,否则示出的示例性实施方式/实施例将被理解为提供可以在实践中实施本发明的技术构思的一些方式的各种细节的示例性特征。因此,除非另有说明,否则在不脱离本发明的技术构思的情况下,各种实施方式/实施例的特征可以另外地组合、分离、互换和/或重新布置。
当一个部件被称作“在”另一部件“上”或“之上”、“连接到”或“结合到”另一部件时,该部件可以直接在所述另一部件上、直接连接到或直接结合到所述另一部件,或者可以存在中间部件。然而,当部件被称作“直接在”另一部件“上”、“直接连接到”或“直接结合到”另一部件时,不存在中间部件。为此,术语“连接”可以指物理连接、电气连接等,并且具有或不具有中间部件。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等, 除非另有明确具体的限定。
参考图1,所述的常规火电机组的流程为:自锅炉1过热器出口a的蒸汽进入高压缸2做功,高压缸排汽进入锅炉再热器,再热器出口b的蒸汽进入中压缸3做功,中压缸排汽与低压缸之间设置有排汽控制阀4,通过排气控制阀4控制中压缸排汽可实现低压缸零出力运行;进入低压缸5的蒸汽做完功后排入凝汽器7,同时带动发电机6发电,凝汽器7中的冷凝水通过凝结水泵8、低压加热器9进入除氧器10,在除氧器中再次加热后,利用给水泵11打入高压加热器12,最后进入锅炉1中,完成真个完整的动力循环。
参考图1,本发明采用的技术方案是在常规火电机组流程上增设一套熔盐储能系统,熔盐采用高参数碳酸盐与低熔点的硝酸盐组合;a为锅炉过热器出口,b为锅炉再热器出口c为主蒸汽抽汽口,d为盐-汽换热器蒸气侧进口,e为热再蒸气抽汽口,f为高温换热器蒸气侧进口。高参数熔盐储能系统、低参数熔盐储能系统及现有火电机组,高参数熔盐储能系统设置有用于加热熔盐的电加热器,电加热器的电能输入端连接现有火电机组的电能输出端;高参数熔盐储能系统中设置高参数熔盐吸热回路和高参数熔盐放热回路;低参数熔盐储能系统中设置低参数熔盐吸热回路和低参数熔盐方法热回路;其中低参数熔盐吸热回路中设置第一蒸汽入口和第一放热蒸汽出口,所述第一蒸汽入口和第一放热蒸汽出口分别连接现有火电机组热再蒸汽管道和除氧器入口10;高参数熔盐吸热回路中设置第二蒸汽入口和第二放热蒸汽出口,所述第二蒸汽入口和第二放热蒸汽出口分别连接现有火电机组主蒸汽管道和冷再管道,在冷再管道与所述第二放热蒸汽出口之间设置有调节阀13;
低参数熔盐放热回路中设置给水入口和蒸汽出口,所述给水入口连接现有火电机组高加出口;高参数熔盐放热回路中吸热蒸汽入口和吸热蒸汽出口,吸热蒸汽入口连接低参数熔盐储能系统的蒸汽出口,吸热蒸汽出口连接现有火电机组的中压缸进汽口。
参考图1和图2,本发明提供基于高低参数组合熔盐实现火电机组改造的系统,包括现有 火电机组和熔盐储能系统,熔盐储能系统包括低参数低温盐罐19、低参数高温盐罐24、高参数低温盐罐14以及高参数高温盐罐18,低参数低温盐罐19和低参数高温盐罐19相互连通,并且两者之间设置低参数熔盐吸热回路和低参数熔盐放热回路,所述低参数熔盐吸热回路上设置换热器组,换热器组热侧入口连接热再蒸汽管道,换热器组的冷侧出口连接除氧器,低参数低温熔盐经低温熔盐泵20输出,依次经过低温换热器21、中温换热器22和高温换热器23梯级吸热后进入低参数高温盐罐24中,完成吸热过程。
所述低参数熔盐放热回路中沿着放热介质流向依次设置熔盐蒸汽发生器26和熔盐预热器25,熔盐预热器25的冷侧入口连接高压加热器12的出口,熔盐预热器25的冷侧出口连接熔盐蒸汽发生器26的冷侧入口,熔盐蒸汽发生器26的冷侧出口连接至高参数放热回路,使得给水在熔盐预热器25中吸热后继续进入熔盐蒸汽发生器26吸热生成蒸汽,低参数高温熔盐从低参数高温盐罐24流经熔盐发生26的热侧,流向熔盐预热器25的热侧,再进入低参数低温盐罐19;高参数低温盐罐14和高参数高温盐罐18相互连通,高参数低温盐罐14和高参数高温盐罐18之间设置高参数熔盐吸热回路和高参数熔盐放热回路,所述高参数熔盐吸热回路中设置盐-汽换热器16和电加热器17,所述高参数熔盐放热回路中设置熔盐过热器27,熔盐过热器27的冷侧入口连接熔盐蒸汽发生器26的出口,熔盐过热器27的冷侧出口连接锅炉1至中压缸3的热再蒸汽管道,熔盐过热器27的热侧进出口分别连接高参数高温盐罐18的出口和高参数低温盐罐14入口,高参数高温熔盐进入熔盐过热器27放热后进入高参数低温盐罐14,蒸汽在熔盐过热器27中吸热后变为过热蒸汽进入中压缸3做功。
所述的储能阶段熔盐侧具体流程为:来自低参数低温盐罐19的盐依次通过低温熔盐泵20、低温换热器21、中温换热器22、高温换热器23进入低参数高温盐罐24,来自高参数低温盐罐14的盐通过高温熔盐泵15、盐-汽换热器16和电加热器17进入高参数高温盐罐18。
所述的储能阶段的抽汽分别来自主蒸汽管道和再热蒸汽管道,再热蒸汽管道的抽汽与低参 数熔盐在换热后进入除氧器10回收;主蒸汽管道的抽汽与高参数熔盐在盐-气换热器16中换热后经过调节阀13进入冷再管道,调节阀13可根据机组的不同负荷匹配进入冷再管道的压力。
所述的释能阶段利用高压加热器12出口的给水依次经过熔盐预热器25、熔盐蒸汽发生器26与高参数高温熔盐换热后进入熔盐过热器27,经过加热后的高温高压蒸汽在接口h与热再蒸汽汇合,进入中压缸3做功。
高参数低温盐罐14和低参数低温盐罐19的出口分别设置高温熔盐泵15和低温熔盐泵20。
所述的电加热器17的电源来自发电机6出口线路,通过电压变换可实现不同等级电压的用电需求,如380V、690V、6000V或10000V,利用厂用电可实现部分电负荷的快速调频。
以某670MW超临界机组的深调的负荷点40%THA工况下的运行参数为例,此时功率276MW,热耗8195.4kJ/kW.h,汽耗2.681kg/kW.h,主给水温度222.1℃,主再热温度均为566℃,主汽压力24.2MPa,再热汽压力1.597MPa,再热冷段温度325℃,再热冷段压力1.77MPa,中压缸排汽温度374.6℃。
具体实施方式请将下图流程中的参数加以描述。
抽汽蓄热过程:从现有火电机组的主蒸汽抽取566℃、24.2MPa的高品位蒸汽进入高参数熔盐系统的盐-汽换热器,换热后的蒸汽进入冷再管道,参数为1.74MPa、218℃;从现有火电机组热再管道抽取566℃、1.74MPa的高温蒸汽进入低参数熔盐系统,与低参数熔盐换热器组换热后进入除氧器;低参数低温熔盐260℃在换热器组依次加热后温度升高至550℃进入低参数高温盐罐,高参数低温熔盐400℃在盐-汽换热器加热进入电加热器中再次提问,最终升温至630℃进入高温盐高温罐;电加热器17连接至电机6出口线路。
释能过程:从现有火电机组的高压加热器出口引出230℃给水进入熔盐预热器25加热后 进入熔盐蒸汽发生器26吸热成为蒸汽,550℃的低参数高温熔盐从低参数高温盐罐24中进入熔盐蒸汽发生器26和熔盐预热器25中温度降至260℃后进入低参数低温盐罐19,所述蒸汽进入熔盐过热器27吸热后成为566℃的过热蒸汽,所述过热蒸汽从熔盐过热器27的出口经再热蒸汽管道的h口进入中压缸3做功,高参数高温熔盐从高参数高温盐罐18中进入熔盐过热器27的热侧放热后温度降至400℃进入高参数低温盐罐14;基于上述抽汽蓄热过程和释能过程,现有火电机组的具体运行参数如下:
Figure PCTCN2022102303-appb-000001
最后需要注意的是,公布实施例的目的在于帮助进一步理解本发明,但是本领域的技术人员可以理解:在不脱离本发明及所附权利要求的精神和范围内,各种替换和修改都是可能的。因此,本发明不应局限于实施例所公开的内容,本发明要求保护的范围以权力要求书界定的范围为准。

Claims (8)

  1. 一种基于高低参数组合熔盐实现火电机组改造的系统,其特征在于,高参数熔盐储能系统、低参数熔盐储能系统及现有火电机组,高参数熔盐储能系统设置有用于加热熔盐的电加热器,电加热器的电能输入端连接现有火电机组的电能输出端;高参数熔盐储能系统中设置高参数熔盐吸热回路和高参数熔盐放热回路;低参数熔盐储能系统中设置低参数熔盐吸热回路和低参数熔盐方法热回路;其中低参数熔盐吸热回路中设置第一蒸汽入口和第一放热蒸汽出口,所述第一蒸汽入口和第一放热蒸汽出口分别连接现有火电机组热再蒸汽管道和除氧器入口(10);高参数熔盐吸热回路中设置第二蒸汽入口和第二放热蒸汽出口,所述第二蒸汽入口和第二放热蒸汽出口分别连接现有火电机组主蒸汽管道和冷再管道,在冷再管道与所述第二放热蒸汽出口之间设置有调节阀(13);
    低参数熔盐放热回路中设置给水入口和蒸汽出口,所述给水入口连接现有火电机组高加出口;高参数熔盐放热回路中吸热蒸汽入口和吸热蒸汽出口,吸热蒸汽入口连接低参数熔盐储能系统的蒸汽出口,吸热蒸汽出口连接现有火电机组的中压缸进汽口。
  2. 根据权利要求1所述的基于高低参数组合熔盐实现火电机组改造的系统,其特征在于,高参数熔盐储能系统中设置高参数低温盐罐(14)和高参数高温盐罐(18),低参数熔盐储能系统中设置低参数低温盐罐(19)和低参数高温盐罐(24);低参数低温盐罐(19)和低参数高温盐罐(24)相互连通,并且两者之间设置低参数熔盐吸热回路和低参数熔盐放热回路,高参数低温盐罐(14)和高参数高温盐罐(18)相互连通,高参数低温盐罐(14)和高参数高温盐罐(18)之间设置高参数熔盐吸热回路和高参数熔盐放热回路;高参数熔盐吸热回路中设置电加热器(17)和盐-汽换热器(16);电加热器(17)的电能输入端连接现有火电机组中发电机(6)的电能输出端,盐-汽换热器(16)的热侧进出口分别连接现有火电机组的主蒸汽管道和冷再管道,盐-汽换热器(16)冷侧进出口分别连接高参数低温盐罐(14)和电加热器(17),电加热器(17)连接高参数高温盐罐(18);低参数熔盐吸热回路中沿着蒸汽流向设置依次连 接的高温换热器(23)、中温换热器(22)和低温换热器(21),低温换热器(21)排汽侧连接至现有火电机组的除氧器(10);高参数熔盐放热回路中设置熔盐过热器(27),低参数熔盐放热回路设置换热器组,所述换热器组的入口连接现有火电机组的高加出口,所述换热器组的出口连接熔盐过热器(27)入口,熔盐过热器(27)出口连接现有火电机组的再热蒸汽管道;换热器组的冷侧进出口分别连接低参数低温盐罐(19)和低参数高温盐罐(24)。
  3. 根据权利要求2所述的基于高低参数组合熔盐实现火电机组改造的系统,其特征在于,所述换热器组包括串联的熔盐预热器(25)和熔盐蒸汽发生器(26),熔盐预热器(25)的冷侧入口连接高压加热器(12)的出口,熔盐预热器(25)的冷侧出口连接熔盐蒸汽发生器(26)的冷侧入口,熔盐蒸汽发生器(26)的冷侧出口连接至熔盐过热器(27)的入口。
  4. 根据权利要求2所述的基于高低参数组合熔盐实现火电机组改造的系统,其特征在于,高参数低温盐罐(14)和低参数低温盐罐(19)的出口分别设置高温熔盐泵(15)和低温熔盐泵(20)。
  5. 根据权利要求1所述的基于高低参数组合熔盐实现火电机组改造的系统,其特征在于,现有火电机组的出口线路设置变压器实现输出380V、690V、6000V或10000V电压。
  6. 根据权利要求1所述的基于高低参数组合熔盐实现火电机组改造的系统,其特征在于,低参数熔盐储能系统中采用三元硝酸盐,低参数低温熔盐的温度为166℃,低参数高温熔盐的温度为450℃,高参数熔盐储能系统中采用三元碳酸盐,高参数低温熔盐的温度为450℃,高参数高温熔盐的温度为600℃。
  7. 权利要求1-6任一项所述系统的运行方法,其特征在于,包括储能过程和释能过程,储能过程:现有火电机组的再热蒸汽管道的蒸汽进入低参数熔盐吸热回路中放热加热熔盐,将热量存储在低参数熔盐中,再热蒸汽放热后进入现有火电机组的除氧器(10)中;现有火电机组中主蒸汽管道引出部分高品位蒸汽进入高参数熔盐吸热回路中放热加热高参数熔盐,加 热后的高参数熔盐利用现有火电机组的电能进一步加热高参数熔盐,将热量存储在高参数熔盐中;
    释能过程:现有火电机组中的给水进入低参数熔盐放热回路中吸热成为蒸汽,所述蒸汽进入高参数熔盐放热回路中进一步吸热成为过热蒸汽经现有火电机组再热蒸汽管道进入其中压缸(3)做功。
  8. 根据权利要求7所述的运行方法,其特征在于,储能过程中:来自低参数低温盐罐(19)的低参数低温熔盐依次进入低温换热器(21)、中温换热器(22)和高温换热器(23)吸热,吸收热量后进入低参数高温盐罐(24)中储热;来自主蒸汽管道的高温蒸汽在盐-汽换热器(16)放热后进入除氧器(10)回收;来自高参数低温盐罐(14)的高参数低温熔盐首先在盐-汽换热器(16)中吸收来自主蒸汽的热量,后进入电加热器(17)中加热为高参数高温熔盐后进入高参数高温盐罐(18)中储热;
    释能过程:来自现有火电机组高加出口的给水经熔盐预热器(25)加热后进入熔盐蒸汽发生器(26)吸收低参数高温熔盐的热量成为蒸汽,所述蒸汽进入熔盐过热器(27)中,吸收高参数高温熔盐热量成为过热蒸汽后进入中压缸做功,高参数高温熔盐和低参数高温熔盐经放热后分别进入高参数低温盐罐(14)和低参数低温盐罐(19)中。
PCT/CN2022/102303 2022-03-21 2022-06-29 基于高低参数组合熔盐实现火电机组改造的系统及方法 WO2023178872A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/350,306 US20240035396A1 (en) 2022-03-21 2023-07-11 System and method for realizing transformation of thermal power unit based on combined high-parameter and low-parameter molten salts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210278915.3A CN114592934B (zh) 2022-03-21 2022-03-21 基于高低参数组合熔盐实现火电机组改造的系统及方法
CN202210278915.3 2022-03-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/350,306 Continuation US20240035396A1 (en) 2022-03-21 2023-07-11 System and method for realizing transformation of thermal power unit based on combined high-parameter and low-parameter molten salts

Publications (1)

Publication Number Publication Date
WO2023178872A1 true WO2023178872A1 (zh) 2023-09-28

Family

ID=81819130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102303 WO2023178872A1 (zh) 2022-03-21 2022-06-29 基于高低参数组合熔盐实现火电机组改造的系统及方法

Country Status (3)

Country Link
US (1) US20240035396A1 (zh)
CN (1) CN114592934B (zh)
WO (1) WO2023178872A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114592934B (zh) * 2022-03-21 2023-11-17 西安热工研究院有限公司 基于高低参数组合熔盐实现火电机组改造的系统及方法
JP2024054673A (ja) * 2022-10-05 2024-04-17 株式会社東芝 発電設備

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106885232A (zh) * 2017-04-12 2017-06-23 东方电气集团东方锅炉股份有限公司 一种适用于火电机组深度调峰的液态储能系统
JP2017125460A (ja) * 2016-01-14 2017-07-20 三菱日立パワーシステムズ株式会社 蒸気タービンプラント、原子力プラント及び蒸気タービンプラントの出力調整方法
CN108316980A (zh) * 2018-03-14 2018-07-24 西安热工研究院有限公司 一种火电机组熔盐蓄热放热调峰系统
CN110006026A (zh) * 2019-04-18 2019-07-12 北京工业大学 一种火电厂深度调峰系统
CN111140296A (zh) * 2020-02-25 2020-05-12 中国电力工程顾问集团华东电力设计院有限公司 一种火电机组熔盐梯级储放能调峰系统及方法
WO2021257731A1 (en) * 2020-06-16 2021-12-23 Cyrq Energy, Inc. Electricity generating systems with thermal energy storage coupled superheaters
CN114592934A (zh) * 2022-03-21 2022-06-07 西安热工研究院有限公司 基于高低参数组合熔盐实现火电机组改造的系统及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203925623U (zh) * 2014-05-09 2014-11-05 淮南中科储能科技有限公司 一种采用熔盐储热提升可再生能源消纳的装置
DE102015004266A1 (de) * 2015-04-01 2016-10-06 Hans-Jürgen Maaß Verfahren und Vorrichtung zur Speicherung von Energie zur Wärme-und Kälteerzeugung mit Salzschmelzen
CN108799026A (zh) * 2018-06-29 2018-11-13 中国电力工程顾问集团西北电力设计院有限公司 一种核能和菲涅尔式太阳能光热联合发电系统及发电方法
CN210179925U (zh) * 2019-04-25 2020-03-24 上海锅炉厂有限公司 一种光、电互补的槽式光热发电系统
CN111306001B (zh) * 2020-03-02 2023-09-08 西安交通大学 一种风光反应堆系统及其工作方法
CN215927675U (zh) * 2021-10-22 2022-03-01 河北工业大学 一种基于熔盐储热技术的塔式太阳能光热发电系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017125460A (ja) * 2016-01-14 2017-07-20 三菱日立パワーシステムズ株式会社 蒸気タービンプラント、原子力プラント及び蒸気タービンプラントの出力調整方法
CN106885232A (zh) * 2017-04-12 2017-06-23 东方电气集团东方锅炉股份有限公司 一种适用于火电机组深度调峰的液态储能系统
CN108316980A (zh) * 2018-03-14 2018-07-24 西安热工研究院有限公司 一种火电机组熔盐蓄热放热调峰系统
CN110006026A (zh) * 2019-04-18 2019-07-12 北京工业大学 一种火电厂深度调峰系统
CN111140296A (zh) * 2020-02-25 2020-05-12 中国电力工程顾问集团华东电力设计院有限公司 一种火电机组熔盐梯级储放能调峰系统及方法
WO2021257731A1 (en) * 2020-06-16 2021-12-23 Cyrq Energy, Inc. Electricity generating systems with thermal energy storage coupled superheaters
CN114592934A (zh) * 2022-03-21 2022-06-07 西安热工研究院有限公司 基于高低参数组合熔盐实现火电机组改造的系统及方法

Also Published As

Publication number Publication date
US20240035396A1 (en) 2024-02-01
CN114592934A (zh) 2022-06-07
CN114592934B (zh) 2023-11-17

Similar Documents

Publication Publication Date Title
US10968784B2 (en) Flexible coal-fired power generation system and operation method thereof
WO2023178872A1 (zh) 基于高低参数组合熔盐实现火电机组改造的系统及方法
CN108561282B (zh) 一种槽式直接蒸汽与熔融盐联合热发电系统
US3047479A (en) Steam reactor system
CN110779009A (zh) 火力发电厂高温高压蒸汽加热熔盐储能系统
WO2024130921A1 (zh) 一种压水堆-高温气冷堆联合核动力发电系统及方法
CN109869205A (zh) 一种用于热电联产机组的储热、发电和供热系统
CN112502800A (zh) 火力发电厂灵活性大规模高参数供热系统
CN210530935U (zh) 一种多轴布置的双机回热系统
CN214741510U (zh) 超临界二氧化碳循环冷端余热辅助加热凝结水系统
CN110925041B (zh) 一种联合循环高效燃煤发电系统
CN114592933B (zh) 一种利用中压缸排汽蓄热的组合熔盐储能调峰系统及方法
CN218467677U (zh) 一种耦合蒸汽储热的燃煤发电系统
CN217712695U (zh) 一种基于熔盐储能的工业供汽系统
CN114234264B (zh) 一种耦合蒸汽喷射器的热电协同系统及运行方法
CN211424363U (zh) 火力发电厂高温高压蒸汽加热熔盐储能系统
CN217785095U (zh) 一种工业供汽的热电解耦装置
CN213955402U (zh) 一种多级多流程吸收式热泵循环水余热回收系统
CN218523547U (zh) 多级电热泵-熔盐梯级储热供汽装置
CN217897981U (zh) 一种适用于热力发电厂的压缩空气储能系统
CN220041407U (zh) 一种基于熔盐储热耦合的核电机组系统
CN218717026U (zh) 一种集成储热的发电系统
CN217129612U (zh) 一种与煤电机组耦合的地下水储热调峰系统
CN116398865B (zh) 高效灵活调峰的熔盐系统
CN218509559U (zh) 熔盐耦合电辅助升温升压的中压工业供汽系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932924

Country of ref document: EP

Kind code of ref document: A1