CN113669158A - 基于布雷顿-朗肯联合余热循环的螺杆动力推进系统 - Google Patents

基于布雷顿-朗肯联合余热循环的螺杆动力推进系统 Download PDF

Info

Publication number
CN113669158A
CN113669158A CN202110906949.8A CN202110906949A CN113669158A CN 113669158 A CN113669158 A CN 113669158A CN 202110906949 A CN202110906949 A CN 202110906949A CN 113669158 A CN113669158 A CN 113669158A
Authority
CN
China
Prior art keywords
low
brayton
pressure screw
temperature generator
screw expander
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110906949.8A
Other languages
English (en)
Inventor
杨元龙
孙玲
薛昌意
劳健锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Ship Development and Design Centre
Original Assignee
China Ship Development and Design Centre
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Ship Development and Design Centre filed Critical China Ship Development and Design Centre
Priority to CN202110906949.8A priority Critical patent/CN113669158A/zh
Publication of CN113669158A publication Critical patent/CN113669158A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/20Adaptations of gas-turbine plants for driving vehicles
    • F02C6/203Adaptations of gas-turbine plants for driving vehicles the vehicles being waterborne vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K15/00Adaptations of plants for special use
    • F01K15/02Adaptations of plants for special use for driving vehicles, e.g. locomotives
    • F01K15/04Adaptations of plants for special use for driving vehicles, e.g. locomotives the vehicles being waterborne vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/12Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled
    • F01K23/14Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled including at least one combustion engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/18Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids characterised by adaptation for specific use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • F01K25/103Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/20Adaptations of gas-turbine plants for driving vehicles
    • F02C6/206Adaptations of gas-turbine plants for driving vehicles the vehicles being airscrew driven

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

本发明公开了一种基于布雷顿‑朗肯联合余热循环的螺杆动力推进系统,包括燃气轮机、减速器、轴系、高压螺杆膨胀机、低压螺杆膨胀机、高温发生器和低温发生器,燃气轮机、高压螺杆膨胀机和低压螺杆膨胀机分别与减速器的三个输入轴连接,轴系与减速器的输出轴连接,燃气轮机的排烟围井中沿着烟羽流动方向依次设置高温发生器和低温发生器,高温发生器通过管道与高压螺杆膨胀机连接形成布雷顿循环系统,低压螺杆膨胀机通过管道与低温发生器连接形成朗肯循环系统。本发明提出的螺杆动力推进系统,结合两类热力循环的优点进行集成优化,能够更加充分利用燃气轮机的排气余热。本螺杆动力推进系统可有效地降低船舶能耗损失,提高实船动力系统的热效率。

Description

基于布雷顿-朗肯联合余热循环的螺杆动力推进系统
技术领域
本发明涉及船舶动力系统设计领域,具体涉及一种基于布雷顿-朗肯联合余热循环的螺杆动力推进系统。
背景技术
燃气轮机、柴油机等动力装置是船舶推进系统的“心脏”,结合两种内燃机的结构和运行特点,在以往船舶产品中采用全燃推进、全柴推进、柴-燃联合推进、柴-燃交替推进等动力型式,燃气轮机装置采用简单循环和中间冷却回热的布雷顿循环方式,柴油机装置一般采取米勒循环方式。从单机角度考虑,单机设备热效率不高,主要是由于高温排烟、冷却水等大量能耗损失造成,伴随大量高温烟气排放并污染海域环境,同时也带来了船舶耗油率较大和系统热效率低。
随着船舶余热动力循环技术的不断成熟,为燃气轮机装置的高温余热利用提供了方法,气体布雷顿循环和有机朗肯循环是系统运行热效率较高的循环方式。其中,布雷顿循环具备利用高温余热的能力,有机朗肯循环具备利用低温余热的能力,结合两类热力循环的优点进行集成优化,能够更加充分利用燃气轮机的排气余热。
发明内容
本发明的主要目的在于提供一种基于布雷顿-朗肯联合余热循环的螺杆动力推进系统,旨在解决现有动力装置存在余热损耗大和系统效率低的温蒂。
为实现上述目的,本发明提供一种基于布雷顿-朗肯联合余热循环的螺杆动力推进系统,包括燃气轮机、减速器、轴系、高压螺杆膨胀机、低压螺杆膨胀机、高温发生器以及低温发生器,其中,
所述燃气轮机、高压螺杆膨胀机和低压螺杆膨胀机分别与减速器的三个输入轴连接,轴系与减速器的输出轴连接,轴系与螺旋桨连接以推进船舶航行,燃气轮机的排烟围井中沿着烟羽流动方向依次设置高温发生器和低温发生器,高温发生器通过管道与高压螺杆膨胀机连接形成布雷顿循环系统,低压螺杆膨胀机通过管道与低温发生器连接形成朗肯循环系统。
优选地,所述布雷顿循环系统还包括压气机和回热器,回热器的第一通道入口与高压螺杆膨胀机出口连接,回热器的第一通道出口与压气机入口连接,压气机出口经回热器的第二通道与高温发生器入口连接,高温发生器出口与高压螺杆膨胀机入口连接。
优选地,所述压气机和高压螺杆膨胀机同轴设置。
优选地,所述回热器的第一通道出口与压气机之间管道上还安装有预冷器。
优选地,所述朗肯循环系统还包括冷凝器,冷凝器的入口与低压螺杆膨胀机出口连接,冷凝器的出口经低温发生器与低压螺杆膨胀机入口连接。
优选地,所述朗肯循环系统还包括安装于冷凝器与低压螺杆膨胀机之间管道的增压泵。
优选地,布雷顿循环系统中的运行工质为二氧化碳气体,朗肯循环系统中的运行工质为溴化锂有机物。
优选地,所述高压螺杆膨胀机和低压螺杆膨胀机采取平行双分轴布置形式。
优选地,排烟围井内还设置有烟气发生器。
优选地,所述烟气发生器、高温发生器和低温发生器在排烟围井内按上游至下游方向依次设置。
本发明提出的基于布雷顿-朗肯联合余热循环的螺杆动力推进系统,因布雷顿循环具备利用高温余热的能力,有机朗肯循环具备利用低温余热的能力,本螺杆动力推进系统结合两类热力循环的优点进行集成优化,能够更加充分利用燃气轮机的排气余热。考虑实船机动性和适装性需求,需采用体积尺寸小、变负荷能力强的功率输出装置,因此采用螺杆膨胀机作为功率输出装置,并能够与燃气轮机进行并车联合运行,既能实现实船机舱内设备布置安装,有可以满足船舶快速机动性的需求。本螺杆动力推进系统可有效地降低船舶能耗损失,提高实船动力系统的热效率。另外,本螺杆动力推进系统还具有结构简单、容易实现以及工作可靠的优点。
附图说明
图1为本发明基于布雷顿-朗肯联合余热循环的螺杆动力推进系统优选实施例的结构示意图。
图中,1、减速器;2、燃气轮机;3、高压螺杆膨胀机;4、低压螺杆膨胀机;5、轴系;6、螺旋桨;7、排烟围井;8、高温发生器;9、低温发生器;10、烟气发生器;11、回热器;12、预冷器;13、压气机;14、冷凝器;15、增压泵。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
需要说明的是,在本发明的描述中,术语“横向”、“纵向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,并不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
参照图1,本优选实施例中,一种基于布雷顿-朗肯联合余热循环的螺杆动力推进系统,包括燃气轮机2、减速器1、轴系5、高压螺杆膨胀机3、低压螺杆膨胀机4、高温发生器8以及低温发生器9,其中,
燃气轮机2、高压螺杆膨胀机3、低压螺杆膨胀机4分别与减速器1的三个输入轴连接,轴系5与减速器1的输出轴连接,轴系5与螺旋桨6连接以推进船舶航行,燃气轮机2的排烟围井7中沿着烟羽流动方向依次设置高温发生器8和低温发生器9,高温发生器8通过管道与高压螺杆膨胀机3连接形成布雷顿循环系统,低压螺杆膨胀机4通过管道与低温发生器9连接形成朗肯循环系统。
高温发生器8和低温发生器9均用于对其内部循环的运行工质进行加热。具体地,布雷顿循环系统中的运行工质为二氧化碳气体,朗肯循环系统中的运行工质为溴化锂有机物。
本实施例中,布雷顿循环系统还包括压气机13和回热器11,回热器11的第一通道入口与高压螺杆膨胀机3出口连接,回热器11的第一通道出口与压气机13入口连接,压气机13出口经回热器11的第二通道与高温发生器8入口连接,高温发生器8出口与高压螺杆膨胀机3入口连接。
进一步地,压气机13和高压螺杆膨胀机3同轴设置,从而最大化利用动力源。
进一步地,回热器11的第一通道出口与压气机13之间管道上还安装有预冷器12,预冷器12对管道中的运行工质进行降温。
通过高温发生器8与高压螺杆膨胀机3建立布雷顿循环,运行工质采取二氧化碳气体,经高温发生器8加热的二氧化碳进入高压螺杆膨胀机3做功后,再通过回热器11和预冷器12冷却降温后,进入压气机13对工作介质进行增压,增压后的二氧化碳回送至高温发生器8重新进行系统循环运行。
具体地,朗肯循环系统还包括冷凝器14,冷凝器14的入口与低压螺杆膨胀机4出口连接,冷凝器14的出口经低温发生器9与低压螺杆膨胀机4入口连接。
进一步地,朗肯循环系统还包括安装于冷凝器14与低压螺杆膨胀机4之间管道的增压泵15,增压泵15对管道中的运行工质进行增压。
通过低温发生器9与低压螺杆膨胀机4建立有机朗肯循环,运行工质采取溴化锂有机物,经低温发生器9加热的溴化锂进入低压螺杆膨胀机4做功后,再通过冷凝器14冷却后,经增压泵15加压输送回至低温发生器9,重新进行系统循环运行。
本实施例中,高压螺杆膨胀机3和低压螺杆膨胀机4采取平行双分轴布置形式。燃气轮机2和螺杆膨胀机的功率汇流后,经轴系5传递扭矩给螺旋桨6,从而推进船舶航行。
进一步地,排烟围井7的上游区域设置有烟气发生器10。烟气发生器10、高温发生器8和低温发生器9在排烟围井7内按上游至下游方向依次设置,从而逐步吸收和利用燃油和空气在燃气轮机2中燃烧做功后产生烟气携带的热量。
在烟气余热不足时,通过在烟气发生器10中喷入燃油和空气进行燃烧,新产生的一部分高温烟气与燃气轮机2的排气进行混合,补偿调控燃气轮机2的排气余热。
本基于布雷顿-朗肯联合余热循环的螺杆动力推进系统的工作原理如下。燃气轮机2工作,从而带动高压螺杆膨胀机3、低压螺杆膨胀机4的螺杆转动,从而带动布雷顿循环系统和朗肯循环系统工作,轴系5传递扭矩给螺旋桨6推进船舶航行。布雷顿循环系统中,经高温发生器8加热的二氧化碳进入高压螺杆膨胀机3做功后,再通过回热器11和预冷器12冷却降温后,进入压气机13对工作介质进行增压,高压二氧化碳回送至高温发生器8重新进行系统循环运行。朗肯循环系统中,经低温发生器9加热的溴化锂进入低压螺杆膨胀机4做功后,再通过冷凝器14冷却后,经增压泵15加压输送回至低温发生器9,重新进行系统循环运行。
本发明提出的基于布雷顿-朗肯联合余热循环的螺杆动力推进系统,因布雷顿循环具备利用高温余热的能力,有机朗肯循环具备利用低温余热的能力,本螺杆动力推进系统结合两类热力循环的优点进行集成优化,能够更加充分利用燃气轮机2的排气余热。考虑实船机动性和适装性需求,需采用体积尺寸小、变负荷能力强的功率输出装置,因此采用螺杆膨胀机作为功率输出装置,并能够与燃气轮机2进行并车联合运行,既能实现实船机舱内设备布置安装,有可以满足船舶快速机动性的需求。本螺杆动力推进系统可有效地降低船舶能耗损失,提高实船动力系统的热效率。另外,本螺杆动力推进系统还具有结构简单、容易实现以及工作可靠的优点。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

1.一种基于布雷顿-朗肯联合余热循环的螺杆动力推进系统,其特征在于,包括燃气轮机、减速器、轴系、高压螺杆膨胀机、低压螺杆膨胀机、高温发生器以及低温发生器,其中,
所述燃气轮机、高压螺杆膨胀机和低压螺杆膨胀机分别与减速器的三个输入轴连接,轴系与减速器的输出轴连接,轴系与螺旋桨连接以推进船舶航行,燃气轮机的排烟围井中沿着烟羽流动方向依次设置高温发生器和低温发生器,高温发生器通过管道与高压螺杆膨胀机连接形成布雷顿循环系统,低压螺杆膨胀机通过管道与低温发生器连接形成朗肯循环系统。
2.如权利要求1所述的基于布雷顿-朗肯联合余热循环的螺杆动力推进系统,其特征在于,所述布雷顿循环系统还包括压气机和回热器,回热器的第一通道入口与高压螺杆膨胀机出口连接,回热器的第一通道出口与压气机入口连接,压气机出口经回热器的第二通道与高温发生器入口连接,高温发生器出口与高压螺杆膨胀机入口连接。
3.如权利要求2所述的基于布雷顿-朗肯联合余热循环的螺杆动力推进系统,其特征在于,所述压气机和高压螺杆膨胀机同轴设置。
4.如权利要求2所述的基于布雷顿-朗肯联合余热循环的螺杆动力推进系统,其特征在于,所述回热器的第一通道出口与压气机之间管道上还安装有预冷器。
5.如权利要求1所述的基于布雷顿-朗肯联合余热循环的螺杆动力推进系统,其特征在于,所述朗肯循环系统还包括冷凝器,冷凝器的入口与低压螺杆膨胀机出口连接,冷凝器的出口经低温发生器与低压螺杆膨胀机入口连接。
6.如权利要求4所述的基于布雷顿-朗肯联合余热循环的螺杆动力推进系统,其特征在于,所述朗肯循环系统还包括安装于冷凝器与低压螺杆膨胀机之间管道的增压泵。
7.如权利要求1所述的基于布雷顿-朗肯联合余热循环的螺杆动力推进系统,其特征在于,布雷顿循环系统中的运行工质为二氧化碳气体,朗肯循环系统中的运行工质为溴化锂有机物。
8.如权利要求1所述的基于布雷顿-朗肯联合余热循环的螺杆动力推进系统,其特征在于,所述高压螺杆膨胀机和低压螺杆膨胀机采取平行双分轴布置形式。
9.如权利要求1至8中任意一项所述的基于布雷顿-朗肯联合余热循环的螺杆动力推进系统,其特征在于,所述排烟围井内还设置有烟气发生器。
10.如权利要求9所述的基于布雷顿-朗肯联合余热循环的螺杆动力推进系统,其特征在于,所述烟气发生器、高温发生器和低温发生器在排烟围井内按上游至下游方向依次设置。
CN202110906949.8A 2021-08-09 2021-08-09 基于布雷顿-朗肯联合余热循环的螺杆动力推进系统 Pending CN113669158A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110906949.8A CN113669158A (zh) 2021-08-09 2021-08-09 基于布雷顿-朗肯联合余热循环的螺杆动力推进系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110906949.8A CN113669158A (zh) 2021-08-09 2021-08-09 基于布雷顿-朗肯联合余热循环的螺杆动力推进系统

Publications (1)

Publication Number Publication Date
CN113669158A true CN113669158A (zh) 2021-11-19

Family

ID=78541814

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110906949.8A Pending CN113669158A (zh) 2021-08-09 2021-08-09 基于布雷顿-朗肯联合余热循环的螺杆动力推进系统

Country Status (1)

Country Link
CN (1) CN113669158A (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103052769A (zh) * 2010-10-22 2013-04-17 三菱重工业株式会社 推进装置及具备其的船舶
GB201308932D0 (en) * 2013-05-17 2013-07-03 Perkins Engine Company Ltd A propulsion system
CN104950718A (zh) * 2015-06-16 2015-09-30 中国舰船研究设计中心 一种混合动力船舶机电综合信息监控方法及装置
KR20150115119A (ko) * 2014-04-02 2015-10-14 현대중공업 주식회사 액화가스 처리 시스템 및 방법
KR20150121321A (ko) * 2014-04-18 2015-10-29 현대중공업 주식회사 액화가스 처리 시스템
CN106089337A (zh) * 2016-08-10 2016-11-09 西安热工研究院有限公司 用于余热回收的超临界co2与有机朗肯联合循环发电系统
CN205858491U (zh) * 2016-07-26 2017-01-04 华北电力大学 基于燃气‑orc联合推动的水电冷联产分布式能量系统
EP3170995A1 (en) * 2015-11-23 2017-05-24 Siemens Aktiengesellschaft Combined cycle power plant and related method of operation
WO2019165807A1 (zh) * 2018-02-28 2019-09-06 山东大学 一种冷热电联供系统
US20210239041A1 (en) * 2018-05-04 2021-08-05 Spada Srl Apparatus, process and thermodynamic cycle for power generation with heat recovery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103052769A (zh) * 2010-10-22 2013-04-17 三菱重工业株式会社 推进装置及具备其的船舶
GB201308932D0 (en) * 2013-05-17 2013-07-03 Perkins Engine Company Ltd A propulsion system
KR20150115119A (ko) * 2014-04-02 2015-10-14 현대중공업 주식회사 액화가스 처리 시스템 및 방법
KR20150121321A (ko) * 2014-04-18 2015-10-29 현대중공업 주식회사 액화가스 처리 시스템
CN104950718A (zh) * 2015-06-16 2015-09-30 中国舰船研究设计中心 一种混合动力船舶机电综合信息监控方法及装置
EP3170995A1 (en) * 2015-11-23 2017-05-24 Siemens Aktiengesellschaft Combined cycle power plant and related method of operation
CN205858491U (zh) * 2016-07-26 2017-01-04 华北电力大学 基于燃气‑orc联合推动的水电冷联产分布式能量系统
CN106089337A (zh) * 2016-08-10 2016-11-09 西安热工研究院有限公司 用于余热回收的超临界co2与有机朗肯联合循环发电系统
WO2019165807A1 (zh) * 2018-02-28 2019-09-06 山东大学 一种冷热电联供系统
US20210239041A1 (en) * 2018-05-04 2021-08-05 Spada Srl Apparatus, process and thermodynamic cycle for power generation with heat recovery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
夏家曦;王红阳;王江峰;赵攀;戴义平;: "一种基于内燃机余热回收的冷电联供系统", 工程热物理学报, no. 02, 15 February 2017 (2017-02-15), pages 235 - 241 *

Similar Documents

Publication Publication Date Title
US5709077A (en) Reduce pollution hydrocarbon combustion gas generator
CN201002715Y (zh) 大型船舶高速航行的燃气轮机斯特林发动机电力推进装置
CN112392626A (zh) 用于柴油机的余热综合能量回收装置
CN101117915A (zh) 组合机电发动机的后续技术
Dzida On the possible increasing of efficiency of ship power plant with the system combined of marine diesel engine, gas turbine and steam turbine, at the main engine-steam turbine mode of cooperation
JP5965019B1 (ja) 燃料供給装置
CN114044119B (zh) 一种利用氨燃料的船舶多动力源电力推进系统
CN113669158A (zh) 基于布雷顿-朗肯联合余热循环的螺杆动力推进系统
JP2005320938A (ja) 排熱回収装置及び排熱回収方法
CN214221330U (zh) 一种沼气发电机组
CN210564804U (zh) 一种基于斯特林循环的船舶辅助发电系统
CN203702343U (zh) 一种低温混合动力燃气轮机
CN103790706B (zh) 一种低温混合动力燃气轮机工作方法
Sayma Gas turbines for marine applications
Dzida et al. On the possible increasing of efficiency of ship power plant with the system combined of marine diesel engine, gas turbine and steam turbine in case of main engine cooperation with the gas turbine fed in series and the steam turbine
CN103541782B (zh) 基于配气活塞式热气机的船舶余热发电装置及其工作方法
CN112523826A (zh) 多模式船舶主机余热利用系统及运行方法
CN211900813U (zh) 一种船舶柴油机空气增压系统
CN110259598A (zh) 一种基于斯特林循环的船舶辅助发电系统
Matviienko et al. Closed-cycle micro gas-turbine system with overexpansion turbines and heat regeneration for underwater application
Ying Marine diesel engine energy saving and emission reduction technology
CN220470049U (zh) 用于船舶柴油内燃机运行余热能量的转化设备
CN220667658U (zh) 热废气能量回收系统
CN216894595U (zh) 一种内燃机与微型燃气轮机联合循环系统
CN202531290U (zh) 一种提高天然气管道燃气轮机机组运行效率的装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination