CN106089337A - 用于余热回收的超临界co2与有机朗肯联合循环发电系统 - Google Patents

用于余热回收的超临界co2与有机朗肯联合循环发电系统 Download PDF

Info

Publication number
CN106089337A
CN106089337A CN201610654072.7A CN201610654072A CN106089337A CN 106089337 A CN106089337 A CN 106089337A CN 201610654072 A CN201610654072 A CN 201610654072A CN 106089337 A CN106089337 A CN 106089337A
Authority
CN
China
Prior art keywords
heat exchanger
waste heat
entrance
carbon dioxide
working medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610654072.7A
Other languages
English (en)
Other versions
CN106089337B (zh
Inventor
高炜
李红智
姚明宇
陈渝楠
杨玉
张立欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Thermal Power Research Institute Co Ltd
Huaneng Group Technology Innovation Center Co Ltd
Original Assignee
Thermal Power Research Institute
Huaneng Group Technology Innovation Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thermal Power Research Institute, Huaneng Group Technology Innovation Center Co Ltd filed Critical Thermal Power Research Institute
Priority to CN201610654072.7A priority Critical patent/CN106089337B/zh
Publication of CN106089337A publication Critical patent/CN106089337A/zh
Application granted granted Critical
Publication of CN106089337B publication Critical patent/CN106089337B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/32Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines using steam of critical or overcritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/04Using steam or condensate extracted or exhausted from steam engine plant for specific purposes other than heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

本发明公开了一种用于余热回收的超临界CO2与有机朗肯联合循环发电系统,包括有机朗肯循环系统及超临界二氧化碳布雷顿循环系统,超临界二氧化碳布雷顿循环系统包括二氧化碳透平、回热器、预冷器以及压缩机;有机朗肯循环系统包括有机朗肯循环透平、冷凝器以及有机工质泵。本发明通过超临界二氧化碳布雷顿循环和有机朗肯循环的结合能够比现有水蒸汽循环余热发电系统发电量更大,同时系统设备更加紧凑,控制更加灵活。

Description

用于余热回收的超临界CO2与有机朗肯联合循环发电系统
技术领域
本发明涉及一种发电系统,具体涉及一种用于余热回收的超临界CO2与有机朗肯联合循环发电系统。
背景技术
余热热源普遍存在于当今工业及其它领域当中,在能源匮乏及环境危机的大背景下,提高能源利用率,降低燃料消耗量日益受到人们的重视,余热利用就是提高能源利用效率的重要手段。余热利用已有多年历史,并且也有很多成熟的经验和设备。目前国内的余热利用主要采用传统的蒸气锅炉和汽机,热源主要是针对钢铁、水泥、燃气轮机尾气等高温热源,热源温度多在400℃到580℃之间。在新型余热回收系统中国外多采用ORC技术,目前国内虽未普遍应用但也在推广之中。ORC系统被公认为是一种对于低温热源热效率较高的热力循环形式,它采用具有大分子量、低沸点的有机工质代替水作为循环介质,具有设备紧凑的特点。虽然对于中低温热源ORC的热效率高于普通水蒸气朗肯循环效率,但其适用温度多为300℃以下,对于高于400℃的中高温热源,多数有机工质都存在热分解问题。因此对于高于400℃的余热热源若完全直接用ORC回收余热发电将比较困难,需要寻找更加合适的热力循环和工质以改进余热回收的综合性能。
目前在众多热力循环当中,超临界布雷顿循环是一种最有优势的循环形式。新型超临界工质(二氧化碳、氦气和氧化二氮等)具有能量密度大,传热效率高,系统简单等先天优势,可以大幅提高热功转换效率,减小设备体积,具有很高的经济性。并且二氧化碳等工质在目前余热回收领域的温度范围内热物性十分稳定,不存在热分解问题,完全可以用于高温部分热量回收。但根据目前国际上已有的关于超临界二氧化碳布雷顿循环直接用于余热回收的研究来看,其存在着回热器吸热侧出口温度太高的问题,这将严重影响二氧化碳工质对于余热热源热量的吸收量,进而影响发电量。尽管韩国、EPRI等国家和研究机构针对此问题改进了二氧化碳循环布局,但改进后的循环非常复杂,难以控制,同时其性能将在很大程度上依赖于压缩机中间冷却技术及其效果,倘若冷却效果稍有偏差,都对整个系统的性能有很大的影响。因此完全依靠超临界二氧化碳布雷顿循环回收余热发电也存在着固有的缺陷。
若可以将超临界二氧化碳布雷顿循环和ORC结合,则可以更好的适应中温到高温段余热热源的热量回收利用,提高热效率,使设备紧凑并且控制灵活。
发明内容
本发明的目的在于克服上述现有技术的缺点,提供了一种优于目前余热回收常用的水蒸气动力循环系统的用于余热回收的超临界CO2与有机朗肯联合循环发电系统,该系统通过超临界二氧化碳布雷顿循环与有机朗肯循环的结合,可以有效的增加余热热源的热源利用率,并且使发电系统更加紧凑,灵活控制。
为达到上述目的,本发明采用如下的技术方案:
用于余热回收的超临界CO2与有机朗肯联合循环发电系统,包括高温余热换热器、第一低温余热换热器、第二低温余热换热器、有机朗肯循环系统以及超临界二氧化碳布雷顿循环系统;
高温余热换热器热源侧出口分别与第一低温余热换热器和第二低温余热换热器热源侧入口相连通;
高温余热换热器二氧化碳侧的出口与超临界二氧化碳布雷顿循环系统入口相连通,超临界二氧化碳布雷顿循环系统出口分为两路,一路与第一低温余热换热器的工质侧入口相连通,另一路与高温余热换热器二氧化碳侧的入口相连通;
第二低温余热换热器的有机工质侧出口与有机朗肯循环系统入口相连,有机朗肯循环系统出口与第二低温余热换热器的有机工质侧入口连通。
本发明进一步的改进在于,所述第一低温余热换热器和第二低温余热换热器并联。
本发明进一步的改进在于,所述超临界二氧化碳布雷顿循环系统包括二氧化碳透平、回热器、预冷器以及压缩机;
二氧化碳透平的透平入口与高温余热换热器二氧化碳侧的出口相连通,二氧化碳透平的出口与回热器的放热侧入口相连通,回热器的放热侧出口与预冷器的工质侧入口相连通,预冷器的工质侧出口与压缩机的入口相连通,压缩机的出口分为两路,一路与回热器的吸热侧入口相连通,回热器的吸热侧出口与高温余热换热器二氧化碳侧的入口相连通;另一路与第一低温余热换热器的工质侧入口相连通,第一低温余热换热器工质侧出口也与高温余热换热器二氧化碳侧的入口相连通。
本发明进一步的改进在于,所述有机朗肯循环系统包括有机朗肯循环透平、冷凝器以及有机工质泵,第二低温余热换热器的有机工质侧出口与有机朗肯循环透平的入口相连通,有机朗肯循环透平的出口与冷凝器的入口连通,冷凝器的出口与有机工质泵的入口相连通,有机工质泵的出口与第二低温余热换热器的有机工质侧入口连通。
本发明进一步的改进在于,当热源温度及热量有波动时,超临界二氧化碳布雷顿循环系统和有机朗肯循环系统根据温度和热量调节各自流量以控制各自的发电功率,当热源温度较高时超临界二氧化碳循环部分发电量比例较大,当热源温度较低时有机朗肯循环部分发电量比例较大。
本发明进一步的改进在于,高温余热换热器热源侧入口输入余热热源的放热工质。
与现有技术相比,本发明具有以下有益效果:
本发明将余热热源分为高温和低温两部分,余热热源的放热工质由高温余热换热器热源侧入口输入,在高温余热换热器中将热量传递给超临界二氧化碳工质后由出口流出并分为两路,分别进入与超临界二氧化碳工质换热的低温余热换热器和与有机朗肯循环工质换热的低温余热换热器,两个低温余热换热器并联,最后余热热源废气由出口排出。
本发明运行过程中,在热源不稳定时,联合系统中两个循环的发电量比例可以灵活变化以适应温度范围的变换。当热源温度保持较高时,超临界二氧化碳布雷顿循环系统透平入口温度可以较高,其发电量比例也可以保持较高,以充分利用热源高温段热量;当热源有波动,余热热源温度低于预期值是,超临界二氧化碳布雷顿循环透平入口温度较低,其发电比例也降低,大部分发电将由ORC部分承担;当热源温度低于ORC循环设计最高温度以下后,则可以由ORC承担全部发电量。并且在热源温度和热量变化过程中,两个循环中各自工质的流量可以随着热源相应的变化以达到最佳功率匹配点。
本发明结合超临界二氧化碳布雷顿循环和有机朗肯循环各自的优势,弥补了对方在余热回收时的缺陷。相对于现有的水蒸气循环余热回收系统,可以有效的提高发电功率,尤其是在余热热源不稳定或者温度较低时,较水蒸气循环余热回收系统的优势更加明显,同时系统体积小、紧凑,便于控制。
附图说明
图1为本发明的结构示意图。
其中,1为二氧化碳透平、2为回热器、3为预冷器、4为压缩机、5为高温余热换热器、6为第一低温余热换热器、7为第二低温余热换热器、8为机朗肯循环透平、9为冷凝器、10为有机工质泵。
具体实施方式
下面结合附图对本发明做进一步详细描述:
参考图1,本发明包括高温余热换热器5、第一低温余热换热器6、第二低温余热换热器7、有机朗肯循环系统以及超临界二氧化碳布雷顿循环系统;
余热热源的放热工质由高温余热换热器热源侧入口输入,高温余热换热器5热源侧出口分别与第一低温余热换热器6和第二低温余热换热器7热源侧入口相连通,第一低温余热换热器6和第二低温余热换热器7并联。
高温余热换热器5二氧化碳侧的出口与超临界二氧化碳布雷顿循环系统入口相连通,超临界二氧化碳布雷顿循环系统出口分为两路,一路与第一低温余热换热器6的工质侧入口相连通,另一路与高温余热换热器5二氧化碳侧的入口相连通;
第二低温余热换热器7的有机工质侧出口与有机朗肯循环系统入口相连,有机朗肯循环系统出口与第二低温余热换热器7的有机工质侧入口连通。
具体的,所述超临界二氧化碳布雷顿循环系统包括二氧化碳透平1、回热器2、预冷器3以及压缩机4;二氧化碳透平1的透平入口与高温余热换热器5二氧化碳侧的出口相连通,二氧化碳透平1的出口与回热器2的放热侧入口相连通,回热器2的放热侧出口与预冷器3的工质侧入口相连通,预冷器3的工质侧出口与压缩机4的入口相连通,压缩机4的出口分为两路,一路与回热器2的吸热侧入口相连通,回热器2的吸热侧出口与高温余热换热器5二氧化碳侧的入口相连通,压缩机4出口的另一路与第一低温余热换热器6的工质侧入口相连通,低温余热换热器第一工质侧出口也与高温余热换热器5二氧化碳侧的入口相连通。
所述有机朗肯循环系统包括有机朗肯循环透平8、冷凝器9以及有机工质泵10,第二低温余热换热器7的有机工质侧出口与有机朗肯循环透平8的入口相连通,有机朗肯循环透平8的出口与冷凝器9的入口连通,冷凝器9的出口与有机工质泵10的入口相连通,有机工质泵10的出口与第二低温余热换热器7的有机工质侧入口连通。
本发明的具体工作过程为:
含有高温余热的工质首先由高温余热换热器5热源侧入口输入,在高温余热换热器5中将热量传递给超临界二氧化碳工质后由出口分为两路,一路进入第一低温余热换热器6将低温热量传递给部分低温超临界二氧化碳工质,另一路进入第二低温余热换热器7,在第二低温余热换热器7中将热量传递给有机工质。
超临界二氧化碳工质在高温余热换热器5中被加热为高温后进入二氧化碳透平1,在二氧化碳透平1中做功后依次进入回热器2和预冷器3被冷却,被冷却的工质进入压缩机4,被增压后分为两路,一路进入回热器2吸热侧吸热,一路进入第一低温余热换热器6工质侧吸热,两路工质吸收低温余热后汇合并再次进入高温余热换热器5的二氧化碳侧吸收余热热源热量重新变为高温超临界二氧化碳流体。
有机工质在第二低温余热换热器7中的有机工质侧被加热为高温有机工质后进入有机朗肯循环透平8中做功,做功后的低压有机工质进入冷凝器9,在冷凝器被冷却为液态后由有机工质泵10增压至高压,高压有机工质再次进入第二低温余热换热器7的有机工质侧吸收热量,重新被加热至高温有机工质。
运行过程中当热源不稳定时,所述联合系统中两个循环的发电量比例可以灵活变化以适应温度范围的变换。当热源温度保持较高时,超临界二氧化碳布雷顿循环系统透平入口温度可以较高,其发电量比例也可以保持较高,以充分利用热源高温段热量;当热源有波动,余热热源温度低于预期值时,超临界二氧化碳布雷顿循环透平入口温度较低,其发电比例也降低,大部分发电将由ORC部分承担;当热源温度低于ORC循环设计最高温度以下后,则可以由ORC承担全部发电量。并且在热源温度和热量变化过程中,两个循环中各自工质的流量可以随着热源相应的变化以达到最佳功率匹配点。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.用于余热回收的超临界CO2与有机朗肯联合循环发电系统,其特征在于,包括高温余热换热器(5)、第一低温余热换热器(6)、第二低温余热换热器(7)、有机朗肯循环系统以及超临界二氧化碳布雷顿循环系统;
高温余热换热器(5)热源侧出口分别与第一低温余热换热器(6)和第二低温余热换热器(7)热源侧入口相连通;
高温余热换热器(5)二氧化碳侧的出口与超临界二氧化碳布雷顿循环系统入口相连通,超临界二氧化碳布雷顿循环系统出口分为两路,一路与第一低温余热换热器(6)的工质侧入口相连通,另一路与高温余热换热器(5)二氧化碳侧的入口相连通;
第二低温余热换热器(7)的有机工质侧出口与有机朗肯循环系统入口相连,有机朗肯循环系统出口与第二低温余热换热器(7)的有机工质侧入口连通。
2.根据权利要求1所述的用于余热回收的超临界CO2与有机朗肯联合循环发电系统,其特征在于,所述第一低温余热换热器(6)和第二低温余热换热器(7)并联。
3.根据权利要求1所述的用于余热回收的超临界CO2与有机朗肯联合循环发电系统,其特征在于,所述超临界二氧化碳布雷顿循环系统包括二氧化碳透平(1)、回热器(2)、预冷器(3)以及压缩机(4);
二氧化碳透平(1)的透平入口与高温余热换热器(5)二氧化碳侧的出口相连通,二氧化碳透平(1)的出口与回热器(2)的放热侧入口相连通,回热器(2)的放热侧出口与预冷器(3)的工质侧入口相连通,预冷器(3)的工质侧出口与压缩机(4)的入口相连通,压缩机(4)的出口分为两路,一路与回热器(2)的吸热侧入口相连通,回热器(2)的吸热侧出口与高温余热换热器(5)二氧化碳侧的入口相连通;另一路与第一低温余热换热器(6)的工质侧入口相连通,第一低温余热换热器(6)工质侧出口也与高温余热换热器(5)二氧化碳侧的入口相连通。
4.根据权利要求1所述的用于余热回收的超临界CO2与有机朗肯联合循环发电系统,其特征在于,所述有机朗肯循环系统包括有机朗肯循环透平(8)、冷凝器(9)以及有机工质泵(10);
第二低温余热换热器(7)的有机工质侧出口与有机朗肯循环透平(8)的入口相连通,有机朗肯循环透平(8)的出口与冷凝器(9)的入口连通,冷凝器(9)的出口与有机工质泵(10)的入口相连通,有机工质泵(10)的出口与第二低温余热换热器(7)的有机工质侧入口连通。
5.根据权利要求1所述的用于余热回收的超临界CO2与有机朗肯联合循环发电系统,其特征在于,当热源温度及热量有波动时,超临界二氧化碳布雷顿循环系统和有机朗肯循环系统根据温度和热量调节各自流量以控制各自的发电功率,当热源温度较高时超临界二氧化碳循环部分发电量比例较大,当热源温度较低时有机朗肯循环部分发电量比例较大。
6.根据权利要求1所述的用于余热回收的超临界CO2与有机朗肯联合循环发电系统,其特征在于,高温余热换热器(5)热源侧入口输入余热热源的放热工质。
CN201610654072.7A 2016-08-10 2016-08-10 用于余热回收的超临界co2与有机朗肯联合循环发电系统 Active CN106089337B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610654072.7A CN106089337B (zh) 2016-08-10 2016-08-10 用于余热回收的超临界co2与有机朗肯联合循环发电系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610654072.7A CN106089337B (zh) 2016-08-10 2016-08-10 用于余热回收的超临界co2与有机朗肯联合循环发电系统

Publications (2)

Publication Number Publication Date
CN106089337A true CN106089337A (zh) 2016-11-09
CN106089337B CN106089337B (zh) 2017-07-07

Family

ID=57456455

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610654072.7A Active CN106089337B (zh) 2016-08-10 2016-08-10 用于余热回收的超临界co2与有机朗肯联合循环发电系统

Country Status (1)

Country Link
CN (1) CN106089337B (zh)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150033737A1 (en) * 2011-12-02 2015-02-05 Mikhael Mitri Device and method for utilizing the waste heat of an internal combustion engine, in particular for utilizing the waste heat of a vehicle engine
CN106499550A (zh) * 2016-11-28 2017-03-15 哈尔滨工程大学 一种船舶低速柴油机egr冷却器s‑co2循环余热利用系统
CN107062920A (zh) * 2017-04-18 2017-08-18 长沙紫宸科技开发有限公司 水泥厂超临界二氧化碳发电所需主要能源获取方法
CN107323217A (zh) * 2017-07-21 2017-11-07 天津商业大学 一种余热驱动吸收式制冷辅助过冷的co2汽车空调
CN107387178A (zh) * 2017-07-13 2017-11-24 上海发电设备成套设计研究院有限责任公司 一种基于超临界二氧化碳闭式循环的热电联产系统
IT201600123131A1 (it) * 2016-12-05 2018-06-05 Exergy Spa Processo e impianto a ciclo termodinamico per la produzione di potenza da sorgenti di calore a temperatura variabile
CN108487951A (zh) * 2018-04-19 2018-09-04 安徽工业大学 一种利用钢渣热能、燃气-超临界二氧化碳联合发电方法
CN108612571A (zh) * 2018-07-04 2018-10-02 西安热工研究院有限公司 一种超临界二氧化碳布雷顿循环工质调节系统和方法
CN108869213A (zh) * 2018-07-12 2018-11-23 上海发电设备成套设计研究院有限责任公司 光子增强热离子发射与二氧化碳循环联合发电装置及方法
CN108868930A (zh) * 2018-06-07 2018-11-23 江苏科技大学 内燃机余热利用的超临界/跨临界二氧化碳联合循环发电系统
CN108953178A (zh) * 2018-06-08 2018-12-07 中国船舶重工集团公司第七〇九研究所 一种超临界循环发电装置及其喷射激波升压装置
CN109296511A (zh) * 2018-11-09 2019-02-01 中国科学技术大学 一种超临界二氧化碳布雷顿循环塔式太阳能热发电系统
CN110107369A (zh) * 2019-06-11 2019-08-09 上海齐耀膨胀机有限公司 利用自然工质回收lng冷能发电的方法及装置
CN110671205A (zh) * 2019-10-10 2020-01-10 中南大学 一种基于lng的燃气轮机-超临界co2-orc循环串联发电系统
CN110905611A (zh) * 2019-11-28 2020-03-24 中南大学 一种基于有机朗肯循环和超临界二氧化碳循环的联供系统
CN113586193A (zh) * 2021-09-13 2021-11-02 山东赛马力发电设备有限公司 一种可换式多热源余热发电机组
CN113669158A (zh) * 2021-08-09 2021-11-19 中国舰船研究设计中心 基于布雷顿-朗肯联合余热循环的螺杆动力推进系统
CN114320497A (zh) * 2020-10-10 2022-04-12 河南科技大学 布雷顿循环发电系统用超临界二氧化碳气体冷却回收装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010121255A1 (en) * 2009-04-17 2010-10-21 Echogen Power Systems System and method for managing thermal issues in gas turbine engines
CN101922352A (zh) * 2009-06-17 2010-12-22 中国科学院工程热物理研究所 一种利用液化天然气冷*的热力循环系统和流程
CN102695860A (zh) * 2009-11-16 2012-09-26 通用电气公司 用于回收废热的复合闭环热循环系统及其方法
CN103161607A (zh) * 2013-03-04 2013-06-19 西安交通大学 一种基于内燃机余热利用的联合发电系统
US20130269345A1 (en) * 2012-04-17 2013-10-17 Chandrashekhar Sonwane Retrofit for power generation system
CN205876407U (zh) * 2016-08-10 2017-01-11 西安热工研究院有限公司 用于余热回收的超临界co2与有机朗肯联合循环系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010121255A1 (en) * 2009-04-17 2010-10-21 Echogen Power Systems System and method for managing thermal issues in gas turbine engines
CN101922352A (zh) * 2009-06-17 2010-12-22 中国科学院工程热物理研究所 一种利用液化天然气冷*的热力循环系统和流程
CN102695860A (zh) * 2009-11-16 2012-09-26 通用电气公司 用于回收废热的复合闭环热循环系统及其方法
US20130269345A1 (en) * 2012-04-17 2013-10-17 Chandrashekhar Sonwane Retrofit for power generation system
CN103161607A (zh) * 2013-03-04 2013-06-19 西安交通大学 一种基于内燃机余热利用的联合发电系统
CN205876407U (zh) * 2016-08-10 2017-01-11 西安热工研究院有限公司 用于余热回收的超临界co2与有机朗肯联合循环系统

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9657601B2 (en) * 2011-12-02 2017-05-23 Mikhael Mitri Device and method for utilizing the waste heat of an internal combustion engine, in particular for utilizing the waste heat of a vehicle engine
US20150033737A1 (en) * 2011-12-02 2015-02-05 Mikhael Mitri Device and method for utilizing the waste heat of an internal combustion engine, in particular for utilizing the waste heat of a vehicle engine
CN106499550A (zh) * 2016-11-28 2017-03-15 哈尔滨工程大学 一种船舶低速柴油机egr冷却器s‑co2循环余热利用系统
IT201600123131A1 (it) * 2016-12-05 2018-06-05 Exergy Spa Processo e impianto a ciclo termodinamico per la produzione di potenza da sorgenti di calore a temperatura variabile
WO2018104839A1 (en) * 2016-12-05 2018-06-14 Exergy S.P.A. Thermodynamic cycle process and plant for the production of power from variable temperature heat sources
CN107062920A (zh) * 2017-04-18 2017-08-18 长沙紫宸科技开发有限公司 水泥厂超临界二氧化碳发电所需主要能源获取方法
CN107387178A (zh) * 2017-07-13 2017-11-24 上海发电设备成套设计研究院有限责任公司 一种基于超临界二氧化碳闭式循环的热电联产系统
CN107323217A (zh) * 2017-07-21 2017-11-07 天津商业大学 一种余热驱动吸收式制冷辅助过冷的co2汽车空调
CN107323217B (zh) * 2017-07-21 2023-09-01 天津商业大学 一种余热驱动吸收式制冷辅助过冷的co2汽车空调
CN108487951A (zh) * 2018-04-19 2018-09-04 安徽工业大学 一种利用钢渣热能、燃气-超临界二氧化碳联合发电方法
CN108487951B (zh) * 2018-04-19 2023-09-15 安徽工业大学 一种利用钢渣热能、燃气-超临界二氧化碳联合发电方法
CN108868930A (zh) * 2018-06-07 2018-11-23 江苏科技大学 内燃机余热利用的超临界/跨临界二氧化碳联合循环发电系统
CN108868930B (zh) * 2018-06-07 2020-07-14 江苏科技大学 内燃机余热利用的超临界/跨临界二氧化碳联合循环发电系统
CN108953178A (zh) * 2018-06-08 2018-12-07 中国船舶重工集团公司第七〇九研究所 一种超临界循环发电装置及其喷射激波升压装置
CN108612571A (zh) * 2018-07-04 2018-10-02 西安热工研究院有限公司 一种超临界二氧化碳布雷顿循环工质调节系统和方法
CN108612571B (zh) * 2018-07-04 2024-05-03 西安热工研究院有限公司 一种超临界二氧化碳布雷顿循环工质调节系统和方法
CN108869213A (zh) * 2018-07-12 2018-11-23 上海发电设备成套设计研究院有限责任公司 光子增强热离子发射与二氧化碳循环联合发电装置及方法
CN109296511A (zh) * 2018-11-09 2019-02-01 中国科学技术大学 一种超临界二氧化碳布雷顿循环塔式太阳能热发电系统
CN109296511B (zh) * 2018-11-09 2024-03-29 中国科学技术大学 一种超临界二氧化碳布雷顿循环塔式太阳能热发电系统
CN110107369A (zh) * 2019-06-11 2019-08-09 上海齐耀膨胀机有限公司 利用自然工质回收lng冷能发电的方法及装置
CN110107369B (zh) * 2019-06-11 2024-06-04 上海齐耀膨胀机有限公司 利用自然工质回收lng冷能发电的方法及装置
CN110671205A (zh) * 2019-10-10 2020-01-10 中南大学 一种基于lng的燃气轮机-超临界co2-orc循环串联发电系统
CN110905611A (zh) * 2019-11-28 2020-03-24 中南大学 一种基于有机朗肯循环和超临界二氧化碳循环的联供系统
CN114320497A (zh) * 2020-10-10 2022-04-12 河南科技大学 布雷顿循环发电系统用超临界二氧化碳气体冷却回收装置
CN113669158A (zh) * 2021-08-09 2021-11-19 中国舰船研究设计中心 基于布雷顿-朗肯联合余热循环的螺杆动力推进系统
CN113586193A (zh) * 2021-09-13 2021-11-02 山东赛马力发电设备有限公司 一种可换式多热源余热发电机组

Also Published As

Publication number Publication date
CN106089337B (zh) 2017-07-07

Similar Documents

Publication Publication Date Title
CN106089337B (zh) 用于余热回收的超临界co2与有机朗肯联合循环发电系统
CN107630726B (zh) 一种基于超临界二氧化碳循环的多能混合发电系统及方法
CN205876407U (zh) 用于余热回收的超临界co2与有机朗肯联合循环系统
CN108775266B (zh) 一种用于高温烟气余热回收的跨临界二氧化碳动力循环与吸收式热泵复合的热电联产系统
CN109098809B (zh) 一种带回热循环的利用lng冷能和工业废热的orc发电系统
CN111022137B (zh) 基于有机朗肯循环和有机闪蒸循环的余热回收系统及方法
CN103790732B (zh) 中高温烟气余热双工质联合循环发电装置
CN107100808B (zh) 太阳能超临界二氧化碳循环发电耦合水蒸汽电解制氢系统
CN105355247A (zh) 采用超临界二氧化碳的新型熔盐堆能量转换系统
CN106150579A (zh) 一种横向两级利用lng跨临界冷能朗肯循环发电系统
CN103032912A (zh) 一种太阳能集成朗肯-朗肯系统地板采暖装置
CN107131016A (zh) 超临界co2与有机朗肯循环联合燃煤火力发电系统
CN103806969A (zh) 一种超临界co2工质循环发电系统
CN107503814A (zh) 带有喷射式气液混合回热装置的有机朗肯循环发电系统
CN110078904B (zh) 一种聚酯酯化蒸汽余热利用方法及装置
CN214741510U (zh) 超临界二氧化碳循环冷端余热辅助加热凝结水系统
CN205104244U (zh) 采用超临界二氧化碳的新型熔盐堆能量转换系统
CN203298314U (zh) 二级冷渣器和灰渣余热回收系统
CN107387183A (zh) 一种液化天然气冷能发电的动力循环系统及发电方法
CN211737228U (zh) 一种太阳能与地热能耦合的超临界二氧化碳联合循环发电系统
CN210317415U (zh) 吸收式海水淡化与闭式循环发电系统
CN101788141B (zh) 一种吸收式回热器在电厂回热循环系统中的应用
CN115405390B (zh) 一种压水堆发电、储能、海水淡化与制冷耦合运行系统及方法
CN110541737A (zh) 一种利用lng冷能的中低温余热发电系统及其工作方法
CN114484933B (zh) 二氧化碳跨临界储电耦合太阳能储热及二氧化碳储存的循环系统装置及系统方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant