WO2019114536A1 - 构造冷源能量回收系统、热力发动机系统及能量回收方法 - Google Patents
构造冷源能量回收系统、热力发动机系统及能量回收方法 Download PDFInfo
- Publication number
- WO2019114536A1 WO2019114536A1 PCT/CN2018/117583 CN2018117583W WO2019114536A1 WO 2019114536 A1 WO2019114536 A1 WO 2019114536A1 CN 2018117583 W CN2018117583 W CN 2018117583W WO 2019114536 A1 WO2019114536 A1 WO 2019114536A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steam
- heat
- evaporator
- pressure
- regenerator
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/08—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
- F01K25/10—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
Definitions
- the invention belongs to the field of engineering thermodynamics, and particularly relates to a structure cold energy recovery system, a heat engine system and an energy recovery method.
- the thermal efficiency of the Carnot cycle is the highest, called the Carnot's theorem.
- the Carnot cycle has extremely important theoretical and practical significance. Although it is difficult to implement a device that works entirely in accordance with the Carnot cycle, the Carnot cycle points the direction and gives the limit value for improving various cycle thermal efficiencies.
- the Carnot cycle is the most fundamental basis of the thermodynamic heat cycle.
- the Kelvin temperature is used, and the lowest value is absolute zero (-273 ° C). If the ambient temperature is used as the high-temperature heat source T1, a low-temperature heat source T2 is artificially manufactured. According to the Carnot cycle efficiency formula, the lower the temperature of the low-temperature heat source T2, the higher the system efficiency, and the energy utilization efficiency can be greatly improved.
- the Rankine cycle is a concrete practical application of the Carnot cycle and is currently widely used in the field of thermal power generation and waste heat power generation.
- the existing Rankine cycle is shown in Fig. 1.
- the low temperature liquid working medium is pumped from the liquid storage tank 15 and sent to the heat exchanger 16 via the pressure pump 14, and is heated by an external heat source to change the liquid working medium into a high temperature and high pressure steam body.
- the exhaust steam (low temperature and low pressure vapor) discharged from the expander is discharged through the condenser 13 to the air or other cooling medium to release the latent heat in the heat of vaporization.
- the condenser and the environment air or cooling water) constitute an external cold source system, and if there is no external cold source system, the system will not work.
- the system efficiency is only about 10%, and 90% of the unused energy will be dissipated through the condenser, and the condenser and the evaporator are also required.
- the volume is very large to achieve, resulting in increased costs and low efficiency.
- the present invention provides a structure capable of lowering the T2 temperature, that is, constructing a cold source energy recovery system; and providing a technique for greatly improving the thermal efficiency of a heat engine system by using the constructed cold source energy recovery system; A heat engine system utilizing the constructed cold source energy recovery system; and a method of utilizing the heat engine system for energy recovery.
- a construction cold source energy recovery system comprising a regenerator, a steam ejector and a thermal storage tank.
- the configuration cold source energy recovery system includes the above configuration, but is not limited to the above configuration, and any product, system, and equipment capable of recycling steam turbine exhaust gas are within the scope of the present invention.
- the constructed cold source energy recovery system also includes a pressurization pump.
- the regenerator has two pairs of passages, and the pair of passages are passages for the working fluid to flow out of the thermal storage tank, and the working fluid is connected to the working fluid of the thermal storage tank through the pressure pump, so that the working fluid flows out of the regenerator; the other pair
- the passage is a passage for recovering the working fluid back to the heat storage liquid storage tank, and is connected with the medium pressure outlet of the steam injector, and the working fluid flows back to the heat preservation liquid storage tank after flowing through the regenerator;
- the steam injector has three ports, The low pressure inlet is connected to the exhaust port of the insulated liquid storage tank, and the other end is the working medium inlet; the number of ports of the insulated liquid storage tank is greater than or equal to one, and one of the ports is connected with the exhaust steam outlet.
- a second object of the present invention is to provide a heat engine system utilizing the above-described constructed cold source energy recovery system, including: an evaporator, a steam turbine, and a constructed cold source energy recovery system.
- the constructed cold source energy recovery system can directly recycle the spent steam generated by the steam turbine without being subjected to external condensation treatment by the constructed cold source energy recovery system.
- the heat engine system achieves thermal power conversion without the need for an external cold source.
- the heat storage liquid storage tank stores a low temperature working medium, and the working liquid outlet is provided with a working medium outlet, a first liquid return port and an exhaust steam outlet; the working medium outlet is connected with the pressure pump, the pressure pump and the heat recovery
- the reactor is connected, the regenerator is in communication with the evaporator, the evaporator is respectively connected with the high pressure inlet of the steam turbine and the steam injector, the steam turbine is connected with the first liquid return port, and the steam exhaust port is connected with the low pressure inlet of the steam injector, and the steam injector is connected
- the medium pressure outlet is connected to the regenerator.
- the insulated reservoir of the heat engine system also includes a cylinder safety valve outlet.
- the steam ejector of the heat engine system can adjust the pressure flow according to the load requirement, and can be used in parallel when multiple powers are required, and the steam can come from the evaporator, or a part of the medium and low pressure steam can be extracted from the multi-stage steam turbine. Body use.
- the low temperature portion of the heat engine system must be insulated or placed in a cold box.
- the evaporator may be composed of a single or multiple evaporators of any type connected in series or in parallel. Different types of external heat sources are received with different gradients. Different heat exchangers may be used depending on the external heat source.
- the heat source may be a vapor or a liquid, and the heat exchanger may be a boiler or a burner or
- the evaporator may be at a high temperature or a low temperature as long as the temperature of the external heat source is higher than the temperature of the vapor at the outlet of the regenerator.
- the steam turbine of the heat engine system includes any device that converts thermal energy into mechanical energy, and can directly output mechanical energy or output electrical energy through a generator.
- the steam turbine can be single-stage or multi-stage, and can be used in multiple reheating modes. It can also be a cascade or any kind of thermal power conversion device; the turbine can be connected to a generator for power generation and/or Cooling; can also be used to drag other mechanical transmissions that need to be dragged, the power range can be from a few milliwatts to GW, used as power for vehicles, ships and other vehicles.
- a third object of the present invention is to provide an energy recovery method for the above heat engine system, the specific steps of which are:
- the pressure pump is started, the working fluid in the heat preservation liquid storage tank is extracted and pressurized to a predetermined pressure P1, the working medium flows through the regenerator to the low temperature end of the evaporator, and the external heat source flows into the heat source end of the evaporator, and The heat exchange with the low temperature working medium in the evaporator, the working medium entering the low temperature end of the evaporator is heated and evaporated by the external heat source flowing through the heat source end, and the temperature is raised; the power source of the pressure pump can be conventional electric energy, etc. It is a battery, etc.
- the external cold source is required to cool and exhaust the spent steam residual heat, which cannot be recycled and recycled.
- the working fluid is always in a sealed environment.
- the working medium is preferably a non-toxic, non-explosive, safe substance, combined with specific application temperature range, economy and other indicators for comprehensive comparison and selection, preferably liquid nitrogen, liquid air, R410A, carbon dioxide, hydrogen, helium and the like.
- the invention realizes the thermal energy conversion using the ambient heat source or other heat source as the T1 under the condition of small external power input, so that the thermal power conversion is realized without the external cold source, and the thermal power conversion is greatly improved. effectiveness.
- the heat engine using the low-temperature cold source T2 is a closed system. How much energy is required to be converted into work, and the heat preservation function needs to be strengthened. Otherwise, the system efficiency may exceed 100%, but it will also interfere with the system operation.
- Figure 1 is a schematic diagram of a conventional Rankine cycle
- FIG. 2 is a schematic structural view of a heat engine system using a constructed cold source energy recovery system according to the present invention
- FIG. 3 is a schematic structural view of a heat engine system using a cold source energy recovery system according to Embodiment 2 of the present invention
- FIG. 4 is a schematic structural view of a refrigeration engine system of a cold source energy recovery system according to a third embodiment of the present invention.
- FIG. 5 is a schematic structural view of a heat engine system using a cold source energy recovery system according to Embodiment 4 of the present invention.
- FIG. 6 is a schematic structural view of a refrigeration engine system for constructing a cold source energy recovery system according to Embodiment 5 of the present invention.
- FIG. 7 is a schematic structural view of a refrigeration engine system for constructing a cold source energy recovery system according to Embodiment 6 of the present invention.
- FIG. 8 is a schematic structural view of a refrigeration engine system for constructing a cold source energy recovery system according to Embodiment 7 of the present invention.
- FIG. 9 is a schematic structural view of a refrigeration engine system for constructing a cold source energy recovery system according to an eighth embodiment of the present invention.
- FIG. 10 is a schematic structural diagram of a refrigeration engine system for constructing a cold source energy recovery system according to Embodiment 9 of the present invention.
- the drawing identification is:
- the invention constructs a low temperature cold source for the purpose of recovering the exhaust steam energy of the heat engine.
- the specific technical route is:
- a cold source system capable of circulating inside the system is constructed, as shown in Fig. 2, that is, the heat storage liquid tank in Fig. 2 6.
- the steam ejector 5, the pressure pump 4 and the regenerator 3 constitute a cold source energy recovery system.
- the above-mentioned constructed cold source energy recovery system is assembled into a heat engine system.
- the heat engine system has a structure: a low temperature working fluid, liquid nitrogen, is stored in the heat storage liquid storage tank 6, and a first working medium is disposed on the thermal storage liquid storage tank.
- the compressor 1 is connected to the steam turbine 2, respectively, to the high pressure inlet 51 of the steam injector 5, the steam turbine 2 is connected to the first liquid return port 62, and the steam exhaust port 63 is connected to the low pressure inlet 52 of the steam injector 5, the steam injector 5
- the intermediate pressure outlet 53 is connected to the regenerator 3.
- the heat source flows into the heat source end 1B of the evaporator 1 to heat exchange heat of the low temperature working medium in the low temperature end 1A of the evaporator 1, and the low temperature working medium entering the low temperature end 1A of the evaporator 1 is heated and evaporated by the external heat source flowing through the heat source end 1B, and simultaneously The temperature rises to near the external heat source temperature.
- the high-low temperature heat transfer employs a counterflow heat exchanger commonly used in the art.
- it is referred to as an evaporator, and is characterized in that the outlet end of the low temperature side is closest to the inlet end of the high temperature side.
- the heat source conducts heat to the low temperature end, and the temperature will be lost.
- the temperature difference indicates the temperature loss.
- the temperature difference is determined by many factors such as material, structure, working condition, nature, etc.
- the general temperature difference is controlled at 2 ° C. At 10 ° C, the smaller the temperature difference, the better, but the higher the cost.
- the intermediate value commonly used in engineering is selected as 5 ° C as the heat transfer temperature difference.
- high pressure nitrogen gas having a temperature T1 and a pressure P1 is obtained, which provides power to the steam injector 5 and starts working. Since the low temperature working medium in the embodiment works, it operates in a transcritical state, wherein, in the supercritical state, the temperature and the pressure are independent of each other to some extent, so the pressure from the heating of the liquid nitrogen to the nitrogen vapor is not A change has occurred.
- Steam ejector 5 also known as steam blast heat pump, is widely used in steam, power, and other industrial fields such as power, chemical, textile, food, paper, petroleum, and thermal power. It is mainly used to increase the pressure and temperature of low pressure steam. The higher pressure and temperature of the steam creates a negative pressure in the ejector, sucking in the low pressure, low temperature steam, and mixing the two to obtain a certain pressure of steam and temperature in the middle. Such as: increase the parameters of heating steam, recover flash steam of high-temperature condensate, etc., so as to achieve significant energy-saving effects. It has three ports, a high pressure inlet 51, a low pressure inlet 52 and a medium pressure outlet 53.
- a negative pressure is generated at the low-pressure inlet 52, and by adjusting the steam flow parameter of the high-pressure inlet 51, the steam turbine 2 indirectly connected to the low-pressure inlet 52 through the insulated liquid storage tank 6 can be obtained.
- the outlet forms a negative pressure to form a working condition: it is well known that the conditions at both ends of the steam turbine 2 are high and low pressure difference and high and low temperature difference.
- the vapor body flows into the steam turbine 2, expands to drive the steam turbine 2 to work, externally outputs mechanical energy or emits electric energy through the generator; and another portion flows into the high pressure inlet 51 of the steam injector 5 as working steam.
- Valves may be added to the two steam circuits to adjust the flow rate of the steam flowing into the steam turbine 2 and the steam injector 5 according to the change in load.
- the flow of steam into the steam ejector 5 is closed-loop regulated by detecting the pressure at the low pressure inlet 52 of the steam ejector 5, which in this embodiment sets the pressure at the low pressure inlet 52 of the steam ejector 5 to 30 kPa.
- the exhaust steam heat discharged from the steam turbine needs to be absorbed by the condensed water equal to the ambient temperature and then discharged into the atmosphere through the heat exchange of the cooling tower.
- the exhaust steam discharged from the steam turbine 2 that is, the low temperature working fluid after the temperature reduction and pressure reduction, enters the thermal storage liquid storage tank 6. Since some of the vapor gas is liquefied, the automatic vapor-liquid separation in the thermal storage liquid storage tank 6 is performed.
- the vapor is withdrawn by the negative pressure formed at the low pressure inlet 52 of the steam ejector 5, and after being mixed with the vapor from the evaporator 1 in the steam ejector 5, flows out of the intermediate pressure outlet 53 and enters the regenerator 3, at In the regenerator 3, heat exchange is performed with the liquid nitrogen drawn from the heat storage liquid storage tank 6 into the regenerator 3 by the pressure pump 4, and then cooled down and then returned to the heat storage liquid storage tank 6, thereby realizing Complete loop.
- the low temperature working fluid is always in a sealed environment.
- the high-pressure liquid nitrogen entering the evaporator 1 through the regenerator 3 is also heat-exchanged with the low-temperature working medium returning to the heat-storing liquid storage tank 6 in the regenerator 3, thereby evaporating for the first time.
- the enthalpy value in each circuit of the steam ejector 5 is represented by H
- the enthalpy value in each circuit of the steam turbine 2 is represented by h.
- the pressure at the low pressure inlet 52 of the steam ejector 5 is always controlled to 30 kPa, so that the temperature in the sump 6 communicating with the low pressure inlet 52 is controlled to -204 ° C, thereby ensuring the liquid nitrogen in the sump 6
- the temperature is stable, providing a stable low temperature source temperature for the turbine.
- the parameters at both ends of the turbine are:
- the unit mass flow rate of H1 is 1kg, and the mass flow rate of h1 is also 1kg;
- the corresponding steam temperature of 196.5 kj/kg is 190K.
- This temperature is 121K higher than the 69K at the outlet of the steam turbine 2, and the large temperature difference completely ensures the heat source side of the regenerator 3 (the heat source side refers to the nitrogen gas entering the heater 3 after exiting the medium pressure outlet 53 of the steam injector)
- the residual heat of the spent steam is transferred to the working edge (the working edge refers to the liquid nitrogen pumped from the liquid storage tank 6 into the regenerator 3 by the pressurized pump 4).
- the working fluid H2 enthalpy heated in the regenerator 3 is 196.5 kj/kg, and is heated to 38 ° C after entering the evaporator 1, and the enthalpy value is increased to 322 kj/kg, which is twice as much as the working medium.
- Thermal energy Q is:
- Turbine 2 inlet steam enthalpy h1 minus outlet steam enthalpy h2 is the work done by steam turbine 2:
- the valve 7 When the valve 7 is opened, the secondary evaporator 8 does not operate as a bypass, and the structure and function of the system are the same as in the first embodiment.
- the valve 7 When it is necessary to reduce the load of the evaporator 1, the valve 7 is closed, so that the low temperature working fluid flows first from the secondary low temperature end 8A of the secondary evaporator 8, and the secondary heat source end 8B of the secondary evaporator 8 is sea water.
- the secondary evaporator 8 uses seawater as an external heat source to exchange heat with the low temperature working medium to increase the working temperature; then the low temperature working medium enters the evaporator 1, and then the 43 °C wastewater discharged from the nuclear power plant and the nuclear power station is used as a heat source.
- the structure of the refrigeration generator system is the same as that of the second embodiment, and the difference is that a fan 101 is installed above the evaporator 1 and the secondary evaporator 8, and the secondary evaporator 8 is placed in the freezer.
- the evaporator 1 and other components of the system are all located in an environment outside the freezer.
- the structure is shown in Figure 4.
- the refrigeration generator system provided in this embodiment can be used in a freezer, a refrigerator, a container freezer, a container refrigerated truck, an office or a home refrigeration (such as an air conditioner), and the like, and all occasions requiring refrigeration.
- the freezer is described.
- the secondary evaporator 8 is installed in the freezer.
- a fan is installed above the secondary evaporator 8, and the air in the freezer is circulated.
- the low temperature working medium in the secondary evaporator 8 In the closed pipe, by heat exchange with the ambient air, it is heated and sent to the evaporator 1, and then exchanges heat with the ambient air again. After being heated, it is sent to the steam injector 5 and the steam turbine 2, respectively, in the steam turbine 2. Doing work drives the generator to start the cycle power generation of the entire system.
- the refrigeration generator system absorbs the heat in the ambient air in the freezer through the secondary evaporator 8 to cool the freezer to achieve the purpose of refrigeration.
- the energy of the generator comes from the heat absorbed from the freezer.
- the cooling capacity is constantly changing, in order to ensure that the generator can output a smooth working voltage and sufficient power to meet the stability of other external loads. Need to set up two evaporators, the second evaporator is to ensure that no matter how the heat provided by the freezer changes, whether it is cooled, there is a stable heat source that can adapt to it, thus ensuring the cooling generator
- the system always maintains a stable, continuous output.
- the freezer requires a freezing temperature of -18 ° C, a working fluid of R410A, a structural cold source temperature of -73 ° C, and an ambient temperature of 20 ° C.
- the initial temperature of the freezer is 0 ° C
- the ambient temperature outside the freezer is 20 ° C
- the valve 7 and the valve 9 are closed, and the evaporator 1 and the secondary evaporator 8 are put into operation.
- the fan of the heat source side of the stage evaporator 8 circulates in the cold storage, and the ambient air flows as a heat source into the secondary heat source end 8B of the secondary evaporator 8, and performs heat exchange heating on the low temperature working medium in the low temperature end of the secondary evaporator 8.
- the ambient air is not circulated in the pipeline, but exists in a manner surrounding the working fluid pipeline; the low temperature working fluid flowing inside the secondary evaporator 8 is pressurized to the working temperature corresponding to the ambient temperature of 1.5 MPa,
- the low temperature working fluid in the system works within the critical temperature, the temperature is different, and the pressure is different.
- the working fluid flow is heated and evaporated in the low temperature end of the two evaporators respectively, and the temperature difference between the evaporator and the ambient temperature is selected to be 5 ° C, so that the high pressure R410A is obtained at the outlet end of the evaporator 1 at a temperature of 15 ° C and a pressure of 1.5 MPa.
- the steam which provides the steam injector 5 with power to start working, and then causes a negative pressure at the low pressure inlet 52 of the steam injector 5, and controls the high pressure inlet 51 steam parameter to connect the low temperature inlet 52 to the insulated liquid storage tank.
- the steam pressure of 6 is 30 kPa. According to the relationship between the steam pressure and the liquid temperature, and looking up the physical property table of the refrigerant R410A, the temperature of the R410A in the heat storage liquid storage tank 6 is -73 ° C, and the temperature of the heat storage liquid storage tank 6 is maintained.
- the steam pressure is 30 kPa, which provides a stable source of -73 ° C.
- the conditions for running at both ends of the steam turbine 2 are high and low pressure difference and high and low temperature difference.
- the working fluid R410A steam flow enters the steam turbine 2, starts work, and the heat energy is converted into mechanical energy, and then the electric energy is outputted through the generator.
- the steam exhausted by the steam turbine 2 enters the thermal storage liquid storage tank 6, and the vapor-liquid separation is performed in the thermal storage liquid storage tank 6, and the gas is pumped away by the steam injector 5.
- the steam ejector 5 mixes the gas coming in from the high and low pressure ports, discharges it into the regenerator 3, exchanges heat with the working fluid that has been pressurized into the regenerator 3, and then flows back from the regenerator 3 after cooling. To the insulated liquid storage tank 6, a complete cycle is achieved.
- the temperature at the outlet end of the evaporator 1 is 15 ° C
- the temperature of the R 410A in the thermal storage tank 6 is -73 ° C
- the temperature of the pressure outlet 53 of the steam injector after mixing is:
- the outlet of the regenerator 3 is equal to the inlet temperature of the low temperature end 1A of the secondary evaporator 8, which is -29 ° C, so the evaporator 1 in the freezer
- the temperature of the heat source is continuously decreasing.
- the flow rate of the regulating valve 7 is automatically closed and closed according to the difference between the target value and the actual value of the freezing temperature, and the temperature of the freezer is controlled to be -18 °C.
- the opening degree of the regulating valve 9 and the speed of the fan 101 are automatically closed-loop according to the difference between the target load value and the actual value of the engine, so that the evaporator 1 obtains more cold storage.
- the other heat source supplements the freezer to reduce the heat and keep it stable.
- the refrigerant H2 value heated in the regenerator 3 is 356kj/kg, and after entering the secondary evaporator 8 and the evaporator 1, respectively, it is finally heated to 15 ° C, and the enthalpy value is increased to 424 kj / kg, due to It is twice the working medium, and the added thermal energy Q is:
- Turbine 2 inlet steam enthalpy h1 minus outlet steam enthalpy h2 is the work done by steam turbine 2:
- the heat energy obtained from the outside of each evaporator is equal to the power output from the turbine 2 to the outside. It shows that when the unit cooling capacity is 131kw, the unit output power of the generator is also 131kw.
- the grid needs to provide 43kw of electric power consumption, and the Carnot cycle not only saves 43kw, but also provides more than 131kw of power generation.
- the power is fed back to the grid, especially when no external cooling is required, and the abundant power is fed back to the grid throughout the year. The power is determined only by the amount of electricity used.
- the pressurizing pump 4 is provided in two, which are the first pressurizing pump 41 and the second pressurizing pump 42, respectively.
- the power source of the pressurizing pump 4 may be conventional electric energy or the like, or may be a battery or the like.
- the first pressurizing pump 41 and the second pressurizing pump 42 are respectively connected to the first working fluid outlet 61 and the second working fluid outlet 64 of the thermal storage liquid storage tank 6 through pipes, and are respectively connected to the evaporator 1 through a pipeline.
- the high pressure inlet 51 and the steam turbine 2 of the steam ejector 5 are connected from the evaporator 1 through a pipe, respectively, and finally returned to the heat storage liquid storage tank 6 through the first liquid return port 62 and the second liquid return port 64, respectively. That is to say, on the basis of the first embodiment, the steam running channel is divided into two mutually independent channels, and valves can be respectively disposed on the two channels for convenient control.
- the specific working principle of this embodiment is referred to the first embodiment.
- a secondary evaporator 8 is added, and according to the second embodiment, the first valve 71 and the first valve 71 are respectively added to the secondary evaporator 8 on different channels.
- the second valve 72 controls the flow direction of the steam derived from the first working fluid outlet 61 and the second working fluid outlet 64 to determine whether or not to pass through the secondary evaporator 8.
- the secondary evaporator 8 is placed in a freezer, and the remaining components are placed outside the freezer and in the environment.
- a fan 101 is arranged above the secondary evaporator 8 and the evaporator 1, and its working principle is referred to the third embodiment.
- the steam ejector 5 is removed.
- the thermal storage liquid storage tank 6 and the third evaporator 9 are connected through pipes and valves, respectively, and the third evaporator 9 is connected.
- the second steam turbine 2 and the second steam turbine 2 are connected back to the heat storage liquid storage tank 6.
- the nitrogen gas after the work can be exchanged with the outside through the third evaporator 9 to perform work, and then returned to the heat storage liquid storage tank 6.
- the power source of the pressurizing pump may be conventional electric energy or the like, or may be a battery or the like.
- outlets of the second steam turbine 2 are set to two, and the heat storage liquid storage tank 6 and the third evaporator 9 are respectively connected through pipes, and valves are correspondingly arranged on the respective pipes. In order to controllable splitting of the steam discharged from the second steam turbine 2.
- the specific connection mode and working mode of the secondary evaporator 8 and the secondary evaporator 8 can be added on the basis of the evaporator 1, which is the same as that of the second embodiment.
- the working pressure of the evaporator 1 is reduced.
- a number of components can be added to form a refrigeration generator, which can realize cold and electricity production.
- the secondary evaporator 8 and the valve 7 can be added as needed, and the secondary evaporator 8 does not function when the valve 7 is opened. At this time, the function is as in the first embodiment, and the system only generates power generation;
- the valve 7 is closed, the working fluid flows from the main circuit of the secondary evaporator 8, and the anti-freezing liquid flows in the heating side of the secondary evaporator 8.
- different working fluids can be used to obtain the temperature from 10 ° C to -120 ° C antifreeze for air conditioning, cold storage, quick freezing processing.
- the amount of refrigeration can be adjusted by adjusting the opening of the valve 7 or by adjusting the flow rate of the antifreeze.
- the evaporator 1 is to ensure a certain amount of heat energy to ensure the operation of the steam turbine regardless of whether it is cooled or not. According to different heat source conditions, such as air, ordinary water source, sea water or geothermal warm water, industrial wastewater, high temperature waste steam, different heat can be used. Switch.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
一种构造冷源能量回收系统以及采用该构造冷源能量回收系统的热力发动机系统,属工程热力学领域。所述构造冷源能量回收系统包括:回热器(3)、蒸汽喷射器(5)和保温储液罐(6)。所述热力发动机系统包括:蒸发器(1),汽轮机(2),回热器(3),加压泵(4),蒸汽喷射器(5)和保温储液罐(6)。利用所述热力发动机系统进行热功转换的方法包括,在采用构造低温冷源T2以后,即使用环境温度T1作为高温热源,所得到的卡诺效率远高于现有一切采用化石能源的热机效率,与传统热力发动机系统相比,采用构造冷源能量回收系统的热力发动机系统可在不需要外部冷源对乏汽进行冷却的情况下可实现连续、稳定的热功转换。
Description
本发明属于工程热力学领域,具体涉及一种构造冷源能量回收系统、热力发动机系统及能量回收方法。
根据热力学第二定律,在相同的高、低温热源温度T1与T2之间工作的一切循环中,以卡诺循环的热效率为最高,称为卡诺定理。卡诺循环具有极为重要的理论和实际意义。虽然完全按照卡诺循环工作的装置是难以实现的,但是卡诺循环却为提高各种循环热效率指明了方向、给出了极限值。
卡诺循环是热力学热机循环的最根本的基础,卡诺循环的效率公式η=1-T2/T1,是卡诺循环的核心。从公式可以看出:卡诺循环的效率只与两个热源的热力学温度有关,如果高温热源的温度T1愈高,低温热源的温度T2愈低,则卡诺循环的效率愈高。因为不能获得T1→∞的高温热源或T2=0K(-273℃)的低温热源,所以,卡诺循环的效率必定小于1。
从卡诺循环的效率公式中会看到出:如果高温热源的温度T1等于低温热源的温度T2,效率为零,即为不能从单一热源转换做功的理论基础。当前的热力机械都以环境温度为低温热源T2,而环境的温度无法改变,因此现有的研究均是通过提高高温热源T1的温度,如使用化石燃料进行加热以提高T1的温度,从而提高卡诺循环效率。
在卡诺循环的效率公式中,采用的是开尔文温度,其最低值为绝对零度(-273℃)。如果将环境温度作为高温热源T1,人为制造一个低温热源T2,根据卡诺循环效率公式可知,低温热源T2的温度越低,系统效率就越高,也就能大大提高能源的利用效率。
朗肯循环是对卡诺循环的具体实际应用,当前被普遍应用于火力发 电、余热发电领域。现有的朗肯循环如图1所示:低温液态工质从储液罐15中抽出经加压泵14输送到热交换器16,经外部热源加热,将液态工质变为高温高压的汽体,进入膨胀机2并驱动膨胀机旋转,推动发电机发电做功,膨胀机排出的乏汽(低温低压汽体)经冷凝器13,向空气或其他冷却介质将其汽化热中的潜热散发掉,使未做功的乏汽变为液体,完成一个循环。其中冷凝器与环境(空气或冷却水)组成外部冷源系统,如果没有外部冷源系统,该系统就不能工作。
所以本领域的问题关键点在于:
1、若不吸收掉乏汽的汽化热,乏汽就无法变为液体,就不能实现连续的热工循环,这是热力发动机工作的根本基础。
2、现代热工学都以环境温度为低温热源,采用高于环境温度的高温热源向热力发动机提供动力,这就导致现代热工学中只能燃烧各种燃料,如煤、天然气等来获得高温热源。
3、假设高温热源温度T1为80摄氏度,低温热源环境温度T2为30℃,则系统效率只有10%左右,而90%的未利用能量将经过冷凝器散发掉,也要求冷凝器和蒸发器的体积都非常庞大才能实现,造成成本增高,效率还很低。
发明内容
针对上述问题,本发明提供了一种可以降低T2温度的构造,即构造冷源能量回收系统;并提供了一种利用该构造冷源能量回收系统大幅提高热力发动机系统热效率的技术;并提供了一种利用该构造冷源能量回收系统的热力发动机系统;还提供了一种利用所述热力发动机系统进行能量回收的方法。
为实现上述发明目的,本发明采用以下技术方案:
一种构造冷源能量回收系统,包括回热器、蒸汽喷射器和保温储液罐。所述构造冷源能量回收系统包含上述构造,但不限于上述构造,只要是能将汽轮机乏汽回收利用的产品、系统、设备都是属于本发明的范 围。
所述构造冷源能量回收系统还包括加压泵。
所述回热器共有两对通路,一对通路为工质流出保温储液罐的通路,通过加压泵与保温储液罐的工质出连通,使工质流出回热器;另一对通路为工质回收回保温储液罐的通路,与蒸汽喷射器的中压出口连通,工质在流过回热器后流回保温储液罐;所述蒸汽喷射器共有三个端口,其低压进口与保温储液罐的排汽口连通,另一端为工质入口;所述保温储液罐的端口数量大于等于个,其中一个端口与乏汽出口连通。
本发明的第二个目的是,提供一种利用上述构造冷源能量回收系统的热力发动机系统,包括:蒸发器,汽轮机和构造冷源能量回收系统。所述构造冷源能量回收系统可以将汽轮机做功后产生的乏汽在不经过外部冷凝处理的情况下,直接由构造冷源能量回收系统回收利用。所述热力发动机系统在不需要外部冷源的情况下实现热功转换。
所述保温储液罐内储有低温工质,在保温储液罐上设有工质出口、第一回液口、排汽口;工质出口与加压泵相连,加压泵与回热器相连,回热器与蒸发器连通,蒸发器分别与汽轮机和蒸汽喷射器的高压进口连通,汽轮机与第一回液口连通,排汽口与蒸汽喷射器的低压进口连通,蒸汽喷射器的中压出口与回热器相连。
所述热力发动机系统的保温储液罐还包括汽瓶安全阀出口。
所述热力发动机系统的蒸汽喷射器可根据负荷需要对压力流量可调节,需要大功率时可多台并联使用,其蒸汽可以来自蒸发器,也可从多级汽轮机中,抽出部分中低压力汽体使用。
所述热力发动机系统的低温部份必须进行保温处理或装在冷箱里。
所述蒸发器可由任何形式的单个或多个蒸发器串联、并联组成。以不同梯度接收不同形式的外部热源,根据外部热源的不同情况,可以采用不同的热交换器,热源边可以是汽体,也可以是液体,热交换器可以是锅炉,也可以是燃烧器或蒸发器,可以是高温,也可以是低温,只要 外部热源的温度高于回热器工质出口的汽体温度即可。
所述热力发动机系统的汽轮机包含任何一种将热能转为机械能的装置,可以直接输出机械能,也可通过发电机输出电能。
汽轮机可以采用单级,也可采用多级,可采用多次再热式,还可以采用复叠式或任何一种热功转换装置;与汽轮机相连的可以是发电机,用于发电和/或制冷;也可用于拖动其他需要拖动的机械传动装置,功率范围可以从零点几毫瓦到吉瓦级,用作汽车、轮船等交通工具的动力。
本发明的第三个目的是,提供了一种上述热力发动机系统的能量回收方法,具体步骤为:
(1)首先启动加压泵,将保温储液罐中的工质抽出并加压到规定压力P1,工质流经回热器流向蒸发器的低温端,外部热源流入蒸发器热源端,并与蒸发器中的低温工质进行热交换,进入蒸发器的低温端的工质被热源端流过的外部热源加热蒸发,同时温度升高;加压泵的动力来源可以为常规电能等,也可以是蓄电池等。
(2)在蒸发器低温端出口处获得温度为、压力为P1的高压工质汽体,一部分高压工质汽体流入蒸汽喷射器,为蒸汽喷射器提供动力并使蒸汽喷射器开始工作;另一部分高压工质汽体进入汽轮机做功后,汽轮机排出的乏汽通过第一回液口进入保温储液罐;
(3)进入保温储液罐的乏汽在储液罐中自动汽液分离,汽体由蒸汽喷射器的低压进口处形成的负压抽走,在蒸汽喷射器中与来自蒸发器的高压工质汽体混合后,从混合器中压出口流出并进入回热器,在回热器中,与从储液罐中被加压泵抽出进入回热器中的工质进行热交换,被降温后流回储液罐中,从而实现了完整循环。
在传统热力发动机系统中,需要外部冷源对乏汽余热进行降温处理并排放,无法回收循环利用。
在工质的整个循环过程中,工质始终处于密封环境。
所述工质优先选用无毒、不易爆炸、安全的物质,结合具体应用温 度范围、经济性等各项指标综合比较和选择,优选液氮、液态空气、R410A、二氧化碳、氢、氦等。
本发明具有以下有益效果:
本发明实现了在较小外功输入的条件下,利用环境热源或其他热源作为T1进行热能动力转换,使得在没有外部冷源的情况下,实现了热功转换,并大大提高了热功转换的效率。
1、采用构造低温冷源T2以后,即使只用环境温度T1作为高温热源,所得到的卡诺效率都远高于现有一切采用化石能源的热机效率。
2、效率提高以后,蒸发器、回热器(冷凝器)的体积和重量都大为减少,成本显著降低。
3、采用构造低温冷源T2的热力发动机是个封闭系统,进入多少能量,必须全部转化做功,同时需要加强保温功能,否则系统效率可能超过百分之百,但也会干扰系统运行。
图1为传统朗肯循环示意图;
图2为本发明采用构造冷源能量回收系统的热力发动机系统结构示意图;
图3为本发明实施例二采用构造冷源能量回收系统的热力发动机系统结构示意图;
图4为本发明实施例三构造冷源能量回收系统制冷发动机系统结构示意图;
图5为本发明实施例四采用构造冷源能量回收系统的热力发动机系统结构示意图;
图6为本发明实施例五构造冷源能量回收系统制冷发动机系统结构示意图;
图7为本发明实施例六构造冷源能量回收系统制冷发动机系统结构示意图;
图8为本发明实施例七构造冷源能量回收系统制冷发动机系统结构示意图;
图9为本发明实施例八构造冷源能量回收系统制冷发动机系统结构示意图;
图10为本发明实施例九构造冷源能量回收系统制冷发动机系统结构示意图。
其中附图标识为:
蒸发器1,低温端1A,热源端1B,汽轮机2,第二汽轮机21,回热器3,第一加压泵41,第二加压泵42,蒸汽喷射器5,高压进口51,低压进口52,中压出口53,保温储液罐6,第一工质出口61、第二工质出口64,第一回液口62、第二回液口65、排汽口63,阀门7,第一阀门71、第二阀门72、次级蒸发器8,次级低温端8A,次级热源端8B,第三蒸发器9,第三低温端9A,第三热源端9B,冷凝器13,加压泵4,储液罐15,热交换器16,风扇101。
本发明构造了低温冷源,以达到回收热力发动机乏汽能量的目的。具体技术路线是:
(1)利用蒸汽喷射器5对汽轮机2的乏汽出口和保温储液罐6的排汽通道口抽真空,使汽轮机2的乏汽出口获得负压,为汽轮机2创造工作条件,同时使保温储液罐6内工质温度降到设定的目标温度,为汽轮机2创造一个稳定的低温温度值,并提高汽轮机2的循环效率。
(2)利用蒸汽喷射器5,将来自保温储液罐6内的低温低压汽体和来自蒸发器的高温高压的汽体混合后,得到中温中压的汽体,然后将此中温中压的汽体输送到回热器3,对回热器3中即将送到蒸发器1的液态工质进行预热,从而实现发动机乏汽能量的回收,并扩大了发动机的工作温度范围,使利用环境热源或低温热源的目标得以实现。
采用构造冷源回收乏汽能量方法以后的卡诺循环效率计算:
设某系统工质采用液氮,在储液罐6中构造的低温冷源T2温度为63K,针对不同的热源温度T1,根据卡诺循环公式计算理论效率如下:
100℃时,T1=100+273=373K,则η=1-T2/T1=1-63/373=0.8310;
38℃时,T1=38+273=311K,则η=1-T2/T1=1-63/311=0.7974;
0℃时,T1=0+273=273K,则η=1-T2/T1=1-63/273=0.7692;
-30℃时,T1=-30+273=243K,则η=1-T2/T1=1-63/243=0.7407。
根据上述计算结果可得到如下结论:
第一,采用构造低温冷源作为T2后,即使只使用环境温度作为高温热源T1,所得到的卡诺效率都远高于现有一切采用化石能源的热机效率。
第二,效率提高后,蒸发器、回热器(冷凝器)的体积和重量都大为减少,成本显著降低。
第三,采用构造低温冷源作为T2的热力发动机是个封闭系统,进入的能量几乎全部转化做功。
下面结合具体实施例对本发明进行进一步解释。
实施例一
工质采用液氮,外部热源采用核电站排出的废水,T1=43℃。
如图1所示,传统朗肯循环中,需要有外部冷源对汽轮机中做功后排放出来的乏汽进行降温处理,然后再向大气排放。本发明中,去掉了传统朗肯循环中的乏汽用外部冷源降温的步骤,改为构造一个系统内部可循环的冷源系统,如图2所示,即图2中由保温储液罐6、蒸汽喷射器5、加压泵4和回热器3组成构造冷源能量回收系统。
利用上述构造冷源能量回收系统组装成一套热力发动机系统,该热力发动机系统结构为:保温储液罐6内储有低温工质——液氮,在保温储液罐上设有第一工质出口61、第一回液口62、排汽口63;第一工质出口61与加压泵4相连,加压泵4与回热器3相连,回热器3与蒸发器1相连,蒸发器1分别与汽轮机2相连、与蒸汽喷射器5的高压进口 51相连,汽轮机2与第一回液口62相连,排汽口63与蒸汽喷射器5的低压进口52相连,蒸汽喷射器5的中压出口53与回热器3相连。
在运行该热力发动机系统进行热功转换时,首先启动加压泵4,将液氮加压到规定压力P1=4MPa,低温工质流经回热器3流向蒸发器1的低温端1A,外部热源流入蒸发器1热源端1B对蒸发器1低温端1A中的低温工质进行热交换加热,进入蒸发器1的低温端1A的低温工质被热源端1B流过的外部热源加热蒸发,同时温度升高到接近外部热源温度。
本实施例中,高低温热传递采用本领域常用的逆流式热交换器,在本发明中,将其称为蒸发器,其特点是低温边出口端的与高温边进口端的距离最近。热源端将热量传导到低温端,温度会有损失,温差就表示了温度损失的多少,其温差大小是由材料、结构,工质状态、性质等很多因素决定的,一般温差控制在2℃到10℃,温差越小越好,但成本也越高。本实施例选择工程上常用的中间值5℃作为传热温差。于是在蒸发器1低温端出口处获得温度为T1、压力为P1的高压氮汽,该压力为蒸汽喷射器5提供了动力并使之开始工作。由于本实施例中的低温工质工作时,工作于跨临界状态,其中,处于超临界状态时,温度和压力一定程度上相互独立,所以从液氮被加热变为氮汽时的压力不会发生变化。
蒸汽喷射器5又称为蒸汽喷射热泵,广泛应用于电力、化工、纺织、食品、造纸、石油、热电等以蒸汽作为动力的工业领域中,主要用来提高低压蒸汽的压力、温度,即利用较高压力和温度的蒸汽在喷射器中形成负压,吸进低压力、低温度的蒸汽,将两者进行混合后获得中间某一压力的蒸汽和温度。如:提升供热蒸汽参数、回收高温凝结水的闪蒸汽等,从而达到显著的节能效果。它共有三个端口,高压进口51、低压进口52和中压出口53。高压进口51中进入低温工质蒸汽后,就会在低压进口52处造成负压,通过调节控制高压进口51的蒸汽流量参数,可使与低压进口52通过保温储液罐6间接连接的汽轮机2出口形成负压, 形成做功条件:众所周知,汽轮机2两端运行的条件为具备高低压差和高低温差。本实施例中,蒸发器1的低温端1A中经过热交换后的温度为T'=38℃、压力P1=4MPa的高压氮汽分作两部分,一部分焓值为h1、单位质量为1的汽体流入汽轮机2,进行膨胀推动汽轮机2做功,对外输出机械能或通过发电机发出电能;另一部分流入蒸汽喷射器5高压进口51作为工作蒸汽。两条蒸汽回路上可分别加上阀门,根据负荷的变化对流入汽轮机2和蒸汽喷射器5的汽体流量进行调节。流入蒸汽喷射器5的蒸汽流量通过检测蒸汽喷射器5低压进口52处的压力进行闭环调节,本实施例中设定蒸汽喷射器5低压进口52处的压力为30kPa。
在传统汽轮机发电系统中,汽轮机排出的乏汽热量需要经过与环境温度相等的冷凝水吸收后再经过冷却塔热交换后排入大气。在本实施例中,汽轮机2排出的乏汽,即经过降温降压后的低温工质进入保温储液罐6,由于有部分汽体液化,因此在保温储液罐6中自动汽液分离,汽体由蒸汽喷射器5的低压进口52处形成的负压抽走,并在蒸汽喷射器5中与来自蒸发器1的汽体混合后,从中压出口53流出并进入回热器3,在回热器3中,与从保温储液罐6中被加压泵4抽出进入回热器3中的液氮进行热交换,随后再被降温后流回保温储液罐6中,从而实现了完整循环。
在低温工质的整个循环过程中,低温工质始终处于密封环境。同时,通过回热器3进入蒸发器1中的高压液氮也在回热器3中与返回保温储液罐6的低温工质进行热交换,从而得以第一次升温蒸发。
在本实施例中,以H表示蒸汽喷射器5各回路中的焓值,以h表示汽轮机2各回路中的焓值。
蒸汽喷射器5的低压进口52处的压力一直控制为30kPa,因此,与低压进口52连通的保温储液罐6中的温度被控制为-204℃,从而保证保温储液罐6中的液氮温度稳定,为汽轮机提供一个稳定的低温冷源温度。保温储液罐6中的冷源温度t2=-204℃,即T2=69K。而保温储液罐6 与汽轮机2的乏汽出口连通,因此乏汽温度也为-204℃(在一个大气压时,N
2的沸点为-196℃,在压力为30kPa时,N
2的沸点为-204℃)。
根据前面所述可知汽轮机两端的参数为:
高温热源温度t1=38℃,即T1=311K;
低温冷源温度t2=-204℃,即T2=69K;
则卡诺循环效率η为:
η=1-T2/T1=1-69/311=0.7781。
由于汽轮机乏汽潜热都被构造冷源回收循环利用了,所以卡诺循环与朗肯循环之间的效率差就不重要了,本行业的技术人员都能进行处理。
以上卡诺循环效率表示汽轮机进口蒸汽h1中有77.81%转化做功,剩余的蒸汽潜热占进口蒸汽h1的百分比为:1-0.7781=0.2219。
剩余的蒸汽潜热被蒸汽喷射器低压进口端引走,本文均采用了工程上的标幺值法。
通过查阅氮的焓熵图和物性表(参见:2005ASHRAE Handbook Fundamentals.作者:ASHRAE,出版社:ASHRAE,ISBN:1-931862-70-2),可知:t1=38℃时,对应的蒸汽焓值h1为322kj/kg,其0.2219部分乏汽的焓值h2为:
h2=h1*0.2219=322*0.2219=71kj/kg。
h2和从蒸发器1流入蒸汽喷射器5中的高压蒸汽在蒸汽喷射器5中混合,蒸汽喷射器5中,38℃的高压蒸汽H1焓值为322kj/kg,两者在蒸汽喷射器5中混合后的单位蒸汽总热值则为:322+71=393kj。
H1的单位质量流量为1kg,h1的质量流量也为1kg;
所以单位蒸汽焓值则为:
H2=(H1+h2)/2=(322+71)/2=196.5kj/kg,
通过查阅氮物性表,可得196.5kj/kg对应的蒸汽温度为190K。该温度比汽轮机2出口处的69K提高了121K,大的温差完全保证了回热器 3热源边(热源边是指从蒸汽喷射器的中压出口53出来后进入加热器3中的氮汽)将乏汽的余热转移到工质边(工质边指从被加压泵4从储液罐6中泵入回热器3中的液氮)。
在回热器3中被加热的工质H2焓值为196.5kj/kg,进入蒸发器1再被加温到38℃,焓值增加为322kj/kg,由于是两倍的工质,增加的热能Q为:
Q=(322-196.5)*2=251kj,
汽轮机2进口蒸汽焓值h1减去出口蒸汽焓值h2就是汽轮机2所做的功W:
W=h1-h2=322-71=251kw。
由此可知:在理想状态下,蒸发器1从外部获得的热能等于汽轮机2对外输出的功率。
实施例二
与实施例一相同之处不再赘述,不同之处在于:增加了第二蒸发器,即次级蒸发器8和阀门7,结构如图3所示。
当阀门7打开时,次级蒸发器8作为旁路不工作,此时系统的结构和功能与实施例一相同。当需要减小蒸发器1的负荷时,关闭阀门7,让低温工质先从次级蒸发器8次级低温端8A流过,次级蒸发器8次级热源端8B为海水。次级蒸发器8利用海水作为外部热源先与低温工质进行热交换,从而提升工质温度;之后低温工质进入蒸发器1,再在蒸发器1中与核电站排出的43℃废水作为热源进行热交换,再次对工质升温,最终在蒸发器1低温端出口处获得温度为T'=38℃、压力P1为4MPa的高压氮汽,该蒸汽为蒸汽喷射器5提供了动力并使之开始工作。之后工作方式与实施例一相同,不再赘述。
实施例三
制冷发电机系统,其结构与实施例二结构相同之处不再赘述,不同之处在于,蒸发器1和次级蒸发器8上方分别安装有一风扇101,将次 级蒸发器8置于冷冻库中,蒸发器1和系统其他部件全部位于冷冻库外的环境中。结构如图4所示。
本实施例所提供的制冷发电机系统可用于冷冻库、冷藏库、集装箱冷冻车、集装箱冷藏车、也可以是办公室或家庭制冷(如空调)等等一切需要制冷的场合和对象。
本实施例中以冷冻库进行说明,次级蒸发器8安装在冷冻库中,次级蒸发器8上方安装有风扇,对冷冻库中的空气进行循环,次级蒸发器8中的低温工质在密闭管道中通过与外界环境空气进行热交换,被升温后送到蒸发器1中,再次与外界环境空气进行热交换,被升温后分别送到蒸汽喷射器5和汽轮机2,在汽轮机2中做功带动发电机运行,启动整个系统的循环发电。
在本实施例中,制冷发电机系统通过次级蒸发器8将冷冻库中环境空气中的热量吸收从而使冷冻库冷却,达到制冷的目的。发电机的能量来源于从冷冻库吸收的热量。但由于冷冻库的负荷是变化的,环境温度也是变化的,因此制冷量随时处于动态变化之中,为了保证发电机能输出平稳的工作电压和足够的功率,以满足外部其他负荷对电源的稳定性需要,设置了两台蒸发器,第二台蒸发器的作用是为了保证不论冷冻库提供的热量怎么变化、是否制冷,都还有一个能与之变化适应的稳定的热源,从而保证制冷发电机系统始终能够保持稳定、连续的输出。
冷冻库需要冷冻温度为-18℃,采用的工质为R410A,构造冷源温度为-73℃,环境温度为20℃。
冷冻库初始温度为0℃,冷冻库外的环境温度为20℃;阀门7和阀门9关闭,蒸发器1、次级蒸发器8投入工作。系统启动时,首先启动加压泵4,对液态工质R401A加压,加压后的压力P1=1.5MPa(此时R410A工作在临界状态以下,低温工质蒸发压力由温度决定,当环境温度为20℃时,蒸发温度为10℃,蒸汽过热度取5℃时,对应压力P1=1.5MPa),低温工质流经回热器3流向次级蒸发器8的次级低温端8A,次级蒸发器 8热源边的风扇在冷库内循环,环境空气作为热源流入次级蒸发器8次级热源端8B,对次级蒸发器8低温端中的低温工质进行热交换加热。
本例中,环境空气没有在管道中流通,而是以包围工质管道的方式存在;次级蒸发器8内部流过的低温工质被加压到环境温度对应的工质压力1.5MPa,本系统中低温工质工作在临界温度以内,温度不同,压力不同。工质流分别在两蒸发器的低温端内被升温蒸发,选择蒸发器与环境温度的温差为5℃,于是在蒸发器1的出口端获得温度为15℃、压力为1.5MPa的高压R410A工质蒸汽,该压力为蒸汽喷射器5提供了动力使之开始工作,随即在蒸汽喷射器5低压进口52造成负压,通过控制高压进口51蒸汽参数,使与低压进口52相连的保温储液罐6的蒸汽压力为30kPa,根据蒸汽压力和液体温度的关系,并查询制冷剂R410A的物性表可知,这时保温储液罐6中的R410A温度为-73℃,通过维持保温储液罐6的蒸汽压力为30kPa,稳定提供-73℃的冷源。
汽轮机2两端运行的条件是高低压差和高低温差,工质R410A蒸汽流进入汽轮机2,开始做功,热能转变为机械能,再通过发电机对外输出电能。汽轮,2排出的乏汽进入保温储液罐6,在保温储液罐6中进行汽液分离,气体被蒸汽喷射器5抽走。蒸汽喷射器5将高低压口进来的气体混合以后,排放到回热器3中,与被加压后进入回热器3中的工质液体进行热交换,冷却后从回热器3流回到保温储液罐6,从而实现了完整循环。
蒸发器1的出口端获得温度为15℃,则蒸汽喷射器5高压进口51的温度为:273+15=288K;保温储液罐6中的R410A温度为-73℃,则蒸汽喷射器5低压进口52温度为:273-73=200K,则混合后的蒸汽喷射器中压出口53的温度为:
T混=(T2+T1)/2=(288+200)/2=244K,
换算为摄氏温度,为:
T混=244-273=-29℃。
如果忽略回热器3热、冷源边之间的温差,回热器3工质边出口与次级蒸发器8低温端1A进口温度相等,为-29℃,因此冷冻库中蒸发器1的热源边温度不断下降,最后达到-18℃时,根据冻库温度目标值与实际值的差距自动闭环调节调节阀门7流过的工质流量,控制冷冻库温度稳定在-18℃。同时在冷冻库中所能提供的热量越来越少时,根据发动机目标负荷值与实际值的差距自动闭环调节调节阀门9的开度和风扇101速度,使蒸发器1获得更多的冷库外的其他热源,补充冷冻库减少的热量,使之保持稳定的输出功率。
在回热器3中被加热的工质H2焓值为356kj/kg,分别再进入次级蒸发器8和蒸发器1后,最终被加温到15℃,焓值增加到424kj/kg,由于是两倍的工质,增加的热能Q为:
Q=(424-356)*2=136kj,
汽轮机2进口蒸汽焓值h1减去出口蒸汽焓值h2就是汽轮机2所做的功W:
W=h1-h2=424-293=131kw。
各蒸发器从外部获得的热能等于汽轮机2对外输出的功率。说明当单位制冷量为131kw时,发电机单位输出功率也为131kw。
采用传统逆卡诺循环时,冷冻库制冷量为131kw时,按照1:3的制冷效率,需要电网提供43kw的电功率消耗,而卡诺循环不仅节约了这43kw,还能够另外提供131kw以上的发电功率回馈电网,特别是在不需要制冷时,利用外部热源,全年都会获得丰富的电能回馈电网,其功率大小仅由用电量的大小决定。
实施例四
如图5所示,在实施例一的基础上,将加压泵4设置为2个,分别为第一加压泵41和第二加压泵42。加压泵4的动力来源可以为常规电能等,也可以是蓄电池等。所述第一加压泵41和第二加压泵42分别通过管道与保温储液罐6的第一工质出口61和第二工质出口64连接,并 分别通过管道连接至蒸发器1,再从所述蒸发器1分别通过管道连接蒸汽喷射器5的高压进口51和汽轮机2,最后分别通过第一回液口62和第二回液口64回到保温储液罐6。也就是说,本实施例在实施例一的基础上,将蒸汽运行通道分为了两条相互独立的通道,这两条通道上可以分别设置阀门,以方便控制。本实施例的具体工作原理参照实施例一。
实施例五
如图6所示,在实施例四的基础上,增加一个次级蒸发器8,并按照实施例二的方式,相应的在不同通道上分别对次级蒸发器8增加第一阀门71和第二阀门72,以控制第一工质出口61和第二工质出口64分别导出的蒸汽的流向,决定是否经过次级蒸发器8,本实施例的具体工作原理参照实施例二。
实施例六
如图7所示,在实施例五的基础上,将次级蒸发器8置于冷冻库中,其余零部件置于冷冻库外、环境中。同时在次级蒸发器8和蒸发器1上方设置风扇101,其工作原理参照实施例三。
实施例七
如图8所示,在实施例一的基础上,去除蒸汽喷射器5,主蒸汽经汽轮机2后分别通过管道和阀门连接保温储液罐6和第三蒸发器9,第三蒸发器9连接第二汽轮机2,第二汽轮机2再回连保温储液罐6。做功后的氮汽可以经过第三蒸发器9再次与外界进行热交换做功后,再回流至保温储液罐6内。所述加压泵的动力来源可以为常规电能等,也可以是蓄电池等。
实施例八
如图9所示,在实施例七的基础上,将第二汽轮机2的出口设置为2个,分别通过管道连接保温储液罐6及第三蒸发器9,并在各管道上对应设置阀门,以便对第二汽轮机2排出的蒸汽进行可控分流。
实施例九
如图10所示,在实施例八的基础上,还可以在蒸发器1的基础上增加次级蒸发器8,次级蒸发器8的具体连接方式及工作方式,与实施例二相同,以减小蒸发器1的工作压力。
另外,在实施例一的基础上,增加一些零部件就可构成制冷发电机,可实现冷、电联产。具体应用时,还可根据需要进行增减,增加次级蒸发器8和阀门7,当阀门7开通时次级蒸发器8不起作用,此时功能如实施例一,系统只起发电作用;需要制冷时关闭阀门7,让工质从次级蒸发器8主回路中流动,次级蒸发器8加热边中流动防冻液,根据不同的用途,采用不同的工质可以得到温度从10℃到-120℃的防冻液,用于空调制冷,冷库,速冻加工。调节阀门7的开度,或是调节防冻液的流速,都可调节制冷量。
蒸发器1是为了保证不论是否制冷,都能获得一定的热能来保证汽轮机的工作,根据不同热源情况,如空气、普通水源、海水或地热温水、工业废水、高温废汽,可采用不同的热交换器。
在不背离本发明的原理和实质的前提下,可以对上述实施方式做出多种结合、变更或修改,但这些结合、变更和修改均落入本发明的保护范围。
Claims (13)
- 一种构造冷源能量回收系统,其特征在于:包括回热器(3)、蒸汽喷射器(5)和保温储液罐(6)。
- 如权利要求1所述的一种构造冷源能量回收系统,其特征在于:所述回热器(3)共有两对通路,一对通路为工质流出保温储液罐(6)的通路,通过加压泵(4)与保温储液罐(6)的第一工质出口(61)连通,使工质流出回热器(3);另一对通路为工质回收回保温储液罐(6)的通路,与蒸汽喷射器(5)的中压出口(53)连通,工质在流过回热器(3)后流回保温储液罐(6);所述蒸汽喷射器(5)共有三个端口,其低压进口(52)与保温储液罐(6)的排汽口(63)连通,另一端为工质入口;所述保温储液罐(6)的端口数量大于等于3个,其中一个端口与乏汽出口连通。
- 如权利要求2所述的一种构造冷源能量回收系统,其特征在于:所述保温储液罐(6)上设置第一工质出口(61)和第二工质出口(64),所述两工质出口分别通过管道和第一加压泵(41)、第二加压泵(42)与回热器(3)连接,所述回热器(3)分别通过管道与蒸汽喷射器(5)的中压出口(53)和汽轮机(2)连接。
- 一种热力发动机系统,包括:蒸发器(1),汽轮机(2),加压泵(4),其特征在于:还包括构造冷源能量回收系统。
- 如权利要求4所述的一种热力发动机系统,其特征在于:所述构造冷源能量回收系统包括回热器(3)、蒸汽喷射器(5)和保温储液罐(6);所述热力发动机系统在不需要外部冷源的情况下实现热功转换。
- 如权利要求5所述的一种热力发动机系统,其特征在于:所述保温储液罐(6)内储有低温工质,在保温储液罐(6)上设有出第一工质出口(61)、第一回液口(62)、排汽口(63);第一工质出口(61)与加压泵(4)相连,加压泵(4)与回热器(3)相连,回热器(3)与蒸发器(1)相连,蒸发器(1)分别与汽轮机(2)和蒸汽喷射器(5)的高压进口(51)相连,汽轮机(2)与第一回液口(62)相连,排汽 口(63)与蒸汽喷射器(5)的低压进口(52)相连,蒸汽喷射器(5)的中压出口(53)与回热器(3)相连。
- 如权利要求6所述的一种热力发动机系统,其特征在于:所述保温储液罐(6)上设有第一工质出口(61)和第二工质出口(64),所述两工质出口分别通过管道和第一加压泵(41)、第二加压泵(42)与回热器(3)连接,所述回热器(3)分别通过管道与蒸发器(1)连接,所述蒸发器(1)上对应设置两个出口,分别通过管道与蒸汽喷射器(5)的中压出口(53)和汽轮机(2)连接。
- 如权利要求4-7任意一项所述的一种热力发动机系统,其特征在于:所述蒸发器(1)可由任何形式的单个或多个蒸发器串联、并联组成。
- 如权利要求4-7任意一项所述的一种热力发动机系统,其特征在于:所述汽轮机(2)包含任何一种将热能转为机械能的装置。
- 一种热力发动机系统的能量回收方法,其特征在于:通过汽轮机(2)做功后排出的乏汽余热,由构造冷源能量回收系统进行回收和循环利用。
- 如权利要求10所述的一种热力发动机系统的能量回收方法,其特征在于:所述构造冷源能量回收系统包括回热器(3)、蒸汽喷射器(5)和保温储液罐(6)。
- 如权利要求10所述的一种热力发动机系统的能量回收方法,其特征在于:所述构造冷源能量回收系统为权利要求1-3任意一项所述的构造冷源能量回收系统。
- 如权利要求12所述的一种热力发动机系统的能量回收方法,其特征在于:包括以下步骤:(1)、首先启动加压泵(4),将保温储液罐(6)中的工质抽出并加压到规定压力P1,工质流经回热器(3)流向蒸发器(1)的低温端(1A),外部热源流入蒸发器(1)的热源端(1B)对蒸发器(1)进行加热,进 入蒸发器(1)的低温端(1A)的工质被热源端(1B)流过的外部热源加热蒸发,同时温度升高;(2)、在蒸发器(1)低温端(1A)出口处获得温度为T1、压力为P1的高压工质气体,一部分高压工质气体流入蒸汽喷射器(5),该压力为蒸汽喷射器(5)提供动力并使蒸汽喷射器(5)开始工作;另一部分高压工质气体进入汽轮机(2)做功后,汽轮机(2)排出的乏汽进入保温储液罐(6);(3)、进入保温储液罐(6)的乏汽在保温储液罐(6)中自动汽液分离,汽体由蒸汽喷射器(5)的低压进口(52)处形成的负压抽走,在蒸汽喷射器(5)中与来自蒸发器(1)的高压工质气体混合后,从中压出口(53)流出并进入回热器(3),在回热器(3)中,与从保温储液罐(6)中被加压泵抽出进入回热器(3)中的工质进行热交换,被降温后流回保温储液罐(6)中,从而实现了完整循环。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711317835.XA CN107882603A (zh) | 2017-12-12 | 2017-12-12 | 构造冷源能量回收系统、热力发动机系统及能量回收方法 |
CN201711317835.X | 2017-12-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019114536A1 true WO2019114536A1 (zh) | 2019-06-20 |
Family
ID=61773875
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/117583 WO2019114536A1 (zh) | 2017-12-12 | 2018-11-27 | 构造冷源能量回收系统、热力发动机系统及能量回收方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107882603A (zh) |
WO (1) | WO2019114536A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107882603A (zh) * | 2017-12-12 | 2018-04-06 | 吴加林 | 构造冷源能量回收系统、热力发动机系统及能量回收方法 |
JP6997667B2 (ja) * | 2018-04-17 | 2022-01-17 | 株式会社東芝 | 発電装置および発電方法 |
CN109612168B (zh) * | 2018-11-16 | 2024-04-23 | 广东工业大学 | 一种射流式有机朗肯循环系统 |
CN109763870A (zh) * | 2019-03-20 | 2019-05-17 | 潘彦伯 | 一种低参数热回收系统 |
CN110030041A (zh) * | 2019-04-16 | 2019-07-19 | 天津大学 | 采用喷射泵和分离器提高中低温热源发电能力的系统 |
CN115899568A (zh) * | 2022-09-30 | 2023-04-04 | 李文辉 | 密封式尾汽回收汽动系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008143542A1 (fr) * | 2007-05-18 | 2008-11-27 | Igor Isaakovich Samkhan | Procédé et dispositif de transformation d'énergie thermique en électricité, en une chaleur à potentiel plus élevé ou en froid |
CN103775148A (zh) * | 2012-10-22 | 2014-05-07 | 张玉良 | 自冷式热力做功方法 |
CN104153834A (zh) * | 2014-07-15 | 2014-11-19 | 天津大学 | 一种基于卡琳娜循环的发电、供冷联合系统 |
CN105402926A (zh) * | 2015-10-21 | 2016-03-16 | 西安交通大学 | 一种冷电联供系统及基于该系统的制冷、发电及冷电联供方法 |
CN107882603A (zh) * | 2017-12-12 | 2018-04-06 | 吴加林 | 构造冷源能量回收系统、热力发动机系统及能量回收方法 |
CN207701188U (zh) * | 2017-12-12 | 2018-08-07 | 吴加林 | 构造冷源能量回收系统及热力发动机系统 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101187509A (zh) * | 2007-12-06 | 2008-05-28 | 上海交通大学 | 整体式喷射型低温余热发电制冷装置 |
CN202732013U (zh) * | 2012-08-15 | 2013-02-13 | 昆明理工大学 | 一种中低温热能驱动紧凑式有机朗肯循环发电系统 |
-
2017
- 2017-12-12 CN CN201711317835.XA patent/CN107882603A/zh active Pending
-
2018
- 2018-11-27 WO PCT/CN2018/117583 patent/WO2019114536A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008143542A1 (fr) * | 2007-05-18 | 2008-11-27 | Igor Isaakovich Samkhan | Procédé et dispositif de transformation d'énergie thermique en électricité, en une chaleur à potentiel plus élevé ou en froid |
CN103775148A (zh) * | 2012-10-22 | 2014-05-07 | 张玉良 | 自冷式热力做功方法 |
CN104153834A (zh) * | 2014-07-15 | 2014-11-19 | 天津大学 | 一种基于卡琳娜循环的发电、供冷联合系统 |
CN105402926A (zh) * | 2015-10-21 | 2016-03-16 | 西安交通大学 | 一种冷电联供系统及基于该系统的制冷、发电及冷电联供方法 |
CN107882603A (zh) * | 2017-12-12 | 2018-04-06 | 吴加林 | 构造冷源能量回收系统、热力发动机系统及能量回收方法 |
CN207701188U (zh) * | 2017-12-12 | 2018-08-07 | 吴加林 | 构造冷源能量回收系统及热力发动机系统 |
Also Published As
Publication number | Publication date |
---|---|
CN107882603A (zh) | 2018-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019114536A1 (zh) | 构造冷源能量回收系统、热力发动机系统及能量回收方法 | |
US9359919B1 (en) | Recuperated Rankine boost cycle | |
Xue et al. | A review of cryogenic power generation cycles with liquefied natural gas cold energy utilization | |
CN101368767B (zh) | 采用并联正、逆制冷循环的工质的间接空气冷却方法和系统 | |
US20130087301A1 (en) | Thermoelectric energy storage system and method for storing thermoelectric energy | |
CN111473540B (zh) | 船舶余热驱动co2超临界发电耦合跨临界制冷循环系统 | |
CN102213199A (zh) | 一种利用海洋温差发电的方法及装置 | |
CN109579432B (zh) | 利用低温液化储能的天然气和电力互联调峰系统 | |
CN104033199A (zh) | 一种使用混合有机工质的内置热泵的有机朗肯循环系统 | |
CN116641769A (zh) | 基于二氧化碳工质的储能利用系统 | |
US6519946B2 (en) | Cogeneration system using waste-heat gas generated in micro gas turbine | |
CN203730205U (zh) | 低品位热源驱动的两级渗透浓差做功装置 | |
CN210829420U (zh) | 一种lng冷能co2工质循环发电系统 | |
CN207701188U (zh) | 构造冷源能量回收系统及热力发动机系统 | |
CN101397983B (zh) | 工质相变焓差海水温差动力机 | |
CN107702429B (zh) | 液态空气储能系统能效提升装置及方法 | |
CN109763870A (zh) | 一种低参数热回收系统 | |
CN216204314U (zh) | 一种余热回收型高温热水-蒸汽机组 | |
CN103726975A (zh) | 低品位热源驱动的两级渗透浓差做功装置及方法 | |
CN104033200B (zh) | 使用混合有机工质的内置热泵的有机朗肯循环系统 | |
CN111023619B (zh) | 绿色热泵制冷制热装置及方法 | |
CN204002958U (zh) | 使用混合有机工质的内置热泵的有机朗肯循环系统 | |
CN209539413U (zh) | 一种低参数热回收系统 | |
CN107726665B (zh) | 基于化学吸放热可逆的两级压缩制冷热泵循环装置及方法 | |
KR20210092106A (ko) | 산업체 스팀, 온수, 냉수 겸용 에너지절감 및 탄소배출 감소의 친환경 고효율 히트펌프장치 및 이를 이용한 시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18888033 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18888033 Country of ref document: EP Kind code of ref document: A1 |