CN108495978A - 联合循环发电厂 - Google Patents

联合循环发电厂 Download PDF

Info

Publication number
CN108495978A
CN108495978A CN201680078683.XA CN201680078683A CN108495978A CN 108495978 A CN108495978 A CN 108495978A CN 201680078683 A CN201680078683 A CN 201680078683A CN 108495978 A CN108495978 A CN 108495978A
Authority
CN
China
Prior art keywords
intercooler
rankine cycle
turbine
power plant
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201680078683.XA
Other languages
English (en)
Inventor
G·埃尔萨科特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nem Energy Ltd
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of CN108495978A publication Critical patent/CN108495978A/zh
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/101Regulating means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/32Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines using steam of critical or overcritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/72Application in combination with a steam turbine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

本发明涉及一种根据权利要求1所述的联合循环发电厂,其包括:兰金循环(10),具有涡轮机(11)、废气热交换器(12)、泵(13)、冷凝器(15)和由涡轮机(11)驱动的第一发电机(G1);多轴燃气涡轮机循环(20),具有至少两个压缩机级(21,22,23)、燃烧器(25)、至少一个涡轮机级(24,24',24”,24”')和由至少一个涡轮机级(24,24',24”,24”')驱动的第二发电机(G2);其中在两个压缩机级(21,22,23)之间的压缩空气路径中布置有中间冷却器(27,28),使得用于燃烧器(25)的压缩空气的温度被降低。来自中间冷却器(27,28)的冷侧路径与兰金循环(10)的废气交换器(12)并行连接,使得除了来自废气热交换器(12)的废气热之外,来自中间冷却器(27,28)的余热也供给兰金循环。

Description

联合循环发电厂
技术领域
本发明涉及根据权利要求1的联合循环发电厂。
背景技术
简单的循环燃气涡轮机发电厂的效率相对较低并且废气的温度较高(400至600℃)。因此,很大一部分的燃料能量被倾倒并且没有被转换成期望形式的电能。因此,简单的循环燃气涡轮机发电厂不太适合用于基本负载发电。但是废气的高温允许热回收技术的使用,以便提高整个电厂的效率。图1中示出了针对这种联合循环发电厂的示例,其中燃气涡轮机循环与底部兰金循环或特别是有机兰金循环(ORC)组合。
最常用在联合循环发电厂中的是用于从废气中回收能量的底部兰金循环。这种兰金循环通常基于水蒸汽流体,而有机兰金循环则基于使用有机高分子量流体。废气的低温被转换成有用功,其可以包括转换成电能。
此外,燃气涡轮机循环的效率可以通过中间冷却器来提高,其中在两个压缩机级之间,压缩空气是冷却的,或者利用同流换热器来提高,其中压缩空气在进入燃烧室之前被废气加热。
还可以将所有这些技术组合以提高联合循环发电厂的整体效率。当使用同流换热时,废气将具有通常在180至300℃的范围内的较低的温度。在这种情况下,由于有机流体的蒸发温度较低,使用有机兰金循环将是合适的。但在这里,来自中间冷却器的热量通常会被排放到大气中而不被使用。
这个问题已经在由R.Braun、K.Kusterer、T.Sugimoto、K.Tanimura和D.Bohn在第六届International Conference on Pumps and Fans with Compressors and WindTurbines提出的文献“Thermodynamic and design considerations of organic Rankinecycles in combined application with a solar thermal gas turbine”中得到解决。这里建议在联合循环发电厂中将来自中间冷却器的余热输出到有机兰金循环,以便在冷的有机流体被废气热交换器加热到最终温度之前将该冷的有机流体加热。由此,有机流体具有在有机兰金循环内串联定位的两个热源。第一热源是中间冷却器,以及第二热源是燃气涡轮机的废气。这种现有技术布置的问题在于,通过两个串联加热器加热ORC流体并且使用上部温度水平的加热器中的废气将导致高的排气温度,该温度高于离开第一ORC流体加热器的ORC流体的温度。这会限制废气中能量的最大使用。该设计不易控制,因为当蒸发温度随压力变化时,特别是在部分负载下,两个热源的操作彼此相关。
发明内容
因此,本发明的目的是提供具有进一步改进的总体效率的联合循环发电厂。
根据本发明,该目的通过根据权利要求1的联合循环发电厂来实现,该联合循环发电厂包括:
-兰金循环,具有涡轮机或膨胀机、废气热交换器、泵、冷凝器和由涡轮机驱动的第一发电机,
-多轴燃气涡轮机循环,具有至少两个压缩机级、燃烧器、至少一个涡轮机级和由至少一个涡轮机级驱动的第二发电机,
-其中在两个压缩机级之间的压缩空气路径中布置有中间冷却器,使得用于燃烧器的压缩空气的温度被降低,
-其中,来自中间冷却器的冷侧路径与兰金循环的废气交换器并行连接,使得除了来自废气热交换器的废气热之外,来自中间冷却器的余热也供给兰金循环。
简而言之,本发明的原理是重新使用来自燃气涡轮机的输出的废弃能量和来自压缩机中间冷却器的浪费的能量以用于在兰金循环中发电。根据本发明的联合循环发电厂的概念,来自中间冷却器的热量平行于兰金循环的主热源被输出到兰金循环,兰金循环的主热源是燃气涡轮机的废气。冷加压的兰金介质分成两个流。主流被废气加热到所需要的温度。第二流在中间冷却器之间分配,然后在被中间冷却器加热之后结合在一起。兰金循环的所有热源出口处的介质具有相似的参数(温度和压力),因此它们可以用于同一涡轮机。
在优选实施例中,具有两个中间冷却器的三个压缩机级是可用的,而中间冷却器中的每个中间冷却器与兰金循环的废气热交换器并行连接。这种设计的优点在于,中间冷却降低了压缩气体的温度,从而降低了其体积。因此,对于较小的体积,压缩机所做的功将会较少,这将减少输入功率,从而提高燃气涡轮机的效率。通常已知的有机兰金循环的效率在13%左右,而在本发明中其约为19%。
如果至少一个可控阀被提供在来自中间冷却器的冷侧路径的供给线路中以用于调节从中间冷却器传递到有机兰金循环的余热的量,则所传递的余热的量可以最佳地适配于有机兰金循环参数。
在本发明的另一实施例中,同流换热器被用于在燃烧器之前预热压缩空气,同时来自涡轮机出口的废气沿着该同流换热器的热侧路径流动。因此,通过预热压缩空气并且降低达到所需温度的热量需求,从而节省燃料。
当应用有机兰金循环时,可以使用具有蒸发温度的有机介质,其允许可用热源在不同的温度水平下使用。这种设计的优点是整个系统的效率比通常的燃气涡轮机联合循环要高。
如果中间冷却器和废气热交换器中的有机流体具有类似的单一超临界相,则可以使得有机兰金循环非常简单并且易于控制。这最大限度地减少了设备要求,诸如不需要滚筒。
附图说明
现在将参考附图更详细地解释本发明。附图仅示出本发明的实际实施例的示例,而不限制本发明的范围。
图1示出了现有技术的联合循环发电厂的示意性视图,
图2示出了先进的现有技术的联合循环发电厂的示意性视图,
图3示出了本发明的联合循环发电厂的示意性视图。
具体实施方式
如图1所示具有燃气涡轮机循环20和有机兰金循环10的联合循环发电厂是众所周知的。这里,具有三个压缩机级21、22和23的多轴燃气涡轮机在压缩空气与燃料混合并且点燃之前分三个步骤压缩用于燃烧器25的空气。之后,废气在四个涡轮机级24、24'、24”和24”'中膨胀。发电机G2连接到动力涡轮机24”'。为了避免来自最后的涡轮机级的废气的能量将被排放到大气中,添加了兰金循环,或者在该示例中是有机兰金循环10。有机兰金循环10包括涡轮机11,涡轮机11由在废气热交换器12中加热的流体供给。此外,泵13和冷凝器15被布置在有机兰金循环10内。最后,涡轮机11驱动第一发电机G1。
图2示出了具有多轴燃气涡轮机循环20和有机兰金循环10的现有技术的联合循环发电厂的示意性视图,其中来自中间冷却器27和28的冷侧路径经由供给线路36和37串联连接到兰金循环10。
图3示出了本发明的优选实施例的示意性视图。这里,联合循环发电厂包括具有涡轮机11、废气热交换器12、泵13、冷凝器15和由涡轮机(11)驱动的第一发电机(G1)的兰金循环10。此外,联合循环发电厂包括具有至少三个压缩机级21、22和23、燃烧器25、四个涡轮机级24、24'、24”和24”'和由涡轮机级驱动的第二发电机G2的多轴燃气涡轮机循环20。同流换热器26被用于在燃烧器25之前预热压缩空气,同时在废气被供给到有机兰金循环10的废气热交换器12之前,该废气首先沿着热侧路径31和32流动到该同流换热器26。在两个压缩机级21和22以及22和23中的每两个压缩机级之间的压缩空气路径中,布置有中间冷却器27和中间冷却器28以降低压缩空气的温度。根据本发明,来自中间冷却器27和28的冷侧路径与兰金循环10的废气交换器12并行连接,使得除了来自废气热交换器12的废气热之外,来自中间冷却器27和28的余热供给兰金循环。在所示的优选实施例中,中间冷却器27和28两者被并行连接到兰金循环10的废气热交换器12。因为通过两个热交换器将有机兰金循环流体加热至相似温度的热源的平行配置,本发明提供了灵活性。因此整个电厂可以在深度部分负载下运行。在低于20%负载时,如果中间冷却器的热量非常低,则中间冷却器可以被旁路,并且可以运行联合循环。
通过这种改进,联合循环发电厂的整体效率由于使用废热加上来自中间冷却器的余热而增加。通常,航空派生型三轴燃气涡轮机具有约为41%的效率。添加有机兰金循环、中间冷却器和同流换热器可以将效率提高到超过55%。

Claims (6)

1.一种联合循环发电厂,包括:
-兰金循环(10),具有涡轮机(11)、废气热交换器(12)、泵(13)、冷凝器(15)和由所述涡轮机(11)驱动的第一发电机(G1),
-多轴燃气涡轮机循环(20),具有至少两个压缩机级(21,22,23)、燃烧器(25)、至少一个涡轮机级(24,24',24”,24”')和由所述至少一个涡轮机级(24,24',24”,24”')驱动的第二发电机(G2),
-其中在两个压缩机级(21,22,23)之间的压缩空气路径中布置有中间冷却器(27,28),使得用于所述燃烧器(25)的所述压缩空气的温度被降低,
其特征在于,
来自所述中间冷却器(27,28)的冷侧路径与所述兰金循环(10)的所述废气交换器(12)并行连接,使得除了来自所述废气热交换器(12)的废气热之外,来自所述中间冷却器(27,28)的余热也供给所述兰金循环。
2.根据权利要求1所述的联合循环发电厂,其特征在于,
具有两个中间冷却器(27,28)的三个压缩机级(21,22,23)是可用的,而中间冷却器(27,28)中的每个中间冷却器与所述兰金循环(10)的所述废气热交换器(12)并行连接。
3.根据权利要求1或2所述的联合循环发电厂,其特征在于,
至少一个可控阀被提供在来自所述中间冷却器(27,28)的所述冷侧路径的供给线路(34,36)中,以用于调节从所述中间冷却器(27,28)传递到所述兰金循环(10)的余热的量。
4.根据权利要求1至3中任一项所述的联合循环发电厂,其特征在于,
同流换热器(26)被用于预热用于所述燃烧器(25)的燃料,同时废气沿着所述同流换热器(26)的热侧路径(31,32)流动。
5.根据权利要求1至4中任一项所述的联合循环发电厂,其特征在于,
兰金循环是有机兰金循环。
6.根据权利要求1至5中任一项所述的联合循环发电厂,其特征在于,
所述中间冷却器(27,28)和废气热交换器(12)中的有机流体具有类似的超临界单一相。
CN201680078683.XA 2016-03-11 2016-11-10 联合循环发电厂 Pending CN108495978A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP16159850.3A EP3216989A1 (en) 2016-03-11 2016-03-11 Combined cycle power plant
EP16159850.3 2016-03-11
PCT/EP2016/077329 WO2017153010A1 (en) 2016-03-11 2016-11-10 Combined cycle power plant

Publications (1)

Publication Number Publication Date
CN108495978A true CN108495978A (zh) 2018-09-04

Family

ID=55527397

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680078683.XA Pending CN108495978A (zh) 2016-03-11 2016-11-10 联合循环发电厂

Country Status (6)

Country Link
US (1) US20190040765A1 (zh)
EP (2) EP3216989A1 (zh)
JP (1) JP6793745B2 (zh)
KR (1) KR20180120234A (zh)
CN (1) CN108495978A (zh)
WO (1) WO2017153010A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2554384A (en) * 2016-09-23 2018-04-04 Hieta Tech Limited Combustion chamber and heat exchanger
CN110080845B (zh) * 2019-05-21 2024-03-01 福建省东锅节能科技有限公司 热电联产与压缩空气相结合的储能系统及其工作方法
FR3101377B1 (fr) * 2019-09-30 2021-11-19 Psa Automobiles Sa Systeme thermodynamique de production d’energie electrique mettant en œuvre plusieurs turbomachines comportant un recuperateur commun
FR3101378B1 (fr) * 2019-09-30 2021-10-15 Psa Automobiles Sa Systeme thermodynamique de production d’energie electrique comportant une turbomachine et une machine mettant en oeuvre la vapeur d’eau
CN111412065B (zh) * 2020-03-30 2021-05-07 郭宣华 一种中冷回热燃气轮机与有机介质复合底循环的联合系统
CN112796887A (zh) * 2021-03-18 2021-05-14 郭宣华 一种中冷回热燃气轮机与制冷剂复合底循环的联合系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4751814A (en) * 1985-06-21 1988-06-21 General Electric Company Air cycle thermodynamic conversion system
US4896499A (en) * 1978-10-26 1990-01-30 Rice Ivan G Compression intercooled gas turbine combined cycle
US6212873B1 (en) * 1998-03-04 2001-04-10 Mitsubishi Heavy Industries, Ltd. Gas turbine combined cycle
CN104204427A (zh) * 2012-04-05 2014-12-10 川崎重工业株式会社 具备朗肯循环发动机的燃气涡轮发动机装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5781104A (en) * 1980-11-07 1982-05-21 Setsuo Yamamoto Composite cycle plant
JPS59120720A (ja) * 1982-12-27 1984-07-12 Osaka Gas Co Ltd ガスタ−ビン装置
US5347806A (en) * 1993-04-23 1994-09-20 Cascaded Advanced Turbine Limited Partnership Cascaded advanced high efficiency multi-shaft reheat turbine with intercooling and recuperation
US5799490A (en) * 1994-03-03 1998-09-01 Ormat Industries Ltd. Externally fired combined cycle gas turbine
US5845481A (en) * 1997-01-24 1998-12-08 Westinghouse Electric Corporation Combustion turbine with fuel heating system
DE59709403D1 (de) * 1997-07-25 2003-04-03 Alstom Switzerland Ltd Verfahren zum Betrieb einer Kraftwerksanlage
JPH11343864A (ja) * 1998-06-02 1999-12-14 Mitsubishi Heavy Ind Ltd 深冷タービン発電システム
JP3727503B2 (ja) * 1998-12-21 2005-12-14 独立行政法人科学技術振興機構 熱機関
US7961835B2 (en) * 2005-08-26 2011-06-14 Keller Michael F Hybrid integrated energy production process
IT1397145B1 (it) * 2009-11-30 2013-01-04 Nuovo Pignone Spa Sistema evaporatore diretto e metodo per sistemi a ciclo rankine organico.
US20120324903A1 (en) * 2011-06-27 2012-12-27 Icr Turbine Engine Corporation High efficiency compact gas turbine engine
EP2642091A1 (en) * 2012-03-22 2013-09-25 Siemens Aktiengesellschaft Combined cycle power plant
JP5879177B2 (ja) * 2012-03-30 2016-03-08 日立造船株式会社 原動機システム
JP2015031268A (ja) * 2013-08-07 2015-02-16 日立造船株式会社 廃熱回収装置
JP2016014339A (ja) * 2014-07-01 2016-01-28 いすゞ自動車株式会社 廃熱回生システム
US10724471B2 (en) * 2015-12-21 2020-07-28 Cummins Inc. Integrated control system for engine waste heat recovery using an organic Rankine cycle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4896499A (en) * 1978-10-26 1990-01-30 Rice Ivan G Compression intercooled gas turbine combined cycle
US4896499B1 (zh) * 1978-10-26 1992-09-15 G Rice Ivan
US4751814A (en) * 1985-06-21 1988-06-21 General Electric Company Air cycle thermodynamic conversion system
US6212873B1 (en) * 1998-03-04 2001-04-10 Mitsubishi Heavy Industries, Ltd. Gas turbine combined cycle
CN104204427A (zh) * 2012-04-05 2014-12-10 川崎重工业株式会社 具备朗肯循环发动机的燃气涡轮发动机装置

Also Published As

Publication number Publication date
US20190040765A1 (en) 2019-02-07
KR20180120234A (ko) 2018-11-05
JP2019511669A (ja) 2019-04-25
EP3216989A1 (en) 2017-09-13
EP3408506B1 (en) 2020-05-06
WO2017153010A1 (en) 2017-09-14
JP6793745B2 (ja) 2020-12-02
EP3408506A1 (en) 2018-12-05

Similar Documents

Publication Publication Date Title
CN108495978A (zh) 联合循环发电厂
EP3344856B1 (en) Systems and methods for power production using nested co2 cycles
CN104204427B (zh) 具备朗肯循环发动机的燃气涡轮发动机装置
EP3314096B1 (en) Power system and method for producing useful power from heat provided by a heat source
US20150369125A1 (en) Method for increasing the power of a combined-cycle power plant, and combined-cycle power plant for conducting said method
JPS6388227A (ja) ガスタ−ビンユニツト作動方法
CN109026400A (zh) 一种采用级间换热预热燃料的燃气轮机系统及方法
CN105443243A (zh) 燃气蒸汽联合循环系统
KR101864983B1 (ko) 초임계 이산화탄소 발전 시스템
US9404395B2 (en) Selective pressure kettle boiler for rotor air cooling applications
US20110036097A1 (en) System for producing power, in particular electrical power, with a gas turbine and a rotary regenerative heat exchanger
CN209145714U (zh) 一种采用级间换热预热燃料的燃气轮机装置
CN105822427A (zh) 回热循环燃气轮机系统及冷热电联供系统
CN102562200A (zh) 一种低压余热蒸汽发电系统
US9145794B2 (en) Apparatus and method for increasing power plant efficiency at partial loads
JP2009097389A (ja) エネルギー回収機能を備えた減圧設備
JP2009180101A (ja) エネルギー回収機能を備えた減圧設備
CN107288759B (zh) 一种分轴的外燃式空气动力装置和转化方法
EP2642091A1 (en) Combined cycle power plant
CN109026226A (zh) 一种热量综合利用的联合系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20220218

Address after: Holland zoeterwoude

Applicant after: Siemens energy GmbH (Netherlands)

Address before: Munich, Germany

Applicant before: SIEMENS AG

TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20230413

Address after: Holland Ward zoet

Applicant after: NEM Energy Ltd.

Address before: Holland zoeterwoude

Applicant before: Siemens energy GmbH (Netherlands)

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180904