CN108489809A - 利用实验手段计算应力作用下粗糙错位裂缝变形量的方法 - Google Patents

利用实验手段计算应力作用下粗糙错位裂缝变形量的方法 Download PDF

Info

Publication number
CN108489809A
CN108489809A CN201810183399.XA CN201810183399A CN108489809A CN 108489809 A CN108489809 A CN 108489809A CN 201810183399 A CN201810183399 A CN 201810183399A CN 108489809 A CN108489809 A CN 108489809A
Authority
CN
China
Prior art keywords
fracture surface
fracture
stress
matrix
dislocation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810183399.XA
Other languages
English (en)
Other versions
CN108489809B (zh
Inventor
卢聪
郭建春
陈迟
苟兴豪
王建
冀延民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shengli Oil Field Lu Sheng Oil Development LLC
Southwest Petroleum University
Original Assignee
Shengli Oil Field Lu Sheng Oil Development LLC
Southwest Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shengli Oil Field Lu Sheng Oil Development LLC, Southwest Petroleum University filed Critical Shengli Oil Field Lu Sheng Oil Development LLC
Priority to CN201810183399.XA priority Critical patent/CN108489809B/zh
Publication of CN108489809A publication Critical patent/CN108489809A/zh
Application granted granted Critical
Publication of CN108489809B publication Critical patent/CN108489809B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0019Compressive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0062Crack or flaws
    • G01N2203/0066Propagation of crack
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0075Strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/0202Control of the test
    • G01N2203/0212Theories, calculations
    • G01N2203/0218Calculations based on experimental data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0682Spatial dimension, e.g. length, area, angle

Abstract

本发明公开了利用实验手段计算应力作用下粗糙错位裂缝变形量的方法,该方法将目标储层页岩加工为长方体岩样,并劈裂分为两个具有粗糙表面的岩板,将两个岩板的粗糙表面错位放置形成错位裂缝后,采用逆向计算思路对错位裂缝形态受力变形进行建模,通过多次对裂缝面施压给定位移量,计算给定位移量下裂缝所受的应力,最终绘制“应力‑位移”图版,即可得到应力与位移的关系曲线。本发明原理可靠,可对错位裂缝进行分析计算,为井下裂缝的变形情况预测提供理论依据。

Description

利用实验手段计算应力作用下粗糙错位裂缝变形量的方法
技术领域
本发明涉及石油领域,尤其是页岩清水压裂过中,利用实验手段计算应力作用下粗糙错位裂缝变形量的方法。
背景技术
水力压裂技术是低渗透油气藏增产改造的重要措施。水力压裂是利用地面高压泵组,以超过地层吸收能力的排量将压裂液泵入地层来产生裂缝,然后继续注入带有支撑剂(砂粒)的压裂液,使裂缝继续延伸并在其中充填支撑剂,当压裂液返排后,在地层压力作用下,支撑剂在裂缝中起到支撑裂缝的作用,阻止裂缝闭合,从而在地层中形成具有一定长度、允许流体流动的填砂裂缝。
清水压裂是水力压裂的一种形式,被广泛应用于页岩油气藏的增产改造中。它具体是指在压裂过程中不加入支撑剂(砂粒),仅通过将低粘度的压裂液泵入地层来产生裂缝。地下岩石性质差异较大,压裂形成的裂缝表面一般凹凸不平,同时还会在剪切作用下发生错位,因此即使不加入支撑剂,裂缝表面的凸点之间也可以相互支撑形成自支撑裂缝,使裂缝在地层压力作用下仍能保持一定开启程度和流动通道,从而达到改善油气流动条件和油气井增产的目的。由于自支撑裂缝内未充填支撑剂,裂缝会在应力作用下迅速发生变形,裂缝宽度减小,进而影响油气流量大小。因此,计算应力作用下错位裂缝的缝宽变形量,进而估算裂缝的剩余宽度,对于清水压裂后产量预测和油气藏增产潜力评价具有十分重要的意义。
发明内容
本发明的目的在于提供一种利用实验手段计算应力作用下粗糙错位裂缝变形量的方法。该方法将目标储层页岩加工为长方体岩样,并劈裂分为两个具有粗糙表面的岩板,将两个岩板的粗糙表面错位放置形成错位裂缝,该方法原理可靠,可对该错位裂缝进行分析计算,为井下裂缝的变形情况预测提供理论依据。
为达到以上技术目的,本发明采用以下技术方案:采用逆向计算思路对错位裂缝形态受力变形进行建模,通过多次对裂缝面施压给定位移量,计算给定位移量下裂缝所受的应力,最终绘制“应力-位移”图版,即可得到应力与位移的关系曲线。
利用专利CN201510319382.9中所述的岩板裂缝面数据获取方法,利用三维激光扫描仪对两块裂缝面进行扫描,获取裂缝面的三维数据,并对岩板建立空间直角坐标系,取岩板长度方向为横轴,宽度方向为纵轴,高度方向为竖轴,其中,横轴和纵轴所在的平面为水平面。
利用实验手段计算应力作用下粗糙错位裂缝变形量的方法,依次包括以下步骤:
(A)将岩样劈裂分为两个具有粗糙表面的岩板,将两个岩板的粗糙表面错位放置形成错位裂缝,对扫描获取的裂缝面三维数据进行坐标变换处理,获取上裂缝面高度矩阵Zu和下裂缝面高度矩阵Zd
(B)对上裂缝面施加向下的给定初始位移量Z0,获得裂缝形态变形矩阵Zc,并得到上裂缝面与下裂缝面的总压缩量矩阵Zt
(C)在竖轴方向上对裂缝面进行立方单元离散,选定一个离散单元,上裂缝面的高度Z1,下裂缝面的高度Z2,并通过矩阵Zt可得到上裂缝面与下裂缝面的总压缩量ΔZ,利用公式(1)计算该离散单元中上裂缝面的压缩量ΔZ1
上式中:ΔZ1—选定离散单元中,上裂缝面的压缩量;
Z1—选定离散单元中,上裂缝面的高度;
Z2—选定离散单元中,下裂缝面的高度;
ΔZ—选定离散单元中,上裂缝面与下裂缝面的总压缩量;
ν—裂缝岩体的泊松比;
(D)利用公式(2)计算选定离散单元中,上裂缝面所受的压力ΔFz
上式中:ΔFz—选定离散单元中,上裂缝面所受的压力;
E—裂缝岩体的杨氏模量;
X—离散单元边长;
(E)判断选定离散单元所受的应力是否达到抗压强度,并利用公式(3)计算选定离散单元在竖轴方向所受的应力值:
上式中:Δσ—选定离散单元在竖轴方向所受的应力值;
σm—裂缝岩体的抗压强度;
Mc—裂缝岩体的应力突变系数;
(F)利用公式(4)计算上裂缝面所受的应力值:
上式中:σ—上裂缝面所受的应力值;
m—对裂缝面进行立方单元离散后,横轴方向共有m排离散单元;
n—对裂缝面进行立方单元离散后,纵轴方向共有n列离散单元;
Δσi,j—横轴方向第i排,纵轴方向第j列的离散单元所受的应力值;
(G)给定一个位移量步长T,将步聚(B)中的给定位移量增加T,继续计算上裂缝面所受的应力值;
(H)重复步骤(A)到骤(G),直到获得一定数量的(σ,Z)数据点,利用(σ,Z)数据点绘制σ-Z图版,即可得到Z=f(σ)曲线,在σ-Z图版中,给定任意应力值σ,利用Z=f(σ)曲线得到相应的裂缝变形量Z。
附图说明
图1为裂缝空间直角坐标系的任意一个横-竖轴剖面示意图。
图2为选定离散单元受力分析示意图。
具体实施方式
上述步聚中,自支撑裂缝的宽度一般是毫米级,为了尽可能获取更多的数据点,本发明建议初始位移量取值0.1mm,位移量步长T取值0.1mm。
如图1所示,所述的步聚(A)中,对扫描裂缝面三维数据进行坐标变换处理方法为:将下裂缝面原始数中所有点的高度值减去下裂缝面的最低点高度值,即:
Zd=(zdij)=[z0ij-min(z0ij)],(i=1,2,3,...,h;j=1,2,3,...,k) (5)
上式中:Zd—下裂缝面高度矩阵;
zdij—下裂缝面高度矩阵中,横轴方向第i排,纵轴方向第j列的点的高度值;
z0ij—原始扫描数据度矩阵中,横轴方向第i排,纵轴方向第j列的点的高度值;
h—对裂缝面进行扫描后,横轴方向共有h列个扫描数点;
k—对裂缝面进行扫描后,纵轴方向共有k列个扫描数点;
min(z0ij)—原始扫描数据高度矩阵中最低点的高度值。
同样,将上裂缝面原始数中所有点的高度值减去上裂缝面的最低点高度值,再将处理后上裂缝面数据点经过坐标变换按图1所示放入下列缝面的坐标系中,使两个裂缝表面刚好接触。在图1所示的坐标系中,下裂缝面表面每个点的竖轴数据即组成下裂缝面高度矩阵Zd,上裂缝面表面每个点的竖轴数据即组成上裂缝面高度矩阵Zu
所述的步聚(B)中,下裂缝面不变,对上裂缝面施加向下位移量Z0后,上裂缝面高度矩阵变为Z′u
Z′u=(zuij)=(zuij-Z0),(i=1,2,3,...,h;j=1,2,3,...,k) (6)
上式中:zuij—Z′u矩阵中,横轴方向第i排,纵轴方向第j列的点的高度值;
zuij—Zu矩阵中,横轴方向第i排,纵轴方向第j列的点的高度值;
计算获得裂缝形态变形矩阵Zc
Zc=Z′u-Zd (7)
在矩阵Zc中,当元素zcij(Zc矩阵中,横轴方向第i排,纵轴方向第j列的点的高度值)大于零时,表示该点在位移量为Z0时,两个裂缝面没有发生接触;当zcij小于或等于零时,表示该点在位移量为Z0时两个裂缝面发生了接触变形,且压缩量为|zcij|。
定义上裂缝面与下裂缝面的总压缩量矩阵为Zt,矩阵中的元素为ztij
所述步骤(C)中,公式(1)的推导过程如下:
如图2所示,在选定离散单元中,已知:上裂缝面的高度Z1,下裂缝面的高度Z2,并通过矩阵Zt可得到上裂缝面与下裂缝面的总压缩量ΔZ,离散单元截面为正方形,边长为X,裂缝岩体杨氏模量为E,泊松比为υ,抗压强度为σm
对上裂缝面离散单元进行受力分析,假设为纯弹性应变,其竖轴方向上所受的压力为ΔFz,应力为Δσ,压缩量为ΔZ1,应变为εz1,根据胡克定律有:
假设上裂缝面离散单元横向变形为ΔX1,则变形后的离散单元在竖轴方向受力面积为ΔA,则有:
将公式(10)代入公式(9)中,得到上裂缝面离散单元的受力变形方程:
同理,假设下裂缝面离散单元横向变形为ΔX2,可推出下裂缝面离散单元的受力变形方程为:
设离散单元上裂缝面在横轴方向的应变为εx1,根据泊松比定义得:
由于上、下粗糙面为同一性质材料,因此有:
离散单元上裂缝面与下裂缝面的总压缩量为ΔZ:
ΔZ1+ΔZ2=ΔZ (15)
由公式(11)、(12)、(14)、(15)可建立如下计算方程组:
上述方程组含五个方程,可求解得到五个未知数(ΔZ1、ΔZ2、ΔX1、ΔX2、ΔFz)。
由公式(14)可得到ΔX1与ΔZ1关系以及ΔX2与ΔZ2关系
将公式(17)代入公式(11)中
上式可整理为:
同理可得:
由式(20)、式(21)可知,求解出ΔZ1或ΔZ2即可计算获得微元受力ΔFz值。
因此,联立公式(20)、(21)、(15)可得ΔZ1计算表达式:
上式可整理出公式(1)如下:
上式可使用牛顿迭代法进行数值求解。迭代过程中由物理对象客观条件即计算值为正且变形量不超过计算边界,设定迭代起始值及迭代精度。本发明推荐迭代起始值为1,迭代精度10-8
所述的步骤(D)中,公式(2)已在公式(1)的推导过程中一并推导出来。
公式(1)和公式(2)的推导过程假设了离散单位为纯弹性应变,实际上,随着岩体所受应力的增加,当岩体达到抗压强度后,岩样受到瞬间破坏,应力不再遵循纯弹性应变规律,故需要在步聚(E)中判断选定离散单元所受的应力是否达到抗压强度。
所述的步骤(E)中,通过公式(1)和公式(2)可计算获得ΔFz、ΔX1,则选定离散单元在竖轴方向上所受的应力值Δσ为:
将公式(17)代入公式(23)中得:
故当Δσ<σm时,岩体发生线弹性变形,应力值为当σ0≥σm时,页岩发生应力损伤破坏,应力值为σmMc。此处,Mc为岩体的应力突变系数,该系数定义为:岩体受力超过岩体抗压强度σm后,岩体发生瞬间破裂失效,并保持某一残余应力值,失效后的残余应力值与抗压强度的比值为应力突变系数Mc
本发明人在实验室采用大量页岩样本进行应力—位移测试,得到的应力突变系数分布在0.4-0.6范围内。因此本发明推荐页岩应力突变系数Mc取值0.5。

Claims (6)

1.利用实验手段计算应力作用下粗糙错位裂缝变形量的方法,依次包括以下步骤:
(A)将岩样劈裂分为两个具有粗糙表面的岩板,将两个岩板的粗糙表面错位放置形成错位裂缝,对扫描获取的裂缝面三维数据进行坐标变换处理,获取上裂缝面高度矩阵Zu和下裂缝面高度矩阵Zd
(B)对上裂缝面施加向下的给定初始位移量Z0,获得裂缝形态变形矩阵Zc,并得到上裂缝面与下裂缝面的总压缩量矩阵Zt
(C)在竖轴方向上对裂缝面进行立方单元离散,选定一个离散单元,上裂缝面的高度Z1,下裂缝面的高度Z2,并通过矩阵Zt得到上裂缝面与下裂缝面的总压缩量ΔZ,利用下式计算该离散单元中上裂缝面的压缩量ΔZ1
上式中:ν—裂缝岩体的泊松比;
(D)利用下式计算选定离散单元中,上裂缝面所受的压力ΔFz
上式中:E—裂缝岩体的杨氏模量;
X—离散单元边长;
(E)判断选定离散单元所受的应力是否达到抗压强度,利用下式计算选定离散单元在竖轴方向所受的应力值Δσ:
上式中:σm—裂缝岩体的抗压强度;
Mc—裂缝岩体的应力突变系数;
(F)利用下式计算上裂缝面所受的应力值σ:
上式中:m—对裂缝面进行立方单元离散后,横轴方向共有m排离散单元;
n—对裂缝面进行立方单元离散后,纵轴方向共有n列离散单元;
Δσi,j—横轴方向第i排,纵轴方向第j列的离散单元所受的应力值;
(G)给定一个位移量步长T,将步聚(B)中的给定位移量增加T,继续计算上裂缝面所受的应力值;
(H)重复步骤(A)到骤(G),直到获得一定数量的(σ,Z)数据点,得到Z=f(σ)曲线后,给定任意应力值σ,利用Z=f(σ)曲线得到相应的裂缝变形量Z。
2.如权利要求1所述的利用实验手段计算应力作用下粗糙错位裂缝变形量的方法,其特征在于,所述步聚(A)包括:
将下裂缝面原始数中所有点的高度值减去下裂缝面的最低点高度值,得到下裂缝面高度矩阵:
Zd=(zdij)=[z0ij-min(z0ij)],(i=1,2,3,...,h;j=1,2,3,...,k)
上式中:Zd—下裂缝面高度矩阵;
zdij—下裂缝面高度矩阵中,横轴方向第i排,纵轴方向第j列的点的高度值;
z0ij—原始扫描数据度矩阵中,横轴方向第i排,纵轴方向第j列的点的高度值;
h—对裂缝面进行扫描后,横轴方向共有h列个扫描数点;
k—对裂缝面进行扫描后,纵轴方向共有k列个扫描数点;
min(z0ij)—原始扫描数据高度矩阵中最低点的高度值;
同样得到上裂缝面高度矩阵Zu
3.如权利要求1所述的利用实验手段计算应力作用下粗糙错位裂缝变形量的方法,其特征在于,所述步聚(B)包括:下裂缝面不变,对上裂缝面施加向下位移量Z0后,上裂缝面高度矩阵变为Z′u
Z′u=(z′uij)=(zuij-Z0),(i=1,2,3,...,h;j=1,2,3,...,k)
上式中:z′uij—Z′u矩阵中,横轴方向第i排,纵轴方向第j列的点的高度值;
zuij—Zu矩阵中,横轴方向第i排,纵轴方向第j列的点的高度值;
计算获得裂缝形态变形矩阵Zc
Zc=Z′u-Zd
从而得到上裂缝面与下裂缝面的总压缩量矩阵Zt
4.如权利要求1所述的利用实验手段计算应力作用下粗糙错位裂缝变形量的方法,其特征在于,所述步骤(B)中初始位移量Z0为0.1mm。
5.如权利要求1所述的利用实验手段计算应力作用下粗糙错位裂缝变形量的方法,其特征在于,所述步骤(E)中Mc为岩体的应力突变系数,分布在0.4-0.6范围内。
6.如权利要求1所述的利用实验手段计算应力作用下粗糙错位裂缝变形量的方法,其特征在于,所述步骤(G)中位移量步长T为0.1mm。
CN201810183399.XA 2018-03-06 2018-03-06 利用实验手段计算应力作用下粗糙错位裂缝变形量的方法 Active CN108489809B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810183399.XA CN108489809B (zh) 2018-03-06 2018-03-06 利用实验手段计算应力作用下粗糙错位裂缝变形量的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810183399.XA CN108489809B (zh) 2018-03-06 2018-03-06 利用实验手段计算应力作用下粗糙错位裂缝变形量的方法

Publications (2)

Publication Number Publication Date
CN108489809A true CN108489809A (zh) 2018-09-04
CN108489809B CN108489809B (zh) 2020-06-02

Family

ID=63341636

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810183399.XA Active CN108489809B (zh) 2018-03-06 2018-03-06 利用实验手段计算应力作用下粗糙错位裂缝变形量的方法

Country Status (1)

Country Link
CN (1) CN108489809B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109812251A (zh) * 2019-02-02 2019-05-28 中国石油大学(北京) 一种沿天然裂缝劈裂的岩心劈裂装置及其劈裂方法
RU2746748C1 (ru) * 2019-07-15 2021-04-20 Китайский Университет Горного Дела И Технологии Метод дискретных элементов для моделирования развития разлома в породе, окружающей штрек

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102339325A (zh) * 2010-07-16 2012-02-01 中国石油化工股份有限公司 一种分析离散裂缝性油藏流体流动的方法
CN103279991A (zh) * 2013-04-16 2013-09-04 西南石油大学 一种利用离散裂缝端点变形数模提高油藏开发效果的方法
EP2639604A2 (en) * 2012-03-14 2013-09-18 Service Pétroliers Schlumberger Method and system for presenting stress domain
CN104500050A (zh) * 2014-10-31 2015-04-08 中国石油大学(华东) 一种裂缝性储层渗透率张量及各向异性定量预测方法
US20150205006A1 (en) * 2010-03-25 2015-07-23 Schlumberger Technology Corporation Downhole modeling using inverted pressure and regional stress
CN105716955A (zh) * 2016-01-20 2016-06-29 中国石油大学(北京) 岩石压力敏感裂缝的模拟方法与模型系统及应用
CN105718745A (zh) * 2016-01-26 2016-06-29 西南石油大学 一种酸压裂缝初始导流能力计算方法
CN106019405A (zh) * 2016-05-13 2016-10-12 赵向原 储层裂缝建模方法及系统
CN107545113A (zh) * 2017-09-08 2018-01-05 西南石油大学 非常规油气藏水力压裂复杂缝网形成过程模拟方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150205006A1 (en) * 2010-03-25 2015-07-23 Schlumberger Technology Corporation Downhole modeling using inverted pressure and regional stress
CN102339325A (zh) * 2010-07-16 2012-02-01 中国石油化工股份有限公司 一种分析离散裂缝性油藏流体流动的方法
EP2639604A2 (en) * 2012-03-14 2013-09-18 Service Pétroliers Schlumberger Method and system for presenting stress domain
CN103279991A (zh) * 2013-04-16 2013-09-04 西南石油大学 一种利用离散裂缝端点变形数模提高油藏开发效果的方法
CN104500050A (zh) * 2014-10-31 2015-04-08 中国石油大学(华东) 一种裂缝性储层渗透率张量及各向异性定量预测方法
CN105716955A (zh) * 2016-01-20 2016-06-29 中国石油大学(北京) 岩石压力敏感裂缝的模拟方法与模型系统及应用
CN105718745A (zh) * 2016-01-26 2016-06-29 西南石油大学 一种酸压裂缝初始导流能力计算方法
CN106019405A (zh) * 2016-05-13 2016-10-12 赵向原 储层裂缝建模方法及系统
CN107545113A (zh) * 2017-09-08 2018-01-05 西南石油大学 非常规油气藏水力压裂复杂缝网形成过程模拟方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CONG LU ET AL.: "A new model for the cracking process and tensile ductility of Strain Hardening Cementitious Composites (SHCC)", 《CEMENT AND CONCRETE RESEARCH》 *
袁驷: "从矩阵位移法看有限元应力精度的损失与恢复", 《力学与实践》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109812251A (zh) * 2019-02-02 2019-05-28 中国石油大学(北京) 一种沿天然裂缝劈裂的岩心劈裂装置及其劈裂方法
CN109812251B (zh) * 2019-02-02 2020-04-10 中国石油大学(北京) 一种沿天然裂缝劈裂的岩心劈裂装置及其劈裂方法
RU2746748C1 (ru) * 2019-07-15 2021-04-20 Китайский Университет Горного Дела И Технологии Метод дискретных элементов для моделирования развития разлома в породе, окружающей штрек

Also Published As

Publication number Publication date
CN108489809B (zh) 2020-06-02

Similar Documents

Publication Publication Date Title
CN110261573B (zh) 一种高位岩质滑坡稳定性动态评价方法
CN106874544B (zh) 一种页岩储层改造体积的地质表征方法
CN110147561B (zh) 一种含天然裂缝致密油气储层体积压裂缝网预测方法
CN108397184B (zh) 一种自支撑裂缝导流能力的数值计算方法
CN108287945B (zh) 大型基础下地基土的变形计算方法与应用技术
Kovalevs’Ka et al. Research of stress-strain state of cracked coal-containing massif near-the-working area using finite elements technique
CN102661894B (zh) 裂隙岩体试件与裂隙岩体水岩耦合试验方法
CN104480962A (zh) 一种有限填土挡墙的土压力分布计算方法
CN105257278B (zh) 一种支撑剂嵌入深度的获取方法
CN108489809A (zh) 利用实验手段计算应力作用下粗糙错位裂缝变形量的方法
CN104091069A (zh) 确定非均质储层各层位和位置驱油效率和波及系数的方法
CN107191173A (zh) 一种碳酸盐岩的酸压效果的评价方法
CN112033812B (zh) 一种水力剪切压裂剪胀导流能力的测试方法及系统
CN106203699B (zh) 一种粗糙裂缝初始导流能力的预测方法
Manna et al. Effect of surcharge load on stability of slopes-testing and analysis
Zhou et al. Permeability evolution of fractured rock subjected to cyclic axial load conditions
CN113033049B (zh) 一种地层尺度下的粗糙裂缝内支撑剂输送数值模拟方法
CN106442173B (zh) 一种闭合应力作用下剪切裂缝开度的预测方法
CN107578471A (zh) 一种自支撑裂缝初始形态构建方法
CN105929117A (zh) 一种粗糙裂缝流道复杂程度的评价方法
CN105317430A (zh) 测定各向异性地层水平井井壁围岩周向应力的方法
CN111305806B (zh) 自支撑裂缝导流能力的分析方法及装置
Mallick et al. Multivariate adaptive regression spline approach to the assessment of surface mean pressure coefficient on surfaces of C-shaped building
Huang et al. Back-analysis for the elasto-viscoplastic parameters of landslides based on the observed displacements: a case study of the wujiang landslide, China
CN111379548A (zh) 井眼轨迹的确定方法、装置、设备及存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant