CN108479735B - 蘑菇栽培基质衍生的磁性多孔碳复合材料的制备及应用 - Google Patents

蘑菇栽培基质衍生的磁性多孔碳复合材料的制备及应用 Download PDF

Info

Publication number
CN108479735B
CN108479735B CN201810182982.9A CN201810182982A CN108479735B CN 108479735 B CN108479735 B CN 108479735B CN 201810182982 A CN201810182982 A CN 201810182982A CN 108479735 B CN108479735 B CN 108479735B
Authority
CN
China
Prior art keywords
mushroom culture
porous carbon
composite material
culture substrate
carbon composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810182982.9A
Other languages
English (en)
Other versions
CN108479735A (zh
Inventor
傅强
余佩
刘瑞林
王燕
葛燕辉
王铭婵
常春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201810182982.9A priority Critical patent/CN108479735B/zh
Publication of CN108479735A publication Critical patent/CN108479735A/zh
Application granted granted Critical
Publication of CN108479735B publication Critical patent/CN108479735B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4875Sorbents characterised by the starting material used for their preparation the starting material being a waste, residue or of undefined composition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

蘑菇栽培基质衍生的磁性多孔碳复合材料的制备及应用,制备是先进行蘑菇栽培基质预处理,再以F127为结构导向剂,三氯化铁为磁源,经一步螯合辅助自组装和溶剂挥发诱导自组装后,置于氮气中加热碳化得到的蘑菇栽培基质衍生的磁性多孔碳复合材料;该材料对肌酸酐的吸附性性能良好,具有较好的应用前景;本发明制备过程简单,所用生产成本较低,能实现大尺寸制备;所采用的碳源是来源丰富的蘑菇栽培基质,来源广泛、成本低廉,实现资源利用最大化,绿色、环境友好。

Description

蘑菇栽培基质衍生的磁性多孔碳复合材料的制备及应用
技术领域
本发明涉及肾脏解毒技术领域,具体涉及蘑菇栽培基质衍生的磁性多孔碳复合材料的制备及应用。
背景技术
肾脏在人体新陈代谢中起着极为重要的作用,肾脏解毒对于肾衰竭的治疗是至关重要的,血液灌流(Hemoperfusion,HP)技术是继血液透析之后发展起来的血液净化技术,利用血液灌流清除血液中的有害物质是治疗肾功能衰竭的重要方法。血液灌流的主要机制是吸附作用,故也称为血液吸附。目前已经报道的用于血液灌流去除体内毒素的吸附剂有多种,如多糖、树脂、活性炭等。活性炭相对于其他的吸附剂具有吸附容量大及对疏水性毒素吸附能力强、速率快等优点,能有效的提高治疗的效果并降低治疗时间,但活性炭由于其疏水表面的存在可能会在血液灌流过程中造成血小板粘附、红细胞溶血等不良反应,其最终的分离也存在问题。多孔碳材料由于具有高的比表面积,孔隙结构发达,化学稳定性良好,导电导热和生物相容性良好等特点,其在作为吸附剂、催化剂载体、超级电容器、药物载体和修饰电极等方面具有重要的应用价值。作为具有高孔隙度以及大表面积的碳基材料,多孔碳材料是最有前景的一类吸附剂。目前用于制备多孔碳材料的方法主要包括模板法、活化法和碳化法等,在其制备过程中仍然存在的问题是成本较高,制备过程中的前驱体的选择多集中于化学试剂,诸如酚醛树脂、呋喃甲醛、呋喃甲醇/芳香化合物等,因此如何低成本、绿色、可控的制备具有优良性能的多孔碳材料是主要研究问题。
生物质是指利用大气、水、土地等通过光合作用而产生作为一种来源广泛、可循环利用、廉价易得的碳源。为了获取更为廉价的碳材料制备成本,采用低成本的生物质或生物质废弃物取代传统的化学试剂用于制备多功能碳材料已经成为研究热点。
发明内容
为了克服上述现有技术的缺点,本发明的目的在于提供了蘑菇栽培基质衍生的磁性多孔碳复合材料的制备及应用,制备得到的碳材料对肌酸酐的吸附性性能良好,具有较好的应用前景;制备碳材料的过程简单,所用生产成本较低,能实现大尺寸制备;所采用的碳源是来源丰富的生物质废弃物,来源广泛、成本低廉,实现资源利用最大化,绿色、环境友好。
为了达到上述目的,本发明采取的技术方案为:
蘑菇栽培基质衍生的磁性多孔碳复合材料的制备方法,包括以下步骤:
1)生物质碳源的预处理:将蘑菇栽培基质粉碎,用蒸馏水洗涤3~4次,过滤得固体物质,60℃干燥后过6号筛,即得预处理的蘑菇栽培基质;
2)磁性多孔碳材料的制备:在室温条件下,将10g的经预处理的蘑菇栽培基质与F127按照质量比1-20:1置于200mL的80%乙醇中混合搅拌24h,挥干溶剂;将挥干溶剂的固体粉末浸在100mL的预先加入有10.82gFeCl3·6H2O的乙二醇溶液中,1.5h后加入6g醋酸钠和2.5g聚乙二醇2000,搅拌3h后转入内衬为聚四氟乙烯的反应釜中,将反应釜置于真空干燥箱中抽真空,180℃恒温反应6h;自然冷却至室温后,得到混合溶液;将混合溶液加入溶解1.545g硼酸和9.015g尿素的80%乙醇溶液后,于65℃搅拌5h后,得到的固体物质,置于管式炉中在氮气气流下以5℃/min的加热速度升至600℃,保持600℃加热4h后,自然冷却后关闭惰性气体,取出黑色固体物质;
3)磁性碳材料的后处理:将黑色固体物质采用乙醇和蒸馏水洗涤3-4次,磁性分离后60℃干燥即得蘑菇栽培基质衍生的磁性多孔碳复合材料。
所述的蘑菇栽培基质与F127的质量比为1:1。
蘑菇栽培基质衍生的磁性多孔碳复合材料的应用,包括以下步骤:
称取10.0mg的蘑菇栽培基质衍生的磁性多孔碳复合材料,置于锥形瓶中,加入10mL浓度为25-200μg/mL-1的肌酸酐水溶液,超声分散后,37℃下以150rpm在恒温振荡器中匀速振荡避光平衡时间1-300min后,取下磁性分离,取上清液采用紫外分光光度法进行分析,根据平衡前后肌酸酐水溶液的浓度差计算碳材料对肌酸酐的吸附量。
所制备的蘑菇栽培基质衍生的磁性多孔碳复合材料对肌酸酐具有良好的吸附,且不会产生溶血现象,对肌酸酐的最大吸附量达29.155mg/g。
本发明的有益效果是:
本发明制备得到的蘑菇栽培基质衍生的磁性多孔碳复合材料对肌酸酐具有良好的吸附,且不会产生溶血现象;并且制备原料来源于蘑菇栽培基质,它是一种来源广泛、价格低廉的可持续利用的资源,制备方法成本较低,碳源来源广泛,无需特殊试剂,实现资源利用最大化,绿色环境友好,所得的碳材料具有磁性,易于实现后期分离。
附图说明
图1中A、B和C分别是对比例2制备的蘑菇栽培基质衍生的磁性多孔碳复合材料的扫描电子显微镜(SEM)照片、对比例1制备的蘑菇栽培基质衍生的磁性多孔碳复合材料的扫描电子显微镜(SEM)照片和实施例1中所制备的蘑菇栽培基质衍生的磁性多孔碳复合材料的扫描电子显微镜(SEM)照片。
图2是实施例1-6、对比例1-2得到的多孔碳材料吸附性能比较图。
图3是实施例1-6、对比例1-2制备的多孔碳材料对肌酸酐的吸附量比较图。
图4是本发明实施例1中所制备的蘑菇栽培基质衍生的磁性多孔碳复合材料M1的磁滞曲线。
图5是本发明实施例1中所制备的蘑菇栽培基质衍生的磁性多孔碳复合材料M1的氮气吸附脱附等温线和对应的孔径分布图。
图6是本发明实施例1中所制备的蘑菇栽培基质衍生的磁性多孔碳复合材料M1吸附肌酸酐的等温吸附动力学曲线。
具体实施方式
下面结合实施例对本发明作详细描述。
实施例1,蘑菇栽培基质衍生的磁性多孔碳复合材料的制备方法,包括以下步骤:
1)生物质碳源的预处理:将蘑菇栽培基质粉碎,用蒸馏水洗涤3~4次,过滤得固体物质,60℃干燥后过6号筛,即得预处理的蘑菇栽培基质;
2)磁性多孔碳材料的制备:在室温条件下,将10g的经预处理的蘑菇栽培基质与F127按照质量比1:1置于200mL的80%乙醇中混合搅拌24h,挥干溶剂;将挥干溶剂的固体粉末浸在100mL的预先加入有10.82gFeCl3·6H2O的乙二醇溶液中,1.5h后加入6g醋酸钠和2.5g聚乙二醇2000,搅拌3h后转入内衬为聚四氟乙烯的反应釜中,将反应釜置于真空干燥箱中抽真空,180℃恒温反应6h;自然冷却至室温后,得到混合溶液;将混合溶液加入溶解1.545g硼酸和9.015g尿素的80%乙醇溶液后,于65℃搅拌5h后,得到的固体物质,置于管式炉中在氮气气流下以5℃/min的加热速度升至600℃,保持600℃加热4h后,自然冷却后关闭惰性气体,取出黑色固体物质;
3)磁性碳材料的后处理:将黑色固体物质采用乙醇和蒸馏水洗涤3-4次,磁性分离后60℃干燥即得蘑菇栽培基质衍生的磁性多孔碳复合材料M1
本实施例制备的蘑菇栽培基质衍生的磁性多孔碳复合材料M1的扫描电子显微镜(SEM)照片如图1C所示。
实施例2:蘑菇栽培基质与F127的质量比为5:1,其它参数及条件和实施例1相同,得蘑菇栽培基质衍生的磁性多孔碳复合材料M2
实施例3:蘑菇栽培基质与F127的质量比为10:1,其它参数及条件和实施例1相同,得蘑菇栽培基质衍生的磁性多孔碳复合材料M3
实施例4:蘑菇栽培基质与F127的质量比为15:1,其它参数及条件和实施例1相同,得蘑菇栽培基质衍生的磁性多孔碳复合材料M4
实施例5:蘑菇栽培基质与F127的质量比为20:1,其它参数及条件和实施例1相同,得蘑菇栽培基质衍生的磁性多孔碳复合材料M5
对比例1:将蘑菇栽培基质粉碎,用蒸馏水洗涤3~4次,过滤得固体物质,60℃干燥后过6号筛即得预处理的蘑菇栽培基质;在室温条件下,将10g的经预处理的蘑菇栽培基质与F127按照1:1的质量比置于200mL的80%乙醇中混合搅拌24h,挥干溶剂;将挥干溶剂的固体粉末浸在100mL的预先加入有10.82gFeCl3·6H2O的乙二醇溶液中,1.5h后加入6g醋酸钠和2.5g聚乙二醇2000,搅拌3h后转入内衬为聚四氟乙烯的反应釜中,将反应釜置于真空干燥箱中抽真空,180℃恒温反应6h;自然冷却至室温后,将得到的固体物质置于管式炉中在氮气气流下以5℃/min的加热速度升至600℃,保持600℃加热4h后,自然冷却后关闭惰性气体,碳化得到的黑色固体;采用无水乙醇和蒸馏水洗涤3-4次,磁性分离后60℃干燥即得磁性多孔碳材料D1
对比例2:将蘑菇栽培基质粉碎,用蒸馏水洗涤3~4次,过滤得固体物质,60℃干燥后过6号筛即得预处理的蘑菇栽培基质;将10g预处理的蘑菇栽培基质置于管式炉中以5℃/min的加热速度于氮气中升至600℃,保持600℃加热4h后冷却至室温,碳化得到的固体物质,用无水乙醇和蒸馏水洗涤3-4次后,再用蒸馏水洗涤3-4次,60℃干燥得多孔碳材料K。
参照图1,图1中A、B和C分别是对比例2制备的蘑菇栽培基质衍生的磁性多孔碳复合材料的扫描电子显微镜(SEM)照片、对比例1制备的蘑菇栽培基质衍生的磁性多孔碳复合材料的扫描电子显微镜(SEM)照片和实施例1中所制备的蘑菇栽培基质衍生的磁性多孔碳复合材料的扫描电子显微镜(SEM)照片。
通过SEM结果可以看出通过实施例1、对比例1和对比例2分别制备得到的材料表面形貌呈现一定的差异,对比例2中直接碳化预处理的蘑菇栽培基质得到的多孔碳材料K呈棒状,不均一分布着大孔,对比例1中未经功能化得到的磁性多孔碳材料D1呈不规则形状,表面有颗粒状沉积物,实施例1中得到的磁性多孔碳复合材料M1表面粗糙,表面不均一分布介孔。
吸附肌酸酐实验:
将制备得到的复合材料M1、M2、M3、M4、M5、D1和K,精密称取10.0mg于10mL锥形瓶中,分别加入10mL的25μg/mL肌酸酐溶液,超声分散后,37℃下以150rpm在恒温振荡器中匀速振荡5h,磁性分离后,吸取溶液经0.45μm微孔滤膜滤过后采用紫外分光光度法对结合前后溶液的吸光度进行测定,从而计算出制备的不同碳材料对肌酸酐的吸附量Q,结果如图2和图3所示。
通过实验结果可以看出,磁性多孔碳材料D1和磁性多孔碳复合材料M相对于直接碳化得到的无磁性多孔碳材料K对肌酸酐的吸附量明显增加,磁性多孔碳复合材料M1相对于磁性多孔碳材料D1吸附量有所改善,本发明实施例中加入的F127的比例会对制备得到的多孔碳材料的结构性能产生影响,因而会对肌酸酐的吸附性能产生影响,M1的制备作为比较优选的实施例,后续应用也将采用M1作为吸附剂。
参照图4,实施例1中所制备的磁性多孔碳复合材料M1的磁滞曲线表明,所制备的材料的磁化强度为22.45emu/g,说明在外加磁场下该材料能够被快速收集,满足吸附分离的需要。参照图5,实施例1中所制备的磁性多孔碳复合材料M1的氮气吸附解吸附等温线和对应的孔径分布图表明,该材料的氮气吸附解吸附等温线在低压和中压上升缓慢,在高压和中压区出现滞回曲线,表明其内部介孔和大孔结构的同时存在,与孔径分布图相对应。
实施例1蘑菇栽培基质衍生的磁性多孔碳复合材料M1吸附肌酸酐的等温吸附动力学曲线:准确移取10mL初始浓度分别为25μg/mL-1、50μg/mL-1、100μg/mL-1、150μg/mL-1和200μg/mL-1肌酸酐水溶液于25mL的具塞锥形瓶中,分别称取10mg磁性多孔碳复合材料M1粉末加入至锥形瓶中,超声分散后置于恒温振荡器于150rpm,37℃条件下,分别于1、3、5、10、15、20、25、30、45、60、90、120、150、180、240和300min取样,磁性分离后,吸取上清液经0.45μm微孔滤膜滤过采用紫外分光光度法于233nm处测定溶液的吸光度,通过绘制标准曲线计算溶液中肌酸酐的浓度,计算出磁性碳材料对肌酸酐的结合量Q,得到的磁性多孔碳复合材料M1吸附肌酸酐的等温吸附动力学曲线如图6所示,磁性多孔碳复合材料M1吸附肌酸酐的吸附等温线结果表明,制备的磁性多孔碳复合材料M1作为吸附剂对水溶液中的肌酸酐有较好的吸附效果,37℃下,采用Langmuir模型计算得到的该材料对肌酸酐的最大吸附量为29.155mg/g。
实施例1蘑菇栽培基质衍生的磁性多孔碳复合材料M1在加标血浆样品中对肌酸酐的吸附:将实施例1中制备得到的磁性多孔碳复合材料吸附剂M1用于加标血浆样品中肌酸酐的吸附,结果如表1所示,由表1可知相对于在水溶液体系中,在血浆样品中的吸附量相对减少,但是对肌酸酐仍然会产生吸附,具有作为毒素肌酸酐的吸附剂的应用价值。
表1 磁性多孔碳复合材料M1在不同体系中对肌酸酐的吸附(n=3)
Figure BDA0001589438140000091
实施例1蘑菇栽培基质衍生的磁性多孔碳复合材料M1、对比例1磁性多孔碳材料D1、对比例2无磁性多孔碳材料K溶血性能的评价:根据国际标准ISO 10993-4:2017NIH法、《GB/T16886.4-2003医疗器械生物学评价第4部分与血液相互作用试验选择》、《GB/T16175-2008医用有机硅材料生物学评价试验方法》进行溶血实验。
兔血的制备:取新鲜大耳兔血4mL置于1%肝素钠溶液抗凝的EP管中,加入4.5mL生理盐水中混匀,得到稀释的兔血,放入37℃恒温培养箱中预热;
称取磁性多孔碳复合材料M1粉末20mg置于20mL离心管中,充分混悬后,分别移取0.125mL、0.25mL、0.5mL、1mL和1.5mL至10mL的EP管中,加生理盐水至5mL后得到浓度为25、50、100、200和300μg/mL的磁性多孔碳复合材料M1悬浮液。另外分别称取磁性多孔碳材料D1和无磁性多孔碳材料K粉末10mg置于10mL离心管中,充分混悬后,分别移取1.5mL至10mL的EP管中,加生理盐水至5mL后得到浓度为300μg/mL的磁性多孔碳材料D1悬浮液和无磁性多孔碳材料K悬浮液。同时制备阴性对照和阳性对照,分别加入5mL生理盐水和0.1%碳酸钠。制备一管空白管,加入5mL生理盐水。
取上述不同浓度的多孔碳材料悬浮液的试管置于37℃的恒温水浴中孵育30min后加入制备得到的稀释的兔血0.1mL,空白管除外,置于37℃恒温培养箱孵育1h;孵育结束后移入离心管中1000r/min离心5min。用空白管液体调零,545nm测定各管上清液的吸光度。溶血率由下公式计算而得。
Figure BDA0001589438140000111
As:样品吸光度测量值;Ap:3管阳性对照吸光度测量平均值;An:3管阴性对照吸光度测量平均值。
表2 不同材料的溶血实验结果(n=3)
Figure BDA0001589438140000112
溶血实验结果如表2所示,由表2可知,直接接触法得到的实施例1、对比例1和对比例2中的材料M1、D1和K的溶血率均小于5%,根据溶血等级判定为不溶血,其中实施例1中得到的不同浓度的磁性多孔碳复合材料吸附剂M1的溶血率均小于0,对比例1中的磁性多孔碳材料吸附剂D1溶血率为1.00±0.40,对比例2中的无磁性多孔碳材料K溶血率为-0.16±0.06,由此可见,通过复合得到的材料吸附剂M1的溶血率相对于磁性多孔碳材料D1有明显改善,本发明实施例1中得到的磁性多孔碳复合材料吸附剂M1不会产生溶血,安全可靠。

Claims (4)

1.蘑菇栽培基质衍生的磁性多孔碳复合材料的制备方法,其特征在于,包括以下步骤:
1)生物质碳源的预处理:将蘑菇栽培基质粉碎,用蒸馏水洗涤3~4次,过滤得固体物质,60℃干燥后过6号筛,即得预处理的蘑菇栽培基质;
2)磁性多孔碳材料的制备:在室温条件下,将10g的经预处理的蘑菇栽培基质与F127按照质量比1-20:1置于200mL的80%乙醇中混合搅拌24h,挥干溶剂;将挥干溶剂的固体粉末浸在100mL的预先加入有10.82gFeCl3·6H2O的乙二醇溶液中,1.5h后加入6g醋酸钠和2.5g聚乙二醇2000,搅拌3h后转入内衬为聚四氟乙烯的反应釜中,将反应釜置于真空干燥箱中抽真空,180℃恒温反应6h;自然冷却至室温后,得到混合溶液;将混合溶液加入溶解1.545g硼酸和9.015g尿素的80%乙醇溶液后,于65℃搅拌5h后,得到的固体物质,置于管式炉中在氮气气流下以5℃/min的加热速度升至600℃,保持600℃加热4h后,自然冷却后关闭惰性气体,取出黑色固体物质;
3)磁性碳材料的后处理:将黑色固体物质采用乙醇和蒸馏水洗涤3-4次,磁性分离后60℃干燥即得蘑菇栽培基质衍生的磁性多孔碳复合材料。
2.根据权利要求1所述的蘑菇栽培基质衍生的磁性多孔碳复合材料的制备方法,其特征在于:所述的蘑菇栽培基质与F127的质量比为1:1。
3.根据权利要求1所述制备方法制备得到的蘑菇栽培基质衍生的磁性多孔碳复合材料的应用,其特征在于,包括以下步骤:
称取10.0mg的蘑菇栽培基质衍生的磁性多孔碳复合材料,置于锥形瓶中,加入10mL浓度为25-200μg/mL-1的肌酸酐水溶液,超声分散后,37℃下以150rpm在恒温振荡器中匀速振荡避光平衡时间1-300min后,取下磁性分离,取上清液采用紫外分光光度法进行分析,根据平衡前后肌酸酐水溶液的浓度差计算碳材料对肌酸酐的吸附量。
4.根据权利要求3所述的蘑菇栽培基质衍生的磁性多孔碳复合材料的应用,其特征在于:所制备的蘑菇栽培基质衍生的磁性多孔碳复合材料对肌酸酐具有良好的吸附,且不会产生溶血现象,对肌酸酐的最大吸附量达29.155mg/g。
CN201810182982.9A 2018-03-06 2018-03-06 蘑菇栽培基质衍生的磁性多孔碳复合材料的制备及应用 Active CN108479735B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810182982.9A CN108479735B (zh) 2018-03-06 2018-03-06 蘑菇栽培基质衍生的磁性多孔碳复合材料的制备及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810182982.9A CN108479735B (zh) 2018-03-06 2018-03-06 蘑菇栽培基质衍生的磁性多孔碳复合材料的制备及应用

Publications (2)

Publication Number Publication Date
CN108479735A CN108479735A (zh) 2018-09-04
CN108479735B true CN108479735B (zh) 2020-01-14

Family

ID=63341485

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810182982.9A Active CN108479735B (zh) 2018-03-06 2018-03-06 蘑菇栽培基质衍生的磁性多孔碳复合材料的制备及应用

Country Status (1)

Country Link
CN (1) CN108479735B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104495950A (zh) * 2014-11-07 2015-04-08 聊城大学 一种碳包覆的磁性C/Fe3O4纳米复合材料的制备方法及其应用
WO2014208917A3 (ko) * 2013-06-25 2015-04-23 동국대학교 산학협력단 홀로셀룰로오스 에어로겔 및 이를 이용한 중금속 흡착제
CN106087120A (zh) * 2016-06-07 2016-11-09 上海活性炭厂有限公司 一种高效吸附型碳粉及其制备方法
CN106215968A (zh) * 2016-07-26 2016-12-14 宁波大学 一种掺杂氮的碳包覆CuO复合材料及其制备方法
CN107017091A (zh) * 2017-04-25 2017-08-04 武汉大学 含氮多级多孔碳/石墨烯复合材料及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208917A3 (ko) * 2013-06-25 2015-04-23 동국대학교 산학협력단 홀로셀룰로오스 에어로겔 및 이를 이용한 중금속 흡착제
CN104495950A (zh) * 2014-11-07 2015-04-08 聊城大学 一种碳包覆的磁性C/Fe3O4纳米复合材料的制备方法及其应用
CN106087120A (zh) * 2016-06-07 2016-11-09 上海活性炭厂有限公司 一种高效吸附型碳粉及其制备方法
CN106215968A (zh) * 2016-07-26 2016-12-14 宁波大学 一种掺杂氮的碳包覆CuO复合材料及其制备方法
CN107017091A (zh) * 2017-04-25 2017-08-04 武汉大学 含氮多级多孔碳/石墨烯复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN108479735A (zh) 2018-09-04

Similar Documents

Publication Publication Date Title
CN108201878B (zh) 一种碳点改性金属有机骨架吸附材料的制备方法及水体污染物治理应用
CN110237820B (zh) 微波辅助磁性中空Zn/Co沸石咪唑纳米笼材料的制备方法及应用
Kong et al. Two-dimensional material-based functional aerogels for treating hazards in the environment: Synthesis, functional tailoring, applications, and sustainability analysis
CN107376837A (zh) 一种石墨烯/金属有机框架气凝胶吸附/催化材料的制备方法
CN108176368A (zh) 一种生物炭壳聚糖复合材料及其制法和应用
CN110586041B (zh) 一种基于MOFs剥离石墨相碳化氮吸附剂的全氟烷基化合物萃取与分析方法
CN103933929A (zh) 一种吸附疏水性有机物的介孔氧化硅吸附剂及其制备方法和应用
CN110918075A (zh) 一种金属有机框架磁性纳米多孔碳材料的制备和应用
CN110922604A (zh) 多级孔结构钴基金属有机骨架材料及其制备方法和应用
CN101623622B (zh) 一种吸附剂材料及其制备
CN115970656A (zh) 氨基酸共价接枝环糊精-金属有机框架材料及其应用
CN108970577A (zh) 一种Co/N共掺杂介孔碳纳米片及制备方法和应用
Peng et al. Microwave-assisted synthesis of porphyrin conjugated microporous polymers for microextraction of volatile organic acids in tobaccos
CN110292912A (zh) 一种mof衍生的簇状铈基除磷吸附剂及其制备方法
CN113930416A (zh) 一种基于氢氧化钠和四氧化三铁晶体复合改性生物炭固定化漆酶的制备方法
CN110465262A (zh) 利用氢氧化钾改性浒苔生物炭去除水中重金属镉的方法
CN111282545A (zh) 一种二维范德华异质结及其应用
CN108479735B (zh) 蘑菇栽培基质衍生的磁性多孔碳复合材料的制备及应用
CN111018037A (zh) 一种基于聚丙烯腈纳米薄膜复合物的去除水中重金属汞离子的方法
Cao et al. Constructing solubility-diffusion domain in pebax by hybrid-phase MOFs for efficient separation of carbon dioxide and methane
Han et al. A novel covalent organic framework with abundant NOO and NNO sites for detection and removal of Zn2+, Cd2+, Pb2+, Cu2+, and Hg2+
CN106006633B (zh) 一种三维宏观自支撑结构的多孔炭材料的制备方法
CN112371094A (zh) 一种多巴胺增效自清洁型分子印迹膜的制备方法及其应用
CN108793120B (zh) 憎水性双mof基多孔碳材料的制备
CN116573643A (zh) 一种污泥生物炭的混融活化式制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant