CN110237820B - 微波辅助磁性中空Zn/Co沸石咪唑纳米笼材料的制备方法及应用 - Google Patents

微波辅助磁性中空Zn/Co沸石咪唑纳米笼材料的制备方法及应用 Download PDF

Info

Publication number
CN110237820B
CN110237820B CN201910534615.5A CN201910534615A CN110237820B CN 110237820 B CN110237820 B CN 110237820B CN 201910534615 A CN201910534615 A CN 201910534615A CN 110237820 B CN110237820 B CN 110237820B
Authority
CN
China
Prior art keywords
solution
zeolite imidazole
reaction
zif
nanocage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910534615.5A
Other languages
English (en)
Other versions
CN110237820A (zh
Inventor
孟哲
王泽岚
赵孟欣
刘万毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningxia University
Original Assignee
Ningxia University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningxia University filed Critical Ningxia University
Priority to CN201910534615.5A priority Critical patent/CN110237820B/zh
Publication of CN110237820A publication Critical patent/CN110237820A/zh
Application granted granted Critical
Publication of CN110237820B publication Critical patent/CN110237820B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/345Regenerating or reactivating using a particular desorbing compound or mixture
    • B01J20/3475Regenerating or reactivating using a particular desorbing compound or mixture in the liquid phase
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

本发明的微波辅助磁性中空Zn/Co沸石咪唑纳米笼材料的制备方法,以纳米Fe3O4作为晶种,先后加入六水合硝酸钴和2‑甲基咪唑及六水合硝酸锌,基于晶种的诱导,快速自组装形成双壳Zn/Co‑ZIF晶体,生成磁性的双壳纳米晶体Fe3O4@ZIF‑67@ZIF‑8,在微波辅助下,借助甲醇吸收微波能并将能量快速传递至化学稳定性较差的内壳ZIF‑67,引起金属有机骨架ZIF‑67键的振动、裂解,使得内壳被刻蚀,制得Fe3O4@Zn/Co‑ZIF。该材料具有中空笼状形貌、比表面积大、晶型完整且多孔、化学稳定性高且具有良好的磁性方便磁性分离。该材料对抗生素喹诺酮类药物具有高效的、高通量的吸附性。并且易于与抗生素喹诺酮类药物分离,可再生重复使用,具有优异的可再生性,易于实现规模化水环境中高残留喹诺酮抗生素的高效去除。

Description

微波辅助磁性中空Zn/Co沸石咪唑纳米笼材料的制备方法及 应用
技术领域:
本发明涉及环境功能材料和水处理技术领域,具体地说,涉及一种微波辅助磁性中空Zn/Co沸石咪唑纳米笼材料的制备方法及应用。
背景技术:
喹诺酮是一类较新的合成抗菌药,由于喹诺酮类药物具有抗菌谱广、抗菌活性强、给药方便、并且具有价格低等方面的优势,使得其临床应用迅速普及,已成为当今世界上争相开发生产和应用的重点抗生素药物。由于人类医疗和畜禽养殖行业抗生素滥用,有大量残留的抗生素直接或者间接进入环境。
环境中抗生素的残留来源主要渠道有以下几方面:(1)制药废水:制药废水属于难处理的工业废水之一,其中,抗生素工业废水中含有大量抗生素;(2)医疗废水:医疗污水主要是从医院的诊疗室、化验室、病房、洗衣房、X片照相室和手术室等排放的污水,其污水来源及成分十分复杂,医疗污水中含有大量的抗生素残留;(3)生活废水:其一,进入生活污水中的抗生素主要来源于疾病预防和治疗过程中人体对抗生素的不完全代谢,这部分抗生素会经过市政污水管路进入污水处理厂。而在市政污水以及污水处理厂进出水中已经检测到大量抗生素的存在;其二,在畜禽养殖业中,兽用药物并不能被动物完全吸收,其中药物及其代谢产物被动物以尿液或粪便的形式排放到环境中,由于受污染地表水的渗透补给作用,药物及其代谢产物进入地下水系,局部残留量水平远大于100μg/L。目前用于水处理领域中去除喹诺酮类抗生素的相关研究报道,多采用的材料有高岭土,分子筛以及碳纳米管。然而相关用于去除水中诺酮类抗生素的各种吸附材料的最大吸附量非常有限且再生性差。
抗生素排放于环境中,对人体健康和生态环境造成潜在威胁,如何去除水体中难以降解的抗生素,是人类面临最严重的环境问题。常规水处理技术对其去除通常是比较困难的。因此,发展新型的先进材料,并将其用于环境水中高浓度抗生素的去除成为水处理技术领域急需解决的问题。
金属有机骨架材料(metal-organic frameworks,MOFs)是由金属离子与有机配体通过自组装过程而生成的一类新型多孔材料,具有比表面积大,孔道结构规整,孔道和表面化学性质可控等特征,在吸附、分离和催化等方面均表现出了广阔的应用前景。沸石咪唑酯骨架材料(zeolite-imidazolate framework,ZIF)是MOFs材料的一种,不仅具有上述MOFs的优点,而且具有更优良的热稳定性和化学稳定性。ZIF具有较大的内孔体积和可调控的微孔结构(“配位空间”)。到目前为止,采用微波辅助,快速、简单的操作制备具有嵌入式磁性Fe3O4的中空ZIF笼状材料的研究还未有报道,将其坚固的、可再生的笼状材料用于快速吸附去除有机污染物的研究也未有报道。
发明内容:
本发明的目的之一是提供一种微波辅助磁性中空Zn/Co沸石咪唑纳米笼材料的制备方法。
本发明的目的之二是提供一种磁性中空Zn/Co沸石咪唑纳米笼材料在高效去除水中喹诺酮的应用。
一种微波辅助磁性中空Zn/Co沸石咪唑纳米笼材料的制备方法,包括以下步骤:
(1)将纳米Fe3O4加入甲醇中超声分散,得到A悬浮液;
(2)将六水合硝酸钴溶于甲醇中,得到B溶液;
(3)将2-甲基咪唑溶于甲醇中,得到C溶液;
(4)将六水合硝酸锌溶于甲醇中,得到D溶液;
(5)将B溶液缓慢加入到A悬浮液中,超声反应;
(6)将C溶液缓慢加入到步骤(5)所得的混合溶液中,超声反应;
(7)将D溶液缓慢加入到步骤(6)所得的混合溶液中,超声反应;
(8)将步骤(7)所得的混合溶液,转移至微波消解仪中反应;
(9)将步骤(8)得到的产物在外加磁场下磁分离,并将分离得到的固体产物用甲醇洗涤、干燥,得到磁性中空Zn/Co沸石咪唑纳米笼材料。
优选的,所述Fe3O4通过以下步骤制备:按照六水氯化铁:无水醋酸钠:聚乙二醇:乙二醇=(0.5g~2.2g):(1.8g~4.2g):(0.3g~1.5g):(25mL~40mL)的量,将六水氯化铁、无水醋酸钠、聚乙二醇溶于乙二醇中,室温下磁力搅拌0.5h后转入高压反应釜,在温度150~220℃下进行水热合成反应8~16h,将得到反应产物过滤后,用乙醇洗涤2~3次,然后再用去离子水洗涤2~3次,真空干燥得到纳米Fe3O4
优选的,所述A悬浮液中Fe3O4的浓度为1.2~2.4g/L,B溶液中六水合硝酸钴甲醇的浓度为0.1~0.4mol/L,C溶液中2-甲基咪唑的浓度为0.25~0.8mol/L,D溶液中六水合硝酸锌甲醇的浓度为0.1~0.4mol/L。
优选的,所述步骤(5)中超声反应时间为2~10min,温度为20~60℃;步骤(6)中超声反应时间为2~10min,温度为20~60℃;步骤(7)中超声反应时间为15~60min,温度为20~60℃。
优选的,所述步骤(8)中微波消解仪功率为300~600w,反应温度为80~150℃,时间30~240min。
优选的,所述步骤(9)中的干燥方式为冷冻干燥,冷冻温度为-40~-64℃。
一种磁性中空Zn/Co沸石咪唑纳米笼材料的应用,是将磁性中空Zn/Co沸石咪唑纳米笼复合材料应用于去除医疗废水或制药废水或生活废水中高残留喹诺酮抗生素。
优选的,将含有喹诺酮类抗生素的废水溶液pH值调节至近中性,按25~45g/100L的量将磁性中空Zn/Co沸石咪唑纳米笼材料加入水溶液中,置于振荡器中,在温度为308~345K下振荡2h,振荡后在外磁场作用下磁分离。
优选的,喹诺酮类抗生素包括环丙沙星、恩诺沙星和氧氟沙星中的一种或几种,喹诺酮类抗生素的浓度为50~200mg/L。
本发明有益效果如下:
本发明的微波辅助磁性中空Zn/Co沸石咪唑纳米笼材料的制备方法,以纳米级Fe3O4(约470nm)作为晶种,加入六水合硝酸钴和2-甲基咪唑后,迅速形成磁性核壳沸石咪唑-67纳米复合晶体(Fe3O4@ZIF-67),然后再加入六水合硝酸锌,基于纳米级Fe3O4晶种的诱导,快速自组装,制备合成磁性的双壳纳米晶体Fe3O4@ZIF-67@ZIF-8,再转移至微波消解仪。在微波辅助下,利用甲醇易于吸收微波能的特性,借助甲醇吸收微波能并将能量快速传递至化学稳定性较差的内壳ZIF-67,引起金属有机骨架ZIF-67键的振动、裂解,产生了内壳被刻蚀的现象,制得本发明所述产品磁性中空Zn/Co沸石咪唑纳米笼材料(Fe3O4@Zn/Co-ZIF)。该制备方法具有工艺简单、成本廉价的优点。
本发明微波辅助制备的磁性中空Zn/Co沸石咪唑纳米笼材料,一方面,具有中空笼状形貌、比表面积大、晶型完整且多孔、化学稳定性高且具有良好的磁性方便磁性分离。该材料对抗生素喹诺酮类药物具有高效的、高通量的吸附性,其去除环境水中残留浓度100mg/L喹诺酮的去除率为98%,去除残留浓度200mg/L喹诺酮的去除率90%。另一方面,磁性中空Zn/Co沸石咪唑纳米笼材料作为吸附剂去除废水中的喹诺酮类抗生素后,用0.1%乙酸乙腈水溶液对吸附饱和的吸附剂浸泡超声、解吸、洗涤、干燥处理后可重复利用至少8次。因此,该材料的另一大优势是,易于与抗生素喹诺酮类药物分离,具有优异的可再生性,因此易于实现规模化水环境中高残留喹诺酮抗生素的高效去除。
附图说明:
图1为利用本发明制备方法,通过微波辅助制备磁性中空Zn/Co沸石咪唑纳米笼材料的反应过程中晶态结构变化及去除抗生素机理图;
图2为利用本发明制备方法所制得复合材料的透射电子显微镜照片;
图3为利用本发明制备方法所制得复合材料的扫描电子显微镜照片;
图4为利用本发明制备方法所制得复合材料的X射线衍射图谱;
图5为利用本发明制备方法所制得复合材料的傅里叶红外光谱图;
图6为利用本发明制备方法所制得复合材料吸附喹诺酮类抗生素前和后的总离子流色谱图;
图7为利用本发明制备方法所制得复合材料再生使用的喹诺酮类抗生素去除率。
具体实施方式:
一、微波辅助磁性中空Zn/Co沸石咪唑纳米笼材料的制备方法:
包括以下步骤:
(1)将纳米Fe3O4加入甲醇中超声分散,得到A悬浮液,A悬浮液中Fe3O4的浓度为1.2~2.4g/L,所述Fe3O4通过以下步骤制备:按照六水氯化铁:无水醋酸钠:聚乙二醇:乙二醇=(0.5g~2.2g):(1.8g~4.2g):(0.3g~1.5g):(25mL~40mL)的量,将六水氯化铁、无水醋酸钠、聚乙二醇溶于乙二醇中,室温下磁力搅拌0.5h后转入高压反应釜,在温度150~220℃下进行水热合成反应14h,将得到反应产物过滤后,用乙醇洗涤2~3次,然后再用去离子水洗涤2~3次,真空干燥得到纳米Fe3O4
(2)将六水合硝酸钴溶于甲醇中,得到B溶液,B溶液中六水合硝酸钴甲醇的浓度为0.1~0.4mol/L;
(3)将2-甲基咪唑溶于甲醇中,得到C溶液,C溶液中2-甲基咪唑的浓度为0.25~0.8mol/L;
(4)将六水合硝酸锌溶于甲醇中,得到D溶液,D溶液中六水合硝酸锌甲醇的浓度为0.1~0.4mol/L;
(5)将B溶液缓慢加入到A悬浮液中,超声反应,超声反应时间为2~10min,温度为20~60℃;
(6)将C溶液缓慢加入到步骤(5)所得的混合溶液中,超声反应,超声反应时间为2~10min,温度为20~60℃;
(7)将D溶液缓慢加入到步骤(6)所得的混合溶液中,超声反应,超声反应时间为15~60min,温度为20~60℃;
(8)将步骤(7)所得的混合溶液,转移至微波消解仪中反应,微波消解仪功率为300~600w,反应温度为80~150℃,时间30~240min;
(9)将步骤(8)得到的产物在外加磁场下磁分离,并将分离得到的固体产物用甲醇洗涤、在-40~-64℃下冷冻干燥,得到磁性中空Zn/Co沸石咪唑纳米笼材料。
二、磁性中空Zn/Co沸石咪唑纳米笼材料的应用:
将磁性中空Zn/Co沸石咪唑纳米笼复合材料应用于去除医疗废水或制药废水或生活废水中高残留喹诺酮抗生素。具体的,将含有喹诺酮类抗生素的废水溶液pH值调节至近中性,按25~45g/100L的量将磁性中空Zn/Co沸石咪唑纳米笼材料加入水溶液中,置于振荡器中,在温度为308~345K下振荡2h,振荡后在外磁场作用下磁分离。喹诺酮类抗生素包括环丙沙星、恩诺沙星和氧氟沙星中的一种或几种,喹诺酮类抗生素的浓度为50~200mg/L。
三、本发明的反应机理:
图1为利用本发明制备方法,通过微波辅助制备磁性中空Zn/Co沸石咪唑纳米笼材料的反应过程中晶态结构变化及去除抗生素机理图。本发明以纳米级Fe3O4(约470nm)作为晶种,加入六水合硝酸钴和2-甲基咪唑后,迅速形成磁性核壳沸石咪唑-67纳米复合晶体(Fe3O4@ZIF-67),然后再加入六水合硝酸锌,基于纳米级Fe3O4晶种的诱导,快速自组装,制备合成磁性的双壳纳米晶体Fe3O4@ZIF-67@ZIF-8,再转移至微波消解仪。在微波辅助下,利用甲醇易于吸收微波能的特性,借助甲醇吸收微波能并将能量快速传递至化学稳定性较差的内壳ZIF-67,引起金属有机骨架ZIF-67键的振动、裂解,产生了内壳被刻蚀的现象,制得本发明所述产品磁性中空Zn/Co沸石咪唑纳米笼材料(Fe3O4@Zn/Co-ZIF)。
四、产品的结构、形貌及性能表征:
对本发明得到的磁性中空Zn/Co沸石咪唑纳米笼材料进一步进行形貌和性能测试得到图2至图6,其中:
图2是磁性中空Zn/Co沸石咪唑纳米笼材料的透射电子显微镜照片,图2中可以观察到,通过微波辅助合成的Fe3O4@Zn/Co-ZIF显示出超大的内部空腔和规则的多面体形态,表明该材料通过微波辅助在甲醇刻蚀下内部坍塌形成中空结构,而外部形貌未受影响,其Zn/Co-ZIF壁厚120nm。同样观察到Fe3O4纳米粒子仍然滞留在Zn/Co-ZIF空腔中。
图3是磁性中空Zn/Co沸石咪唑纳米笼材料的扫描电子显微镜照片,通过SEM进一步探究材料的微观形貌,图3显示出该方法合成的材料为规整的菱形十二面体结构,颗粒尺寸均一,粒径约为1μm。
图4是磁性中空Zn/Co沸石咪唑纳米笼材料的X射线衍射图谱,可以观察到该材料具有较好的晶相,Zn/Co-ZIF的X射线衍射峰很明显,但Fe3O4的X射线衍射峰很弱,这可能是因为该复合材料中的Fe3O4含量很少。
图5是磁性中空Zn/Co沸石咪唑纳米笼材料的红外光谱图,特征峰包括了Zn/Co-ZIF和Fe3O4典型的特征红外吸收峰。Fe3O4@Zn/Co-ZIF在常温下保持超顺磁性及较高的饱和磁化,其最大饱和磁化强度(Ms)34.3A·m2/kg(达到磁性分析的最低16A·m2/kg的要求)。该复合材料的氮气物理吸附(BET)报告表明这种复合材料为介孔材料,其比表面积可达到824.84m2/g。
图6是磁性中空Zn/Co沸石咪唑纳米笼材料去除前和去除后典型喹诺酮类抗生素(初始浓度200mg/L)环丙沙星、恩诺沙星和氧氟沙星的总离子流色谱图,其平均去除率分别为:恩诺沙星去除率91.4%,环丙沙星去除率94.9%,氧氟沙星去除率88.9%。
五、磁性中空Zn/Co沸石咪唑纳米笼材料的吸附性能检测:
具体检测方法如下:
①将25~45g磁性中空Zn/Co沸石咪唑纳米笼材料加入到100mL加标浓度(环丙沙星、恩诺沙星和氧氟沙星混合液)为100μg/mL的水溶液中,在温度为308~345K下振荡2h,达到吸附平衡后,通过外部磁场的作用快速分离,并移取上清液用0.22μm微孔滤膜过滤;
②用高效液相色谱-质谱测定①中所得上清液中各喹诺酮类抗生素的剩余浓度,再计算出磁性中空Zn/Co沸石咪唑纳米笼对各种喹诺酮类抗生素的最大吸附量,吸附量的计算公式为:
Figure BDA0002100806190000081
q:最大吸附量(mg/g);
C0:喹诺酮类抗生素的初始浓度(环丙沙星、恩诺沙星和氧氟沙星的浓度均为:100μg/mL);
Ce:喹诺酮类抗生素的平衡浓度;
V:溶液体积(100mL);
W:磁性中空Zn/Co沸石咪唑纳米笼材料的加入量(mg)。
六、磁性中空Zn/Co沸石咪唑纳米笼材料的可再生性能:
磁性中空Zn/Co沸石咪唑纳米笼材料作为吸附剂去除废水中的喹诺酮类抗生素后,用0.1%乙酸乙腈水溶液对吸附饱和的吸附剂浸泡超声、解吸、洗涤、干燥处理后可重复利用至少8次。
图7为同一批材料吸附-脱附循环使用五次后,吸附剂对喹诺酮类抗生素去除效率的变化。从图7中可以看出,循环再使用五次后,吸附剂对恩诺沙星的去除率几乎没有衰减,但对氧氟沙星和环丙沙星的去除效率略有衰减,表明该材料可以作为一种潜在的、可重复使用的新型吸附材料,用于去除环境水中残留较高浓度的喹诺酮类抗生素具有重要的应用价值。
实施例1:
本实施例的微波辅助磁性中空Zn/Co沸石咪唑纳米笼材料的制备方法,包括以下步骤:
(1)按照六水氯化铁:无水醋酸钠:聚乙二醇:乙二醇=0.6g:1.8g:0.49g:25mL的量,将六水氯化铁、无水醋酸钠、聚乙二醇溶于乙二醇中,室温下磁力搅拌0.5h后转入高压反应釜,在温度160℃下进行水热合成反应8h,将得到反应产物过滤后,用乙醇洗涤2~3次,然后再用去离子水洗涤2~3次,真空干燥得到纳米Fe3O4;称取0.015g制得的纳米Fe3O4加入9mL甲醇中超声分散15min,得到A悬浮液;
(2)将0.22g六水合硝酸钴溶于5.5mL甲醇中得到B溶液,B溶液中六水合硝酸钴甲醇的浓度为0.14mol/L;
(3)将0.25g 2-甲基咪唑溶于9mL甲醇中得到C溶液,C溶液中2-甲基咪唑的浓度为0.34mol/L;
(4)将0.22g六水合硝酸锌溶于5.5mL甲醇中得到D溶液,D溶液中六水合硝酸锌甲醇的浓度为0.13mol/L;
(5)将B溶液缓慢加入到A悬浮液中,超声反应,超声反应时间为3min,温度为30℃;
(6)将C溶液缓慢加入到步骤(5)所得的混合溶液中,超声反应,超声反应时间为3min,温度为30℃;
(7)将D溶液缓慢加入到步骤(6)所得的混合溶液中,超声反应,超声反应时间为15min,温度为30℃;
(8)将步骤(7)所得的混合溶液,转移至微波消解仪中反应,微波消解仪功率为500w,反应温度为120℃,时间120min;
(9)将步骤(8)得到的产物在外加磁场下磁分离,并将分离得到的固体产物用甲醇洗涤3次、在-50℃下冷冻干燥,得到磁性中空Zn/Co沸石咪唑纳米笼材料。
本实施例的磁性中空Zn/Co沸石咪唑纳米笼材料的应用,是将磁性中空Zn/Co沸石咪唑纳米笼复合材料应用于去除医疗废水或制药废水或生活废水中高残留喹诺酮抗生素。具体的,将含有喹诺酮类抗生素的废水溶液pH值调节至近中性,按25g/100L的量将磁性中空Zn/Co沸石咪唑纳米笼材料加入废水中,置于振荡器中,在温度为308K下振荡2h,振荡后在外磁场作用下磁分离。
本实施例的磁性中空Zn/Co沸石咪唑纳米笼材料得吸附性能检测,具体如下:
①将25mg磁性中空Zn/Co沸石咪唑纳米笼材料加入到100mL加标浓度(环丙沙星、恩诺沙星和氧氟沙星混合液)为100μg/mL的水溶液中,温度为308K下振荡2h,达到吸附平衡后,通过外部磁场的作用快速分离,并移取上清液用0.22μm微孔滤膜过滤;
②用高效液相色谱-质谱测定①中所得上清液中各喹诺酮类抗生素的剩余浓度,再计算出磁性中空Zn/Co沸石咪唑纳米笼对各种喹诺酮类抗生素的最大吸附量。
达到吸附平衡后,测得上清液中的环丙沙星、恩诺沙星和氧氟沙星浓度分别为:8.60μg/mL、5.05μg/mL和11.87μg/mL。
通过计算,磁性中空Zn/Co沸石咪唑纳米笼材料对环丙沙星、恩诺沙星和氧氟沙星的最大吸附量为914.00mg/g、949.50mg/g和881.20mg/g。
实施例2:
本实施例的微波辅助磁性中空Zn/Co沸石咪唑纳米笼材料的制备方法,包括以下步骤:
(1)按照六水氯化铁:无水醋酸钠:聚乙二醇:乙二醇=1.0g:2.94g:0.82g:33mL的量,将六水氯化铁、无水醋酸钠、聚乙二醇溶于乙二醇中,室温下磁力搅拌0.5h后转入高压反应釜,在温度175℃下进行水热合成反应16h,将得到反应产物过滤后,用乙醇洗涤2~3次,然后再用去离子水洗涤2~3次,真空干燥得到纳米Fe3O4;称取0.04g制得的纳米Fe3O4加入15mL甲醇中超声分散15min,得到A悬浮液;
(2)将0.749g六水合硝酸钴溶于11.5mL甲醇中得到B溶液,B溶液中六水合硝酸钴甲醇的浓度为0.35mol/L;
(3)将0.411g 2-甲基咪唑溶于15mL甲醇中得到C溶液,C溶液中2-甲基咪唑的浓度为0.33mol/L;
(4)将0.749g六水合硝酸锌溶于11.5mL甲醇中得到D溶液,D溶液中六水合硝酸锌甲醇的浓度为0.35mol/L;
(5)将B溶液缓慢加入到A悬浮液中,超声反应,超声反应时间为5min,温度为40℃;
(6)将C溶液缓慢加入到步骤(5)所得的混合溶液中,超声反应,超声反应时间为5min,温度为40℃;
(7)将D溶液缓慢加入到步骤(6)所得的混合溶液中,超声反应,超声反应时间为20min,温度为40℃;
(8)将步骤(7)所得的混合溶液,转移至微波消解仪中反应,微波消解仪功率为350w,反应温度为100℃,时间60min;
(9)将步骤(8)得到的产物在外加磁场下磁分离,并将分离得到的固体产物用甲醇洗涤3次、在-60℃下冷冻干燥,得到磁性中空Zn/Co沸石咪唑纳米笼材料。
本实施例的磁性中空Zn/Co沸石咪唑纳米笼材料的应用,是将磁性中空Zn/Co沸石咪唑纳米笼复合材料应用于去除医疗废水或制药废水或生活废水中高残留喹诺酮抗生素。具体的,将含有喹诺酮类抗生素的废水溶液pH值调节至近中性,按30g/100L的量将磁性中空Zn/Co沸石咪唑纳米笼材料加入废水中,置于振荡器中,在温度为308K下振荡2h,振荡后在外磁场作用下磁分离。
本实施例的磁性中空Zn/Co沸石咪唑纳米笼材料得吸附性能检测,具体如下:
①将30mg磁性中空Zn/Co沸石咪唑纳米笼材料加入到100mL加标浓度(环丙沙星、恩诺沙星和氧氟沙星混合液)为100μg/mL的水溶液中,温度为308K下振荡2h,达到吸附平衡后,通过外部磁场的作用快速分离,并移取上清液用0.22μm微孔滤膜过滤;
②用高效液相色谱-质谱测定①中所得上清液中各喹诺酮类抗生素的剩余浓度,再计算出磁性中空Zn/Co沸石咪唑纳米笼对各种喹诺酮类抗生素的最大吸附量。
达到吸附平衡后,所测得的上清液中的环丙沙星、恩诺沙星和氧氟沙星各浓度为:4.30μg/mL、2.00μg/mL和6.40μg/mL。
通过计算,磁性中空Zn/Co沸石咪唑纳米笼材料对环丙沙星、恩诺沙星和氧氟沙星的吸附量为957.02mg/g、980.00mg/g和936.15mg/g。

Claims (5)

1.一种微波辅助磁性中空Zn/Co沸石咪唑纳米笼材料的制备方法,其特征在于,包括以下步骤:
(1)将纳米Fe3O4加入甲醇中超声分散,得到A悬浮液,A悬浮液中Fe3O4的浓度为1.2~2.4g/L;
(2)将六水合硝酸钴溶于甲醇中,得到B溶液,B溶液中六水合硝酸钴甲醇的浓度为0.1~0.4mol/L;
(3)将2-甲基咪唑溶于甲醇中,得到C溶液,C溶液中2-甲基咪唑的浓度为0.25~0.8mol/L;
(4)将六水合硝酸锌溶于甲醇中,得到D溶液,D溶液中六水合硝酸锌甲醇的浓度为0.1~0.4mol/L;
(5)将B溶液缓慢加入到A悬浮液中,超声反应,超声反应时间为2~10min,温度为20~60℃;
(6)将C溶液缓慢加入到步骤(5)所得的混合溶液中,超声反应,超声反应时间为2~10min,温度为20~60℃;
(7)将D溶液缓慢加入到步骤(6)所得的混合溶液中,超声反应,超声反应时间为15~60min,温度为20~60℃;
(8)将步骤(7)所得的混合溶液,转移至微波消解仪中反应,微波消解仪功率为300~600w,反应温度为80~150℃,时间30~240min;
(9)将步骤(8)得到的产物在外加磁场下磁分离,并将分离得到的固体产物用甲醇洗涤、干燥,得到磁性中空Zn/Co沸石咪唑纳米笼材料;
所述Fe3O4通过以下步骤制备:按照六水氯化铁:无水醋酸钠:聚乙二醇:乙二醇=(0.5g~2.2g):(1.8g~4.2g):(0.3g~1.5g):(25mL~40mL)的量,将六水氯化铁、无水醋酸钠、聚乙二醇溶于乙二醇中,室温下磁力搅拌0.5h后转入高压反应釜,在温度150~220℃下进行水热合成反应8~16h,将得到反应产物过滤后,用乙醇洗涤2~3次,然后再用去离子水洗涤2~3次,真空干燥得到纳米Fe3O4
2.如权利要求1所述的微波辅助磁性中空Zn/Co沸石咪唑纳米笼材料的制备方法,其特征在于,所述步骤(9)中的干燥方式为冷冻干燥,冷冻温度为-40~-64℃。
3.一种利用权利要求1所述方法制备的磁性中空Zn/Co沸石咪唑纳米笼材料的应用,其特征在于,将磁性中空Zn/Co沸石咪唑纳米笼复合材料应用于去除医疗废水或制药废水中高残留喹诺酮抗生素。
4.如权利要求3所述的应用,其特征在于,将含有喹诺酮类抗生素的废水溶液pH值调节至近中性,按25~45g/100L的量将磁性中空Zn/Co沸石咪唑纳米笼材料加入医疗废水或制药废水或生活废水中,置于振荡器中,在温度为308~345K下振荡2h,振荡后在外磁场作用下磁分离。
5.如权利要求4所述的应用,其特征在于,喹诺酮类抗生素包括环丙沙星、恩诺沙星和氧氟沙星中的一种或几种,喹诺酮类抗生素的浓度为50~200mg/L。
CN201910534615.5A 2019-06-20 2019-06-20 微波辅助磁性中空Zn/Co沸石咪唑纳米笼材料的制备方法及应用 Expired - Fee Related CN110237820B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910534615.5A CN110237820B (zh) 2019-06-20 2019-06-20 微波辅助磁性中空Zn/Co沸石咪唑纳米笼材料的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910534615.5A CN110237820B (zh) 2019-06-20 2019-06-20 微波辅助磁性中空Zn/Co沸石咪唑纳米笼材料的制备方法及应用

Publications (2)

Publication Number Publication Date
CN110237820A CN110237820A (zh) 2019-09-17
CN110237820B true CN110237820B (zh) 2022-05-31

Family

ID=67888262

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910534615.5A Expired - Fee Related CN110237820B (zh) 2019-06-20 2019-06-20 微波辅助磁性中空Zn/Co沸石咪唑纳米笼材料的制备方法及应用

Country Status (1)

Country Link
CN (1) CN110237820B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110614080A (zh) * 2019-09-30 2019-12-27 重庆大学 一种双金属氮掺杂磁性多孔碳材料在吸附环丙沙星中的应用
CN111250131B (zh) * 2020-01-16 2022-11-29 辽宁大学 一种Co3ZnC/Co@NGC磁性吸波材料及其制备方法和应用
CN112794311A (zh) * 2021-01-06 2021-05-14 南京工业大学 一种限域型碳纳米管材料的制备方法
CN113499474B (zh) * 2021-05-31 2022-04-12 浙江大学 Zif-67修饰的中空二氧化钒壳核结构微纳米复合物及其制备方法和应用
CN114160193B (zh) * 2021-12-06 2023-04-07 厦门大学 一种CoAPO-11分子筛及其制备方法和应用、一种烷烃临氢异构化催化剂及应用
CN114505057B (zh) * 2021-12-31 2024-05-24 石家庄循环化工研究院 Zif-8/67复合晶体吸附剂、其制备方法及废水净化方法
CN114539549B (zh) * 2022-03-16 2022-10-18 西北工业大学 尺寸可控、高吸附速率的zif-8颗粒及其无容器制备方法和应用
CN115582100A (zh) * 2022-11-07 2023-01-10 安徽农业大学 一种三维双金属MOFs宏观微珠材料的制备方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107096515A (zh) * 2017-04-19 2017-08-29 郑州轻工业学院 Fe3O4‑PSS@Co‑MOF的制备方法及其应用
CN107381659A (zh) * 2017-06-28 2017-11-24 江苏大学 模板法制备非球形中空结构纳米笼复合材料的方法
CN107876014A (zh) * 2016-09-29 2018-04-06 天津工业大学 一种中空核壳磁性金属有机骨架复合材料的合成方法
CN109107535A (zh) * 2018-08-23 2019-01-01 苏州科技大学 一种离子液体磁性类沸石咪唑酯纳米材料及其制备方法与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107876014A (zh) * 2016-09-29 2018-04-06 天津工业大学 一种中空核壳磁性金属有机骨架复合材料的合成方法
CN107096515A (zh) * 2017-04-19 2017-08-29 郑州轻工业学院 Fe3O4‑PSS@Co‑MOF的制备方法及其应用
CN107381659A (zh) * 2017-06-28 2017-11-24 江苏大学 模板法制备非球形中空结构纳米笼复合材料的方法
CN109107535A (zh) * 2018-08-23 2019-01-01 苏州科技大学 一种离子液体磁性类沸石咪唑酯纳米材料及其制备方法与应用

Also Published As

Publication number Publication date
CN110237820A (zh) 2019-09-17

Similar Documents

Publication Publication Date Title
CN110237820B (zh) 微波辅助磁性中空Zn/Co沸石咪唑纳米笼材料的制备方法及应用
Esrafili et al. Reuse of predesigned dual-functional metal organic frameworks (DF-MOFs) after heavy metal removal
Ru et al. UiO series of metal-organic frameworks composites as advanced sorbents for the removal of heavy metal ions: Synthesis, applications and adsorption mechanism
Jiang et al. Magnetic metal-organic framework (Fe3O4@ ZIF-8) core-shell composite for the efficient removal of Pb (II) and Cu (II) from water
CN108201878B (zh) 一种碳点改性金属有机骨架吸附材料的制备方法及水体污染物治理应用
Liang et al. ZIF-mediated N-doped hollow porous carbon as a high performance adsorbent for tetracycline removal from water with wide pH range
CN102553523B (zh) 一种负载纳米零价铁的活性碳纤维及其制备方法和用途
Chen et al. Stable nitrogen-containing covalent organic framework as porous adsorbent for effective iodine capture from water
Hussain et al. Flexible thiourea-based covalent organic frameworks for ultrahigh mercury removal from aqueous solutions
CN109021245A (zh) 一种多级孔Cu基金属有机骨架材料的制备及应用
Ou et al. Magnetically separable Fe-MIL-88B_NH2 carbonaceous nanocomposites for efficient removal of sulfamethoxazole from aqueous solutions
CN109621910B (zh) 纳米零价铁-金属有机框架核壳材料的制备方法及其应用
CN104128163A (zh) 微孔-介孔mil-101材料的制备方法及其应用
Wu et al. Functional metal–organic frameworks as adsorbents used for water decontamination: design strategies and applications
CN108970577A (zh) 一种Co/N共掺杂介孔碳纳米片及制备方法和应用
Zadehahmadi et al. Removal of metals from water using MOF-based composite adsorbents
CN109806844A (zh) 一种除磷的磁性金属有机框架材料及其制备方法
Dong et al. Fabrication of two dual-functionalized covalent organic polymers through heterostructural mixed linkers and their use as cationic dye adsorbents
CN112521617A (zh) 一种可用于吸附抗生素的多酸基金属有机框架材料及其制备方法和用途
Lu et al. Enhanced removal efficiency towards azole fungicides from environmental water using a metal organic framework functionalized magnetic lignosulfonate
CN115970656A (zh) 氨基酸共价接枝环糊精-金属有机框架材料及其应用
CN102649575A (zh) 一种花状氧化镁纳米结构材料及其制备方法与应用
CN106824090B (zh) 一种新型磁性金属有机骨架复合材料的制备方法及其应用
Zauška et al. PEI-Schiff base-modified mesoporous silica materials SBA-12, 15 and 16 for toxic metal ions capture (Co (II), Ni (II) and Cu (II)): Effect of morphology, post-synthetic modification and kinetic study
Zhang et al. Water-stable composite of HKUST-1 with its pyrolysis products for enhanced CO2 capture capacity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220531