CN108467264A - 一种用于氧传感器的复合氧化锆粉 - Google Patents
一种用于氧传感器的复合氧化锆粉 Download PDFInfo
- Publication number
- CN108467264A CN108467264A CN201810183641.3A CN201810183641A CN108467264A CN 108467264 A CN108467264 A CN 108467264A CN 201810183641 A CN201810183641 A CN 201810183641A CN 108467264 A CN108467264 A CN 108467264A
- Authority
- CN
- China
- Prior art keywords
- added
- lambda sensor
- slurry
- combined oxidation
- oxidation zirconium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/48—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/6261—Milling
- C04B35/6262—Milling of calcined, sintered clinker or ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62625—Wet mixtures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62625—Wet mixtures
- C04B35/62635—Mixing details
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62625—Wet mixtures
- C04B35/6264—Mixing media, e.g. organic solvents
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62645—Thermal treatment of powders or mixtures thereof other than sintering
- C04B35/62655—Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/406—Cells and probes with solid electrolytes
- G01N27/407—Cells and probes with solid electrolytes for investigating or analysing gases
- G01N27/4073—Composition or fabrication of the solid electrolyte
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Pathology (AREA)
- Thermal Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Composite Materials (AREA)
- Measuring Oxygen Concentration In Cells (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
本发明公开了一种用于氧传感器的复合氧化锆粉,涉及氧传感器的生产方法技术领域,制备方法为:称取氧氯化锆加入去离子水配制成水溶液,将三氧化二钇溶解于氧氯化锆溶液中,加入聚乙二醇分散剂;加入尿素,氨水,水解沉淀为料浆,料浆陈化1‑6h,加入反应釜中进行水热反应,水热后的浆料进行过滤、洗涤,滤饼干燥,干燥后的块料煅烧后经过振动磨粉碎,配入氧化铝和聚乙二醇分散剂,采用砂磨机进行超细研磨至中位粒径D50<0.2μm,经喷雾干燥之后便得到适合于氧传感器的敏感元件用的复合氧化锆粉。本发明的制备方法具有能耗低、团聚少、粒径小且粒度分布均匀、粉体活性高、操作安全方便等特点,适合工业化批量生产。
Description
技术领域
本发明属于氧传感器的生产方法技术领域,特别涉及一种用于氧传感器的复合氧化锆粉。
背景技术
氧化锆氧传感器具有较高的测氧精度和良好的高温稳定性,被广泛应用于内燃机尾气排放中氧含量检测等领域。敏感元件(氧敏元件)是氧传感器的关键部件,目前,绝大多数氧传感器均以5~8mol%氧化钇稳定的氧化锆作为固体电解质,然而它的电导率较低,力学性能一般,制约了氧传感器的进一步发展,因此,找到一种电导率更高、力学性能更强和抗老化性能好的电解质新材料,是开发出高性能氧传感器的关键。
对氧化锆晶体结构的深入研究有助于寻找更合适的氧化物进行掺杂,有研究表明,在氧化锆体系中,由于点阵应力和位阻效应的影响,取代Zr4+的阳离子半径与其越接近,其电导率越高。S.P.S.Badwal等人通过向9mol%(Sc2O3- 三氧化二钇)-ZrO2 系统中添加Al2O3 发现,Al2O3可以净化晶界减小晶界电阻,增加该ZrO2基系统的机械强度,但是添加Al2O3后,ZrO2系统的电导率随淬火时间的增加降低的较快。Chakrapani Varanasi等人研究了向6ScSZ中掺杂Al2O3,结果发现Al2O3的加入提高了6ScSZ的电导率,掺杂30wt.%Al2O3时,6ScSZ 在850℃时的电导率为0.12S/cm,比未添加Al2O3时的电导率提高了20%左右。
氧化锆粉体质量的好坏是制约氧化锆基氧传感器性能的关键因素,现有工艺存在的问题是氧化锆粉体团聚严重,平均晶粒尺寸大、不同批次粉体之间稳定性差以及烧结活性低等。制备得到的氧化锆陶瓷力学性能和电学性能低,导致氧传感器敏感元件使用寿命低和灵敏度差。
总的来说,目前国内外对氧传感器用的氧化锆已做了大量研究,主要集中于氧化钇稳定氧化锆以及掺杂了第三相的稳定型氧化锆,但掺杂方式不同效果各不相同。有些制备方法仅限于实验室或小型制备,很难形成工业化生产;有些方法制备的氧化锆粉存在团聚严重、烧结困难等问题;有些方法制备的氧化锆粉制备出的敏感元件不能同时满足电导率高、力学性能强的要求。
发明内容
本发明的目的在于提供一种用于氧传感器的复合氧化锆粉,以解决上述背景技术存在的问题。
为实现上述目的,本发明提供如下技术方案:一种用于氧传感器的复合氧化锆粉的制备方法为:步骤一、称取氧氯化锆加入去离子水配制成水溶液,制成的水溶液浓度为0.5-1.5mol/L,加热至70℃,将三氧化二钇溶解于氧氯化锆溶液中,所述三氧化二钇的含量为5-8mol%,加入水溶液质量的0.2-0.5 wt.% 的聚乙二醇分散剂;
步骤二、在搅拌下缓慢加入尿素,尿素占总体系质量分数的5-10wt.%,缓慢加入氨水,水解沉淀,调节浆料体系pH 值为8.5-9.5;
步骤三、将步骤二所得的料浆陈化1-6h,加入反应釜中在150-200℃下水热反应12-48h;
步骤四、将步骤三水热后的浆料进行过滤、洗涤,先用去离子水洗涤,循环洗涤至排除洗涤水检测电导率小于150μs/cm 为止,最后用乙醇洗涤2次,将滤饼在105℃下干燥2-12h;
步骤五、将步骤四中干燥后的块料在650℃-1000℃下煅烧1-6h;
步骤六、将煅烧后的块料经过振动磨粉碎至粒度200目以下,配入块料质量2-10wt.%的氧化铝,加入块料质量0.1-0.3wt.% 的聚乙二醇分散剂,采用砂磨机进行超细研磨至中位粒径D50<0.2μm,最后经喷雾干燥之后便得到适合于氧传感器的敏感元件用的复合氧化锆粉。
作为优选,所述的步骤六中选用的氧化铝的晶型为γ型,纯度大于99.9%,粒度在200目以下。
与现有技术相比,本发明的有益效果是:制备的复合氧化锆粉不但能够满足氧传感器中作为高性能敏感元件的用途,而且本发明的制备方法具有能耗低、团聚少、粒径小且粒度分布均匀、粉体活性高、操作安全方便等特点,适合工业化批量生产。
附图说明
图1为本发明实施例1采用激光粒度仪对制备的复合氧化锆粉进行粒度分布检测示意图;
图2为本发明实施例2采用激光粒度仪对制备的复合氧化锆粉进行粒度分布检测示意图;
图3为本发明实施例3采用激光粒度仪对制备的复合氧化锆粉进行粒度分布检测示意图。
具体实施方式
本具体实施方式采用以下技术方案和实施例对发明进行进一步的详细说明。
实施例1
一种用于氧传感器的复合氧化锆粉及其制备方法,其具体步骤为:(1) 称取氧氯化锆加入去离子水配制成水溶液,浓度为1mol/L,加热至70℃,将三氧化二钇溶解于氧氯化锆溶液中,所述三氧化二钇的含量为5mol%,加入水溶液质量的0.2 wt.% 的聚乙二醇分散剂;
(2) 在搅拌下缓慢加入尿素,尿素占总体系的质量分数为5wt.%,缓慢加入氨水,水解沉淀,调节浆料体系pH 值为9;
(3) 将所得的料浆陈化2h,加入反应釜中在150℃下水热反应24h;
(4) 将水热后的浆料进行过滤、洗涤,先用去离子水洗涤循环洗涤至排除洗涤水检测电导率小于150μs/cm 为止,最后用乙醇洗涤2次,将滤饼在105℃下干燥6h;
(5)将干燥后的块料在800℃下煅烧3h;
(6)将煅烧后的块料经过振动磨粉碎至粒度200目以下,配入5wt.%氧化铝(晶型为γ型,纯度大于99.9%,粒度200目以下),加入0.1wt.% 的聚乙二醇分散剂,采用砂磨机进行超细研磨至中位粒径D50<0.2μm,最后经喷雾干燥之后便得到适合于氧传感器的敏感元件用的复合氧化锆粉,采用本实施例制备的复合氧化锆粉制备的氧传感器敏感元件,其电导率在700℃时为0.28s/cm,响应时间小于10ms,抗弯强度Kf >560MPa。
采用激光粒度仪对本实施例制备的复合氧化锆粉进行粒度分布检测,测得的粒度分布图如图1所示,由图1可知,制备的复合氧化锆粉粒径小,且粒度分布均匀。
实施例2
一种用于氧传感器的复合氧化锆粉及其制备方法,其具体步骤为:(1) 称取氧氯化锆加入去离子水配制成水溶液,浓度为1mol/L,加热至70℃,将三氧化二钇溶解于氧氯化锆溶液中,所述三氧化二钇的含量为8mol%,加入水溶液质量的0.2 wt.% 的聚乙二醇分散剂;
(2) 在搅拌下缓慢加入尿素,尿素占总体系的质量分数为10wt.%,缓慢加入氨水,水解沉淀,调节浆料体系pH 值为9;
(3) 将所得的料浆陈化2h,加入反应釜中在160℃下水热反应24h;
(4) 将水热后的浆料进行过滤、洗涤,先用去离子水洗涤循环洗涤至排除洗涤水检测电导率小于150μs/cm 为止,最后用乙醇洗涤2次,将滤饼在105℃下干燥6h;
(5)将干燥后的块料在1000℃下煅烧2h;
(6)将煅烧后的块料经过振动磨粉碎至粒度200目以下,配入6wt.%氧化铝(晶型为γ型,纯度大于99.9%,粒度200目以下),加入0.1wt.% 的聚乙二醇分散剂,采用砂磨机进行超细研磨至中位粒径D50<0.2μm,最后经喷雾干燥之后便得到适合于氧传感器的敏感元件用的复合氧化锆粉,采用本实施例制备的复合氧化锆粉制备的氧传感器敏感元件,其电导率在700℃时为0.32s/cm,响应时间小于10ms,抗弯强度Kf >600MPa。
采用激光粒度仪对本实施例制备的复合氧化锆粉进行粒度分布检测,测得的粒度分布图如图2所示,由图2可知,制备的复合氧化锆粉粒径小,且粒度分布均匀。
实施例3
一种用于氧传感器的复合氧化锆粉及其制备方法,其具体步骤为:(1) 称取氧氯化锆加入去离子水配制成水溶液,浓度为1mol/L,加热至70℃,将三氧化二钇溶解于氧氯化锆溶液中,所述三氧化二钇的含量为8mol%,加入水溶液质量0.2 wt.% 的聚乙二醇分散剂;
(2) 在搅拌下缓慢加入尿素,尿素占总体系的质量分数为10wt.%,缓慢加入氨水,水解沉淀,调节浆料体系pH 值为9;
(3) 将所得的料浆陈化3h,加入反应釜中在170℃下水热反应18h;
(4) 将水热后的浆料进行过滤、洗涤,先用去离子水洗涤循环洗涤至排除洗涤水检测电导率小于150μs/cm 为止,最后用乙醇洗涤2次,将滤饼在105℃下干燥6h;
(5)将干燥后的块料在900℃下煅烧3h;
(6)将煅烧后的块料经过振动磨粉碎至粒度200目以下,配入7wt.%氧化铝(晶型为γ型,纯度大于99.9%,粒度200目以下),加入0.1wt.% 的聚乙二醇分散剂,采用砂磨机进行超细研磨至中位粒径D50<0.2μm,最后经喷雾干燥之后便得到适合于氧传感器的敏感元件用的复合氧化锆粉。采用本实施例制备的复合氧化锆粉制备的氧传感器敏感元件,其电导率在700℃时为0.31s/cm,响应时间小于10ms,抗弯强度Kf >590MPa。
采用激光粒度仪对本实施例制备的复合氧化锆粉进行粒度分布检测,测得的粒度分布图如图3所示,由图3可知,制备的复合氧化锆粉粒径小,且粒度分布均匀。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。
Claims (2)
1.一种用于氧传感器的复合氧化锆粉,其特征在于:具体制备方法为:步骤一、称取氧氯化锆加入去离子水配制成水溶液,制成的水溶液浓度为0.5-1.5mol/L,加热至70℃,将三氧化二钇溶解于氧氯化锆溶液中,所述三氧化二钇的含量为5-8mol%,加入水溶液质量的0.2-0.5 wt.% 的聚乙二醇分散剂;
步骤二、在搅拌下缓慢加入尿素,尿素占总体系质量分数的5-10wt.%,缓慢加入氨水,水解沉淀,调节浆料体系pH 值为8.5-9.5;
步骤三、将步骤二所得的料浆陈化1-6h,加入反应釜中在150-200℃下水热反应12-48h;
步骤四、将步骤三水热后的浆料进行过滤、洗涤,先用去离子水洗涤,循环洗涤至排除洗涤水检测电导率小于150μs/cm 为止,最后用乙醇洗涤2次,将滤饼在105℃下干燥2-12h;
步骤五、将步骤四中干燥后的块料在650℃-1000℃下煅烧1-6h;
步骤六、将煅烧后的块料经过振动磨粉碎至粒度200目以下,配入块料质量2-10wt.%的氧化铝,加入块料质量0.1-0.3wt.% 的聚乙二醇分散剂,采用砂磨机进行超细研磨至中位粒径D50<0.2μm,最后经喷雾干燥之后便得到适合于氧传感器的敏感元件用的复合氧化锆粉。
2.根据权利要求1所述的一种用于氧传感器的复合氧化锆粉,其特征在于:所述的步骤六中选用的氧化铝的晶型为γ型,纯度大于99.9%,粒度在200目以下。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810183641.3A CN108467264A (zh) | 2018-03-06 | 2018-03-06 | 一种用于氧传感器的复合氧化锆粉 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810183641.3A CN108467264A (zh) | 2018-03-06 | 2018-03-06 | 一种用于氧传感器的复合氧化锆粉 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN108467264A true CN108467264A (zh) | 2018-08-31 |
Family
ID=63265009
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810183641.3A Pending CN108467264A (zh) | 2018-03-06 | 2018-03-06 | 一种用于氧传感器的复合氧化锆粉 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108467264A (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109592711A (zh) * | 2018-11-11 | 2019-04-09 | 三祥新材股份有限公司 | 一种用于氧传感器的石墨烯改性氧化锆粉的制备方法 |
CN113321502A (zh) * | 2020-12-30 | 2021-08-31 | 马鞍山云启金锐新材料有限公司 | 一种热喷涂用全稳定氧化锆粉体及其制备方法 |
CN114014651A (zh) * | 2021-09-10 | 2022-02-08 | 王必庆 | 一种水热法生产纳米复合氧化锆粉体的方法 |
CN116003125A (zh) * | 2022-12-06 | 2023-04-25 | 重庆文理学院 | 一种用于汽车尾气传感器的氧化锆陶瓷材料的制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001096140A (ja) * | 1999-09-30 | 2001-04-10 | Tosoh Corp | ジルコニア粉末製造用限外濾過膜モジュールの再生方法 |
CN1369462A (zh) * | 2002-03-21 | 2002-09-18 | 武汉发瑞精密陶瓷有限公司 | 高性能氧化锆陶瓷超微粉生料及制备工艺 |
CN101200375A (zh) * | 2007-11-16 | 2008-06-18 | 北京矿冶研究总院 | 纳米含锆系列热障涂层材料制备方法 |
CN101967057A (zh) * | 2010-10-14 | 2011-02-09 | 北京科技大学 | 汽车氧传感器用的氧化锆基固体电解质粉料及其制备方法 |
CN103217469A (zh) * | 2013-01-21 | 2013-07-24 | 武汉天榜氧传感器有限公司 | 一种管式汽车氧传感器结构及其制作方法 |
CN107473737A (zh) * | 2017-08-09 | 2017-12-15 | 三祥新材股份有限公司 | 用于固体氧化物燃料电池的复合氧化锆粉及其制备方法 |
CN108329026A (zh) * | 2018-03-30 | 2018-07-27 | 东北大学 | 氧传感器用电解质层和致密扩散层双层结构的制备方法 |
-
2018
- 2018-03-06 CN CN201810183641.3A patent/CN108467264A/zh active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001096140A (ja) * | 1999-09-30 | 2001-04-10 | Tosoh Corp | ジルコニア粉末製造用限外濾過膜モジュールの再生方法 |
CN1369462A (zh) * | 2002-03-21 | 2002-09-18 | 武汉发瑞精密陶瓷有限公司 | 高性能氧化锆陶瓷超微粉生料及制备工艺 |
CN101200375A (zh) * | 2007-11-16 | 2008-06-18 | 北京矿冶研究总院 | 纳米含锆系列热障涂层材料制备方法 |
CN101967057A (zh) * | 2010-10-14 | 2011-02-09 | 北京科技大学 | 汽车氧传感器用的氧化锆基固体电解质粉料及其制备方法 |
CN103217469A (zh) * | 2013-01-21 | 2013-07-24 | 武汉天榜氧传感器有限公司 | 一种管式汽车氧传感器结构及其制作方法 |
CN107473737A (zh) * | 2017-08-09 | 2017-12-15 | 三祥新材股份有限公司 | 用于固体氧化物燃料电池的复合氧化锆粉及其制备方法 |
CN108329026A (zh) * | 2018-03-30 | 2018-07-27 | 东北大学 | 氧传感器用电解质层和致密扩散层双层结构的制备方法 |
Non-Patent Citations (1)
Title |
---|
高戈等: "氧传感器用氧化锆的高温电导特性和机械性能的研究", 《第十三届全国高技术陶瓷学术年会摘要集》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109592711A (zh) * | 2018-11-11 | 2019-04-09 | 三祥新材股份有限公司 | 一种用于氧传感器的石墨烯改性氧化锆粉的制备方法 |
CN109592711B (zh) * | 2018-11-11 | 2021-06-22 | 三祥新材股份有限公司 | 一种用于氧传感器的石墨烯改性氧化锆粉的制备方法 |
CN113321502A (zh) * | 2020-12-30 | 2021-08-31 | 马鞍山云启金锐新材料有限公司 | 一种热喷涂用全稳定氧化锆粉体及其制备方法 |
CN114014651A (zh) * | 2021-09-10 | 2022-02-08 | 王必庆 | 一种水热法生产纳米复合氧化锆粉体的方法 |
CN114014651B (zh) * | 2021-09-10 | 2023-10-24 | 王必庆 | 一种水热法生产纳米复合氧化锆粉体的方法 |
CN116003125A (zh) * | 2022-12-06 | 2023-04-25 | 重庆文理学院 | 一种用于汽车尾气传感器的氧化锆陶瓷材料的制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108467264A (zh) | 一种用于氧传感器的复合氧化锆粉 | |
CN103626492B (zh) | 用于固体氧化物燃料电池中的氧化钪稳定的氧化锆粉体 | |
CN103708831B (zh) | 一种氧化钇稳定氧化锆粉体及其制备方法 | |
CN109704731B (zh) | 一种纳米钇稳定的氧化锆-氧化铝复合粉末的制备方法 | |
CN101891471B (zh) | 一种经氧化钇稳定的氧化锆纳米粉体的制备方法 | |
CN103524128A (zh) | 一种高比表面积氧化钇稳定氧化锆四方相纳米粉体的制备方法 | |
CN109721357A (zh) | 一种单分散粒度可控的纳米钇稳定的氧化锆粉末及其制备方法和应用 | |
CN102515752A (zh) | 一种透明陶瓷材料及其制备方法 | |
CN102983319A (zh) | 一种改性钛酸锂材料及其制备方法 | |
CN111233467A (zh) | 氧化物掺杂的钪锆粉体及其制备方法 | |
CN101830505A (zh) | 一种氧化钪稳定氧化锆粉体及其制备方法 | |
CN111717936A (zh) | 一种微波插层制备wo3纳米片的方法 | |
CN107473737B (zh) | 用于固体氧化物燃料电池的复合氧化锆粉及其制备方法 | |
CN108987799A (zh) | 一种全固态电池固态电解质及其制备方法和应用 | |
CN114249348A (zh) | 一种超细纳米锂镧锆氧基固态电解质粉末的制备方法 | |
CN207719320U (zh) | 一种改性锂电池电极结构、锂电池结构 | |
CN110817954B (zh) | 一种固体电解质、其制备方法及固体氧化物燃料电池 | |
CN106711420B (zh) | 一种锂电池钛酸锂复合负极材料的制备方法 | |
CN109592711B (zh) | 一种用于氧传感器的石墨烯改性氧化锆粉的制备方法 | |
Liu et al. | Synthesis of La0. 85Sr0. 15Ga0. 85Mg0. 15O2. 85 materials for SOFC applications by acrylamide polymerization | |
CN106747403A (zh) | 铝掺杂氧化锌粉体及其陶瓷制备方法 | |
CN111205090A (zh) | 氧化钪稳定氧化锆粉体及其制备方法 | |
CN104211395B (zh) | 一种应用于能量收集器件的无铅压电陶瓷材料及制备方法 | |
CN107364884B (zh) | 一种纳米氧化锆粉末制备方法 | |
CN109133921A (zh) | 一种钙钛矿型固态钠离子电解质材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180831 |