CN108461382B - 一种实现拓扑绝缘体硒化铋纳米材料Cu掺杂的制备方法 - Google Patents
一种实现拓扑绝缘体硒化铋纳米材料Cu掺杂的制备方法 Download PDFInfo
- Publication number
- CN108461382B CN108461382B CN201810114586.2A CN201810114586A CN108461382B CN 108461382 B CN108461382 B CN 108461382B CN 201810114586 A CN201810114586 A CN 201810114586A CN 108461382 B CN108461382 B CN 108461382B
- Authority
- CN
- China
- Prior art keywords
- bismuth selenide
- nano material
- film
- doping
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02491—Conductive materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B19/00—Selenium; Tellurium; Compounds thereof
- C01B19/007—Tellurides or selenides of metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02494—Structure
- H01L21/02496—Layer structure
- H01L21/02502—Layer structure consisting of two layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02568—Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/0257—Doping during depositing
- H01L21/02584—Delta-doping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02631—Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/10—Particle morphology extending in one dimension, e.g. needle-like
- C01P2004/16—Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/10—Particle morphology extending in one dimension, e.g. needle-like
- C01P2004/17—Nanostrips, nanoribbons or nanobelts, i.e. solid nanofibres with two significantly differing dimensions between 1-100 nanometer
Landscapes
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
本发明公开了一种实现拓扑绝缘体硒化铋纳米材料Cu掺杂的制备方法,所述纳米材料为纳米线和纳米带。本发明采用气相沉积法,以硒化铋为原料在管式炉中进行高温蒸发,并经惰性载气传输,在Au/Cu薄膜作催化剂的条件下制备出Cu掺杂硒化铋纳米材料。本发明制备的Cu掺杂硒化铋纳米材料具有很好的结晶性,纳米线和纳米带的长度在百微米级别,并通过X射线衍射分析(XRD)、X射线能量色散谱(EDS)和X射线激发俄歇电子能谱(XAES)证明了Cu的引入,以及掺入Cu的价态。
Description
技术领域
本发明涉及硒化铋纳米材料Cu掺杂的制备方法,属于半导体材料与微电子器件领域。
背景技术
硒化铋是一种窄带隙半导体半导体材料,早先由于其良好热电性质和红外探测效应而受到广泛关注。近年来,理论计算和实验工作证明硒化铋是一类强三维拓扑绝缘体,即体内是有能隙的绝缘态,表面则是导电的金属态,而且电子在表面传输时是一种自旋有序运动,避免了能量损耗,在低能耗和自旋电子器件的应用上有着重要的科研价值。在对硒化铋纳米材料的研究中,研究人员发现将适量的Cu插入硒化铋晶格中,可以得到一种表面金属、内部超导的拓扑超导体(Phys.Rev.Lett.,2010,104(5):057001,Phys.Rev.Lett.,2011,106(21):216803),Cu的引入给硒化铋带来了更加奇异的性质,引起了科研工作者的极大兴趣。在硒化铋实现Cu掺杂的制备方法中,具体有电化学法,热壁外延法,分子束外延法,但大都存在工艺复杂、产物结晶性差、纯度低的问题,对拓扑超导体的研究带来了不便,完善和优化Cu掺杂硒化铋纳米材料的制备方法有着重要意义。
发明内容
本发明的目的在于克服现有技术存在的上述不足,提供一种实现拓扑绝缘体硒化铋纳米材料Cu掺杂的制备方法,此方法简单可靠、重复性良好、制备的Cu掺杂硒化铋纳米材料具有良好的结晶性。
本发明的技术解决方案是:
实现拓扑绝缘体硒化铋纳米材料Cu掺杂的制备方法,包括以下步骤:
(1)使用磁控溅射仪在清洗后的SiO2/Si衬底(长度和宽度均为10mm)上镀上一层Cu膜,随后在Cu膜上再镀上一层Au膜(Cu膜和Au膜的厚度均为10nm),作为Au/Cu催化剂,其中Cu膜作为掺杂Cu的引入源,Au膜作为保护层防止Cu被氧化;
(2)将清洗好的石英管(内径为50mm,长度为1.5m)水平放置在管式炉内,在加热中心处放入硒化铋粉末(质量为0.02~0.03g,重量比浓度为99.999%,Alfa Asear),在载气下游方向距硒化铋粉末8~14cm处放置步骤(1)得到的SiO2/Si衬底,对石英管密封,密封方式为法兰密封,并用机械泵抽真空,石英管内压强≤130Pa;
(3)对步骤(2)中的管式炉进行加热,并通入载气(Ar),流量50sccm,设定加热温度为550~700℃,优选为650℃,升温速率10℃/min,保温2h后,自然冷却至室温;
(4)打开步骤(3)石英管的密封装置,得到长有Cu掺杂硒化铋纳米材料的衬底。
本发明的优点和有益效果:
本发明采用气相沉积法,在使用Cu/Au薄膜做催化剂的条件下,制备得到Cu掺硒化铋纳米材料(纳米线和纳米带)。本发明制备Cu掺硒化铋纳米材料的方法,具有步骤简单、成本低、可控行好的优点,制备得到的Cu掺硒化铋纳米线长度在百微米级别,且具有很高的结晶性,有望在拓扑超导领域获得重要的应用。
附图说明
图1为本发明实施例1制备的Cu掺杂硒化铋纳米材料与纯硒化铋纳米材料的XRD对比图。
图2为本发明实施例1制备的Cu掺杂硒化铋纳米材料与纯硒化铋纳米材料的XRD的(006)衍射峰的对比图。
图3为本发明实施例1制备的Cu掺杂硒化铋纳米材料的扫描电子显微镜图像(SEM),(a)图标尺10μm,(b)图标尺20μm。
图4为本发明实施例1制备的Cu掺杂硒化铋纳米材料的EDS图谱与相对应的SEM图像,(a)图是纳米带,(b)图是纳米带和纳米线。
图5为本发明实施例1制备的Cu掺杂硒化铋纳米材料的XAES拟合图。
图6为本发明实施例2制备的Cu掺杂硒化铋纳米材料的SEM图像。
具体实施方式
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特点和优点,而不是对本发明权利要求的限制。
实施例1
根据本发明提供的方法制备Cu掺杂硒化铋纳米材料,步骤如下:
(1)清洗好SiO2/Si衬底,并使用磁控溅射仪在SiO2/Si衬底上镀上一层Cu膜,随后在Cu膜上镀上一层Au膜,Cu膜和Au膜的厚度均为10nm,作为Au/Cu催化剂;
(2)将清洗好的石英管(内径为50mm,长度为1.5m)水平放置在管式炉内,在加热中心处放入质量为0.02~0.03g、重量比浓度为99.999%的硒化铋粉末(AlfaAsear),在载气下游方向距硒化铋粉末8~14cm处放置步骤(1)得到的SiO2/Si衬底,对石英管密封,密封方式为法兰密封,并用机械泵抽真空,压强≤130Pa;
(3)对步骤(2)中的管式炉进行加热,并通入载气(Ar),流量50sccm,设定加热温度为650℃,升温速率10℃/min,保温2h后,待其自然冷却至室温;
(4)打开步骤(3)石英管的密封装置,即可得到长有Cu掺杂硒化铋纳米材料的衬底。
本发明实施例1所得样品的XRD衍射峰(如图1所示)与硒化铋标准衍射峰相符合,说明制备产物为硒化铋相,X射线衍射峰形状锐利,表明产物具有很好的结晶性。另外在与纯硒化铋纳米材料的XRD比较中,发现Cu掺硒化铋的(006)衍射峰较纯硒化铋向高角度移动(如图2所示),根据布拉格方程2dsinθ=nλ,衍射角增大即晶格间距d减小,Cu的原子半径要小于Bi的原子半径初步表明Cu原子替代了Bi原子,导致晶格间距d减小。
本发明实施例1所得样品的SEM图像(如图3所示),可以看出所得产物的形貌为纳米线,数量较多,长度可达百微米级别。
本发明实施例1所得样品的EDS图谱和相对应的取点区域的SEM图像(如图4所示),其中,图4(a)的EDS测试取点的Cu掺硒化铋纳米带宽度较窄,且周围是衬底,在EDS测试结果中发现有Au的出现,表明测试受到衬底上Cu的影响。为了避免衬底上Cu的影响,选择在较大面积的纳米带上进行测试(如图4(b)所示),测试结果显示没有Au的出现,说明测试没有受到衬底的影响,EDS测试结果中的Cu来源于纳米材料,表明本发明方法确实在硒化铋纳米材料中引入了Cu。
本发明实施例1所得样品的X射线激发俄歇电子能谱(如图5所示),在测试之前将实例1所得样品进行超声震荡30min,静置取上层清液中的纳米线和纳米带进行测试,以避免衬底上Cu的影响,经拟合分析得到硒化铋纳米材料中掺入Cu的价态为0价和+1价。
实施例2
根据本发明提供的方法制备Cu掺杂硒化铋纳米材料,步骤如下:
(1)清洗好SiO2/Si衬底,并使用磁控溅射仪在SiO2/Si衬底上镀上一层Cu膜,随后在Cu膜上镀上一层Au膜,Cu膜和Au膜的厚度均为10nm,作为Au/Cu催化剂;
(2)将清洗好的石英管(内径为50mm,长度为1.5m)水平放置在管式炉内,在加热中心处放入质量为0.02~0.03g、重量比浓度为99.999%的硒化铋粉末(AlfaAsear),在载气下游方向距硒化铋粉末8~14cm处放置步骤(1)得到的SiO2/Si衬底,对石英管密封,密封方式为法兰密封,并用机械泵抽真空,压强≤130Pa;
(3)对步骤(2)中的管式炉进行加热,并通入载气(Ar),流量50sccm,设定加热温度为550℃,升温速率10℃/min,保温2h后,待其自然冷却至室温;
(4)打开步骤(3)石英管的密封装置,即可得到长有Cu掺杂硒化铋纳米材料的衬底。
本发明实施例2所得样品的SEM图像(如图6所示),可以看出在550℃加热温度下,Cu掺杂硒化铋纳米线和纳米带在密度上较实施例1样品要低,纳米线长度30~50μm。
实施例3
本实施例与实施例1不同的是,步骤(3)中的加热温度设定为600℃,其他与实施例1相同。
实施例4
本实施例与实施例1不同的是,步骤(3)中的加热温度设定为700℃,其他与实施例1相同。
Claims (6)
1.一种实现拓扑绝缘体硒化铋纳米材料Cu掺杂的制备方法,其特征在于,采用气相沉积法,通过加热硒化铋粉末,经惰性气体进行气相输运,在使用Au/Cu薄膜做催化剂的条件下,在SiO2/Si衬底上制备得到Cu掺杂硒化铋纳米材料;包括以下步骤:
(1)使用磁控溅射仪在SiO2/Si衬底上镀上一层Cu膜,随后在Cu膜上再镀上一层Au膜;
(2)将清洗后的石英管水平放置在管式炉内,在加热中心处放入硒化铋粉末,在载气下游方向距硒化铋粉末8~14cm距离处放置步骤(1)得到的SiO2/Si衬底,密封石英管,并用机械泵抽真空;
(3)对步骤(2)中的管式炉进行加热,并通入惰性载气,在设定温度下保温后,自然冷却;
(4)打开步骤(3)中的石英管密封装置,得到长有Cu掺杂硒化铋纳米材料的衬底。
2.根据权利要求1所述的实现拓扑绝缘体硒化铋纳米材料Cu掺杂的制备方法,其特征在于,步骤(1)中所述的SiO2/Si衬底的长度和宽度为10mm,Cu膜和Au膜的厚度为10nm;步骤(2)中硒化铋粉末的质量为0.02~0.03g,石英管内径为50mm,长度为1.5m。
3.根据权利要求1所述的实现拓扑绝缘体硒化铋纳米材料Cu掺杂的制备方法,其特征在于,步骤(2)所述的石英管密封方式为法兰密封,石英管内压强≤130Pa。
4.根据权利要求1所述的实现拓扑绝缘体硒化铋纳米材料Cu掺杂的制备方法,其特征在于,步骤(3)所述的载气为Ar气,流量50sccm。
5.根据权利要求1所述的实现拓扑绝缘体硒化铋纳米材料Cu掺杂的制备方法,其特征在于,步骤(3)中设定加热温度为550~700℃,升温速率10℃/min,保温时长2h,自然冷却至室温。
6.根据权利要求5所述的实现拓扑绝缘体硒化铋纳米材料Cu掺杂的制备方法,其特征在于,步骤(3)中设定加热温度为650℃。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810114586.2A CN108461382B (zh) | 2018-02-06 | 2018-02-06 | 一种实现拓扑绝缘体硒化铋纳米材料Cu掺杂的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810114586.2A CN108461382B (zh) | 2018-02-06 | 2018-02-06 | 一种实现拓扑绝缘体硒化铋纳米材料Cu掺杂的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108461382A CN108461382A (zh) | 2018-08-28 |
CN108461382B true CN108461382B (zh) | 2020-06-19 |
Family
ID=63239444
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810114586.2A Expired - Fee Related CN108461382B (zh) | 2018-02-06 | 2018-02-06 | 一种实现拓扑绝缘体硒化铋纳米材料Cu掺杂的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108461382B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115341272B (zh) * | 2022-08-02 | 2023-09-15 | 中山大学 | 一种毫米级二维拓扑材料硒化铋单晶的制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102020253A (zh) * | 2010-11-09 | 2011-04-20 | 北京大学 | 一种拓扑绝缘体材料及其制备方法 |
CN102063950A (zh) * | 2010-11-09 | 2011-05-18 | 北京大学 | 一种拓扑绝缘体材料及其制备方法 |
CN103046110A (zh) * | 2011-10-13 | 2013-04-17 | 国家纳米科学中心 | 一种制备单晶Bi2Se3纳米结构的方法 |
CN103400760A (zh) * | 2013-08-05 | 2013-11-20 | 电子科技大学 | 一种在硅衬底上生长硒化铋单晶薄膜的方法及装置 |
CN103526297A (zh) * | 2013-10-17 | 2014-01-22 | 西南交通大学 | 一种制备拓扑绝缘体Bi2Se3薄膜的方法 |
CN107287577A (zh) * | 2016-04-11 | 2017-10-24 | 新疆大学 | 一种制备一维硒化铋纳米线的方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8860078B2 (en) * | 2012-05-14 | 2014-10-14 | The Johns Hopkins University | Simplified devices utilizing novel pn-semiconductor structures |
-
2018
- 2018-02-06 CN CN201810114586.2A patent/CN108461382B/zh not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102020253A (zh) * | 2010-11-09 | 2011-04-20 | 北京大学 | 一种拓扑绝缘体材料及其制备方法 |
CN102063950A (zh) * | 2010-11-09 | 2011-05-18 | 北京大学 | 一种拓扑绝缘体材料及其制备方法 |
CN103046110A (zh) * | 2011-10-13 | 2013-04-17 | 国家纳米科学中心 | 一种制备单晶Bi2Se3纳米结构的方法 |
CN103400760A (zh) * | 2013-08-05 | 2013-11-20 | 电子科技大学 | 一种在硅衬底上生长硒化铋单晶薄膜的方法及装置 |
CN103526297A (zh) * | 2013-10-17 | 2014-01-22 | 西南交通大学 | 一种制备拓扑绝缘体Bi2Se3薄膜的方法 |
CN107287577A (zh) * | 2016-04-11 | 2017-10-24 | 新疆大学 | 一种制备一维硒化铋纳米线的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108461382A (zh) | 2018-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tseng et al. | Characterization and field‐emission properties of needle‐like zinc oxide nanowires grown vertically on conductive zinc oxide films | |
Zhou et al. | Effect of growth base pressure on the thermoelectric properties of indium antimonide nanowires | |
Wang et al. | Zn nanobelts: a new quasi one-dimensional metal nanostructure | |
CN110294463B (zh) | 一种过渡族元素掺杂的室温铁磁性二维材料及制备方法 | |
Li et al. | Facile Au-assisted epitaxy of nearly strain-free GaN films on sapphire substrates | |
CN111334780A (zh) | 一种黑磷薄膜、其制备方法和应用 | |
Zhang et al. | Routes to grow well‐aligned arrays of ZnSe nanowires and nanorods | |
Park et al. | Enhanced gas sensing properties of Bi 2 O 3-core/In 2 O 3-shell nanorod gas sensors | |
CN108461382B (zh) | 一种实现拓扑绝缘体硒化铋纳米材料Cu掺杂的制备方法 | |
Lan et al. | Improved thermoelectric properties of C-doped Bi2Te3 films following short-range atomic diffusion induced by pulsed electric field treatment | |
Kasanaboina et al. | Effect of Growth Parameters and Substrate Surface Preparation for High-Density Vertical GaAs/GaAsSb Core–Shell Nanowires on Silicon with Photoluminescence Emission at 1.3 μ m | |
CN115465843B (zh) | 碲纳米带阵列及其制备方法 | |
Zhai et al. | Optical properties of ZnO nanotubes | |
KR101397451B1 (ko) | Cu(In,Ga)Se2 나노로드 또는 나노와이어의 제조방법 및 이를 포함하는 재료 | |
Mukherjee et al. | Synthesis, characterization and electrical properties of hybrid Zn2GeO4–ZnO beaded nanowire arrays | |
CN110079787A (zh) | 一种表面活性剂辅助气相生长小直径、高性能iii-v族半导体纳米线的方法 | |
Johari et al. | Structural, optical and sensing properties of pure and Cu-doped SnO2 nanowires | |
Fan et al. | A low-temperature evaporation route for ZnO nanoneedles and nanosaws | |
CN102304699A (zh) | 一种Mn掺杂AlN稀磁半导体纳米棒阵列的制备方法 | |
Wang et al. | Synthesis of ultralong Si 3 N 4 nanowires by a simple thermal evaporation method | |
Song et al. | Low-temperature synthesis of ZnO nanonails | |
Liang et al. | A simple method to synthesize worm-like AlN nanowires and its field emission studies | |
CN118308786B (zh) | 一种低维二氧化碲晶体的异质外延方法 | |
CN105019028B (zh) | 一种制备特定形貌和晶体结构的InAs纳米线的方法 | |
Hu et al. | Synthesis and Photoluminscence Properties of Morphology-and Microstructure-Controlled S-Doped ZnO Nanostructures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200619 Termination date: 20210206 |