CN108445946A - 量子密钥分配系统中apd的温度自适应控制电路及方法 - Google Patents

量子密钥分配系统中apd的温度自适应控制电路及方法 Download PDF

Info

Publication number
CN108445946A
CN108445946A CN201810295016.8A CN201810295016A CN108445946A CN 108445946 A CN108445946 A CN 108445946A CN 201810295016 A CN201810295016 A CN 201810295016A CN 108445946 A CN108445946 A CN 108445946A
Authority
CN
China
Prior art keywords
resistance
apd
control circuit
temperature
dac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810295016.8A
Other languages
English (en)
Inventor
吕利影
李威
徐焕银
刘云
苗春华
李风雨
薛坤
张奇
曹颖
王宝慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Asky Quantum Technology Co Ltd
Original Assignee
Anhui Asky Quantum Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Asky Quantum Technology Co Ltd filed Critical Anhui Asky Quantum Technology Co Ltd
Priority to CN201810295016.8A priority Critical patent/CN108445946A/zh
Publication of CN108445946A publication Critical patent/CN108445946A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/462Regulating voltage or current wherein the variable actually regulated by the final control device is dc as a function of the requirements of the load, e.g. delay, temperature, specific voltage/current characteristic

Abstract

本发明公开了一种量子密钥分配系统中APD的温度自适应控制电路及方法,包括温度采样电路、高压控制电路和电源,所述温度采样电路和高压控制电路均与电源连接,所述温度采样电路和高压控制电路连接,所述温度采样电路用于采样环境温度并发送信号到高压控制电路,所述高压控制电路用于产生APD偏压;本发明有效的实现温度自适应控制,能在系统工作环境温度发生变化时,自动调整雪崩光电二极管APD所需的偏压VAPD,使得雪崩光电二极管APD的灵敏度保持稳定,工作在合理的工作区间内。

Description

量子密钥分配系统中APD的温度自适应控制电路及方法
技术领域
本发明涉及量子密钥分配系统中同步光探测技术领域,具体涉及一种量子密钥分配系统中APD的温度自适应控制电路及方法。
背景技术
同步光探测技术在诸多领域已经有着广泛的应用。在量子信息技术特别是量子密钥分配系统中,同步光探测也起着至关重要的作用。在同步光探测正常的基础上,才能进行密钥生成及分配。
量子密钥分配系统在工作时需要在发射端发出固定脉冲数的同步光,在接收端进行同步光探测,探测的结果必须与发出的脉冲数一致,才能进行后续的对基、纠错、保密放大,产生密钥。
量子密钥分配系统中采用内置跨阻放大器TIA的雪崩二极管(简称“APD”)实现同步光探测。
APD刚能发生自持雪崩增益时加在APD两端的电压,称为APD的雪崩电压。雪崩电压与APD的工作温度有关,当温度降低时,雪崩电压随之降低。
量子密钥分配系统中,若使用固定的APD偏压,当工作温度降低时,加载的偏压VAPD偏高,APD的灵敏度会偏高,容易造成误触发,导致同步光计数偏多,误码率偏高,系统工作异常;当工作温度升高时,加载的偏压VAPD偏低,APD的灵敏度会降低,导致同步光计数偏少,系统工作异常。
因此需要提供随温度变化的偏压VAPD,才能保证系统正常工作。因此目前急需一种温度自适应偏压控制电路,在温度变化时,可提供合适的偏压VAPD,保证系统正常工作。
发明内容
本发明所要解决的技术问题是针对上述现有技术的不足提供一种量子密钥分配系统中APD的温度自适应控制电路及方法,本量子密钥分配系统中APD的温度自适应控制电路及方法有效的实现温度自适应控制,能在系统工作环境温度发生变化时,自动调整雪崩光电二极管APD所需的偏压VAPD,使得雪崩光电二极管APD的灵敏度保持稳定,工作在合理的工作区间内。
为实现上述技术目的,本发明采取的技术方案为:
一种量子密钥分配系统中APD的温度自适应控制电路,包括温度采样电路、高压控制电路和电源,所述温度采样电路和高压控制电路均与电源连接,所述温度采样电路和高压控制电路连接,所述高压控制电路用于产生APD偏压。
作为本发明进一步改进的技术方案,所述温度采样电路包括热敏电阻R1、电阻R2、电阻R3和集成运算放大器U1,所述热敏电阻R1的一端连接电源,所述热敏电阻R1的另一端分别与电阻R2的一端和集成运算放大器U1的引脚3连接,所述电阻R2的另一端连接地线,所述集成运算放大器U1的引脚4与电阻R3的一端连接,所述集成运算放大器U1的引脚2连接地线,所述集成运算放大器U1的引脚5连接电源,所述集成运算放大器U1的引脚1和电阻R3的另一端连接。
作为本发明进一步改进的技术方案,所述高压控制电路包括电阻R4、电阻R5、电阻R6、电阻R7、电阻R8、电阻R9、集成运算放大器U2和三极管Q1,所述电阻R8的一端与集成运算放大器U2的引脚4连接,所述集成运算放大器U2的引脚5连接电源,所述集成运算放大器U2的引脚2连接地线,所述集成运算放大器U2的引脚3分别与电阻R5的一端和电阻R6的一端连接,所述电阻R5的另一端连接地线,所述电阻R6的另一端分别与电阻R4的一端、电阻R7的一端和三极管Q1的集电极连接,所述电阻R4的另一端连接电源,所述三极管Q1的基极与集成运算放大器U2的引脚1连接,所述三极管Q1的发射极与电阻R9的一端连接,所述电阻R9的另一端连接地线,所述电阻R7的另一端用于输出APD偏压。
作为本发明进一步改进的技术方案,还包括单片机控制电路、ADC模数转换电路和DAC数模转换电路,所述温度采样电路与所述ADC模数转换电路连接,所述ADC模数转换电路与单片机控制电路连接,所述单片机控制电路与DAC数模转换电路连接,所述DAC数模转换电路与所述高压控制电路连接,所述单片机控制电路、ADC模数转换电路和DAC数模转换电路均与电源连接。
作为本发明进一步改进的技术方案,所述ADC模数转换电路采用ADC模数转换芯片MAX1087,所述DAC数模转换电路采用DAC数模转换芯片AD5624。
为实现上述技术目的,本发明采取的另一个技术方案为:
一种量子密钥分配系统中APD的温度自适应控制电路的控制方法,包括以下步骤:
步骤1:温度采样电路通过热敏电阻R1产生与环境温度T相关的电压值Vtemp,单片机控制电路控制ADC模数转换电路对电压值Vtemp进行采样,ADC模数转换电路产生与电压值Vtemp相对应的数字量A;
步骤2:获取ADC模数转换电路产生的数字量A与单片机控制电路需要向DAC数模转换电路输入的数字量D的关系式;
步骤3:单片机控制电路接收ADC模数转换电路产生的数字量A并根据步骤2的关系式计算出数字量D的值;
步骤4:单片机控制电路向DAC数模转换电路输入数字量D,DAC数模转换电路产生与数字量D相对应的电压Vb
步骤5:高压控制电路接收DAC数模转换电路产生的电压Vb,并产生APD偏压VAPD从而为APD提供温度自适应的偏压VAPD
作为本发明进一步改进的技术方案,所述的步骤2包括以下步骤:
(1)获取雪崩光电二极管APD的偏压VAPD与环境温度T的关系式:
VAPD=k1×T+λVBR (公式1);
其中k1为雪崩光电二极管APD的温度系数,T为雪崩光电二极管APD工作的环境温度,λ为雪崩光电二极管APD的偏压系数,VBR为雪崩光电二极管APD在25℃工作温度下的雪崩电压;
(2)获取温度采样电路产生的电压值Vtemp与环境温度T的关系式:
Vtemp=k3×T+b2 (公式2);
通过热敏电阻R1的电阻值与环境温度T的关系式和公式(2)得到热敏电阻R1的电阻值与电压值Vtemp的关系式,测量不同环境温度下的多组热敏电阻R1的电阻值与其对应的电压值Vtemp,将多组热敏电阻R1的电阻值与其对应的电压值Vtemp代入热敏电阻R1的电阻值与电压值Vtemp的关系式,计算获得k3和b2的值;
(3)计算ADC模数转换电路产生的数字量A:
其中VREF1为ADC模数转换电路中采用的ADC模数转换芯片的基准电压,X为ADC模数转换电路中采用的ADC模数转换芯片的采样精度;
(4)根据公式(2)和公式(3)得到ADC模数转换电路产生的数字量A与环境温度T的关系式;
(5)计算DAC数模转换电路产生的电压值Vb和高压控制电路产生的APD偏压VAPD的关系式如下:
VAPD=k4×Vb (公式4);
其中Vb为DAC数模转换电路产生的电压值,D为单片机控制电路向DAC数模转换电路输入数字量,VREF2为DAC数模转换电路中采用的DAC数模转换芯片的基准电压,Y为DAC数模转换电路中采用的DAC数模转换芯片的采样精度;R6为高压控制电路中的电阻R6的电阻值,R5为高压控制电路中的电阻R5的电阻值;
(6)根据公式(1)、公式(4)和步骤(4)获得的关系式,得到数字量D与数字量A之间的关系式:
本发明的有益效果为:
本发明利用雪崩二极管APD的雪崩电压与工作环境温度的关系,采用温度采样电路对工作环境温度进行采样,雪崩二极管APD的偏压VAPD可以根据系统工作环境温度的变化,调整到合适的值。本发明可以通过2种电路实现上述功能,纯硬件控制电路:通过温度采样电路和高压控制电路输出雪崩二极管APD所需的偏压VAPD,电路设计简单化、小型化、成本低。软件结合硬件的控制方式:通过温度采样电路、高压控制电路和单片机控制电路输出雪崩二极管APD所需的偏压VAPD,电路设计简单,控制灵活。
附图说明
图1为本发明实施例1的结构示意图。
图2为本发明实施例1的电路原理示意图。
图3为本发明实施例2的结构示意图。
图4为本发明实施例2的温度采样电路与ADC模数转换电路连接的电路原理示意图。
图5为本发明实施例2的DAC数模转换电路和高压控制电路连接的电路原理示意图。
具体实施方式
下面根据图1至图5对本发明的具体实施方式作出进一步说明:
实施例1:
参见图1,一种量子密钥分配系统中APD的温度自适应控制电路,包括温度采样电路、高压控制电路和电源,所述温度采样电路和高压控制电路均与电源连接,所述温度采样电路和高压控制电路连接,所述温度采样电路用于采样环境温度并发送信号到高压控制电路,所述高压控制电路用于产生APD偏压。
参见图2,所述温度采样电路包括热敏电阻R1、电阻R2、电阻R3和集成运算放大器U1,所述热敏电阻R1的一端连接电源,所述热敏电阻R1的另一端分别与电阻R2的一端和集成运算放大器U1的引脚3连接,所述电阻R2的另一端连接地线,所述集成运算放大器U1的引脚4与电阻R3的一端连接,所述集成运算放大器U1的引脚2连接地线,所述集成运算放大器U1的引脚5连接电源,所述集成运算放大器U1的引脚1和电阻R3的另一端均与高压控制电路连接。
参见图2,所述高压控制电路包括电阻R4、电阻R5、电阻R6、电阻R7、电阻R8、电阻R9、集成运算放大器U2和三极管Q1,所述集成运算放大器U1的引脚1和电阻R3的另一端均与电阻R8的一端连接,所述电阻R8的另一端与集成运算放大器U2的引脚4连接,所述集成运算放大器U2的引脚5连接电源,所述集成运算放大器U2的引脚2连接地线,所述集成运算放大器U2的引脚3分别与电阻R5的一端和电阻R6的一端连接,所述电阻R5的另一端连接地线,所述电阻R6的另一端分别与电阻R4的一端、电阻R7的一端和三极管Q1的集电极连接,所述电阻R4的另一端连接电源,所述三极管Q1的基极与集成运算放大器U2的引脚1连接,所述三极管Q1的发射极与电阻R9的一端连接,所述电阻R9的另一端连接地线,所述电阻R7的另一端用于输出APD偏压。
温度采样电路采用热敏电阻R1对温度进行采样。当温度变化,温度采样电路产生相应的控制电压信号Vctrl。该电压信号Vctrl经高压控制电路放大后,产生所需的APD偏压VAPD
根据APD器件的手册可知,APD偏压VAPD与环境温度T的关系式如下:
VAPD=k1×T+λVBR (公式1.1)
其中k1为雪崩光电二极管APD的温度系数,T为雪崩光电二极管APD工作的环境温度,λ为雪崩光电二极管APD的偏压系数,VBR为雪崩光电二极管APD在25℃工作温度下的雪崩电压;
如图2所示,电路中R1为热敏电阻,芯片U1为集成运放,当环境温度T变化时,热敏电阻R1阻值发生变化,集成运算放大器U1产生相应的电压信号Vctrl,输出电压Vctrl与环境温度T的关系满足:
Vctrl=k12×T+b11 (公式1.2)
由于随着环境温度的增加,热敏电阻R1的阻值线性增大,热敏电阻R1与环境温度T具有一定的关系,而集成运算放大器U1产生相应的电压信号Vctrl与热敏电阻R1、电阻R2和电阻R3有关,因此电压信号Vctrl与环境温度T的关系式即可计算出来,k12和b11为可计算出来的参数。
芯片U2是一款低压精密的集成运放。Q1是一款耐高压的三极管,对集成运放U2输出电流进行调整以实现集成运放U2的负反馈。集成运放U2通过负反馈将集成运放U2的同相输入端的电压调整到与温度采样电路输入到集成运放U2的反相输入端的电压相同。则输出可调偏压VAPD与温度采样电路输入的电压Vctrl的关系式满足:
其中R5为电阻R5的电阻值,R6为电阻R6的电阻值,根据公式1.2和1.3可推算出,可调偏压VAPD与环境温度T的关系式如下:
对比公式1.1和1.4,可得:
其中k1、λVBR为确定值,为了得到k1和λVBR,可选取合适的k12、b11、R5和R6,即可实现公式1.1所需的关系式。其中k12和b11的值与热敏电阻R1、电阻R2和电阻R3有关,通过选取合适的电阻值的热敏电阻R1、电阻R2和电阻R3得到合适的k12、b11。即实现当环境温度变化时,可调偏压VAPD实时进行相应的调整,从而保证APD工作在合理的区间内。
本实施例提供的温度自适应控制电路,利用雪崩二极管APD的雪崩电压与工作环境温度的关系,采用热敏电阻对工作环境温度进行采样。通过温度自适应电路输出雪崩二极管APD所需的偏压VAPD。即偏压VAPD可以根据量子密钥分配系统的工作环境温度的变化,调整到合适的值,保证量子密钥分配系统正常工作。本实施例只需搭建硬件电路,就能实现温度的实时采样及输出偏压的实时调节,电路设计小型化,成本较低。
实施例2:
参见图3,一种量子密钥分配系统中APD的温度自适应控制电路,包括温度采样电路、高压控制电路、电源、单片机控制电路、ADC模数转换电路和DAC数模转换电路,所述温度采样电路与所述ADC模数转换电路连接,所述ADC模数转换电路与单片机控制电路连接,所述单片机控制电路与DAC数模转换电路连接,所述DAC数模转换电路与所述高压控制电路连接,所述温度采样电路、高压控制电路、单片机控制电路、ADC模数转换电路和DAC数模转换电路均与电源连接。所述温度采样电路用于采样环境温度并发送信号到ADC模数转换电路,所述ADC模数转换电路用于发送信号到单片机控制电路,所述单片机控制电路用于发送信号到DAC数模转换电路,DAC数模转换电路用于发送信号到高压控制电路,所述高压控制电路用于产生APD偏压。
参见图4,所述温度采样电路包括热敏电阻R1、电阻R2、电阻R3和集成运算放大器U1,所述热敏电阻R1的一端连接电源,所述热敏电阻R1的另一端分别与电阻R2的一端和集成运算放大器U1的引脚3连接,所述电阻R2的另一端连接地线,所述集成运算放大器U1的引脚4与电阻R3的一端连接,所述集成运算放大器U1的引脚2连接地线,所述集成运算放大器U1的引脚5连接电源,所述集成运算放大器U1的引脚1和电阻R3的另一端连接,向ADC模数转换电路输出电压信号Vtemp。本实施例采用的ADC模数转换电路中的ADC模数转换芯片的分辨率为10bit。温度采样电路的设计原理图如图4所示,其中:R1是热敏电阻。芯片U1是集成运放。当温度T变化时,R1阻值发生变化,U1产生相应的电压信号Vtemp,由ADC模数转换电路的ADC芯片进行采样。
参见图5,所述高压控制电路包括电阻R4、电阻R5、电阻R6、电阻R7、电阻R8、电阻R9、集成运算放大器U2和三极管Q1,所述电阻R8的一端与集成运算放大器U2的引脚4连接,所述集成运算放大器U2的引脚5连接电源,所述集成运算放大器U2的引脚2连接地线,所述集成运算放大器U2的引脚3分别与电阻R5的一端和电阻R6的一端连接,所述电阻R5的另一端连接地线,所述电阻R6的另一端分别与电阻R4的一端、电阻R7的一端和三极管Q1的集电极连接,所述电阻R4的另一端连接电源,所述三极管Q1的基极与集成运算放大器U2的引脚1连接,所述三极管Q1的发射极与电阻R9的一端连接,所述电阻R9的另一端连接地线,所述电阻R7的另一端用于向APD输出APD偏压。本实施例采用的DAC数模转换电路中的DAC数模转换芯片的分辨率可为12bit,DAC数模转换电路将单片机控制电路输入的数字量D转换为电压Vb,并发送到高压控制电路中的电阻R8的一端,Q1是一款耐高压的三极管,对集成运放U2输出电流进行调整以实现集成运放的负反馈。集成运放U2通过负反馈将集成运放U2的同相输入端的电压调整到与输入到集成运放U2的反相输入端的电压相同,最后通过电阻R7的另一端向APD输出APD偏压。
其中ADC模数转换电路采用ADC模数转换芯片MAX1087,DAC数模转换电路采用DAC数模转换芯片AD5624,单片机控制电路采用STM32103系列单片机,例如单片机STM32103T4。
本实施例还提供一种量子密钥分配系统中APD的温度自适应控制电路的控制方法,参见图3,温度采样电路采用热敏电阻R1对APD器件的温度T进行采样,将温度T转换成电压Vtemp。单片机控制电路控制ADC模数转换电路内的模数转换芯片ADC将该电压信号Vtemp转换成数字量A。单片机控制电路根据预设的关系式:D=k2×A+b1(通过该关系式,可实现DAC数模转换电路输出的电压Vb与Vtemp的对应关系),换算出所需的数字量D。单片机控制电路将数字量D通过DAC数模转换电路输出相应的电压Vb。Vb经过高压控制电路被放大后产生APD所需的偏压VAPD
具体步骤包括:
步骤1:温度采样电路采用热敏电阻R1对APD器件的环境温度T进行采样,并将环境温度T进转换为电压,输出与环境温度T相关的电压值Vtemp,单片机控制电路控制ADC模数转换电路对电压值Vtemp进行采样,ADC模数转换电路产生与电压值Vtemp相对应的数字量A;
步骤2:获取ADC模数转换电路产生的数字量A与单片机控制电路需要向DAC数模转换电路输入的数字量D的关系式;
步骤3:单片机控制电路接收ADC模数转换电路产生的数字量A并根据步骤2的关系式计算出数字量D的值;
步骤4:单片机控制电路向DAC数模转换电路输入数字量D,DAC数模转换电路产生与数字量D相对应的电压Vb
步骤5:高压控制电路接收DAC数模转换电路产生的电压Vb,并产生APD偏压VAPD从而为APD提供温度自适应的偏压VAPD
所述的步骤2包括以下步骤:
(1)获取雪崩光电二极管APD的偏压VAPD与环境温度T的关系式:
VAPD=k1×T+λVBR (公式1);
其中k1为雪崩光电二极管APD的温度系数,T为雪崩光电二极管APD工作的环境温度,λ为雪崩光电二极管APD的偏压系数,VBR为雪崩光电二极管APD在25℃工作温度下的雪崩电压;
(2)获取温度采样电路产生的电压值Vtemp与环境温度T的关系式:
Vtemp=k3×T+b2 (公式2);
通过热敏电阻R1的电阻值与环境温度T的关系式和公式(2)得到热敏电阻R1的电阻值与电压值Vtemp的关系式,测量不同环境温度下的多组热敏电阻R1的电阻值与其对应的电压值Vtemp,将多组热敏电阻R1的电阻值与其对应的电压值Vtemp代入热敏电阻R1的电阻值与电压值Vtemp的关系式,通过曲线拟合获得k3和b2的值;
(3)计算ADC模数转换电路产生的数字量A:
其中VREF1为ADC模数转换电路中采用的ADC模数转换芯片的基准电压,X为ADC模数转换电路中采用的ADC模数转换芯片的采样精度(位数);
(4)根据公式2和公式3得到ADC模数转换电路产生的数字量A与环境温度T的关系式;
(5)如图5所示,芯片U2是集成运放。Q1是一款耐高压的三极管,对集成运放U2输出电流进行调整以实现集成运放U2的负反馈。集成运放U2通过负反馈将集成运放U2的同相输入端的电压调整到与集成运放U2的反相输入端的电压相同;DAC数模转换电路产生的电压值Vb和高压控制电路产生的APD偏压VAPD的关系式如下:
VAPD=k4×Vb (公式4);
其中Vb为DAC数模转换电路产生的电压值,D为单片机控制电路向DAC数模转换电路输入数字量,VREF2为DAC数模转换电路中采用的DAC数模转换芯片的基准电压,Y为DAC数模转换电路中采用的DAC数模转换芯片的采样精度;R6为高压控制电路中的电阻R6的电阻值,R5为高压控制电路中的电阻R5的电阻值;
(6)根据公式1、公式4和步骤(4)获得的关系式,得到数字量D与数字量A之间的关系式:
其中k1、k3、k4、b2、b3、VREF1、VREF2、λVBR、X、Y已在上述过程中确定。
公式5即单片机控制电路所需的预设关系式。由此,系统运行过程中,只需通过单片机控制电路获取温度相关的采样值A,代入公式5计算并输出所需的数字量D,即可实现温度自适应。即当工作环境的温度变化时,偏压也随之产生相应变化,实现温度自适应。
本发明利用雪崩二极管APD的雪崩电压与工作环境温度的关系,采用温度采样电路对工作环境温度进行采样,雪崩二极管APD的偏压VAPD可以根据系统工作环境温度的变化,调整到合适的值。本发明描述的上述2种实施例均可实现上述功能,纯硬件控制电路:通过温度采样电路和高压控制电路输出雪崩二极管APD所需的偏压VAPD,电路设计简单化、小型化、成本低。软件结合硬件的控制方式:通过温度采样电路、高压控制电路和单片机控制电路输出雪崩二极管APD所需的偏压VAPD,电路设计简单,控制灵活。
本发明的保护范围包括但不限于以上实施方式,本发明的保护范围以权利要求书为准,任何对本技术做出的本领域的技术人员容易想到的替换、变形、改进均落入本发明的保护范围。

Claims (7)

1.一种量子密钥分配系统中APD的温度自适应控制电路,其特征在于:包括温度采样电路、高压控制电路和电源,所述温度采样电路和高压控制电路均与电源连接,所述温度采样电路和高压控制电路连接,所述高压控制电路用于产生APD偏压。
2.根据权利要求1所述的量子密钥分配系统中APD的温度自适应控制电路,其特征在于:所述温度采样电路包括热敏电阻R1、电阻R2、电阻R3和集成运算放大器U1,所述热敏电阻R1的一端连接电源,所述热敏电阻R1的另一端分别与电阻R2的一端和集成运算放大器U1的引脚3连接,所述电阻R2的另一端连接地线,所述集成运算放大器U1的引脚4与电阻R3的一端连接,所述集成运算放大器U1的引脚2连接地线,所述集成运算放大器U1的引脚5连接电源,所述集成运算放大器U1的引脚1和电阻R3的另一端连接。
3.根据权利要求2所述的量子密钥分配系统中APD的温度自适应控制电路,其特征在于:所述高压控制电路包括电阻R4、电阻R5、电阻R6、电阻R7、电阻R8、电阻R9、集成运算放大器U2和三极管Q1,所述电阻R8的一端与集成运算放大器U2的引脚4连接,所述集成运算放大器U2的引脚5连接电源,所述集成运算放大器U2的引脚2连接地线,所述集成运算放大器U2的引脚3分别与电阻R5的一端和电阻R6的一端连接,所述电阻R5的另一端连接地线,所述电阻R6的另一端分别与电阻R4的一端、电阻R7的一端和三极管Q1的集电极连接,所述电阻R4的另一端连接电源,所述三极管Q1的基极与集成运算放大器U2的引脚1连接,所述三极管Q1的发射极与电阻R9的一端连接,所述电阻R9的另一端连接地线,所述电阻R7的另一端用于输出APD偏压。
4.根据权利要求1或3所述的量子密钥分配系统中APD的温度自适应控制电路,其特征在于:还包括单片机控制电路、ADC模数转换电路和DAC数模转换电路,所述温度采样电路与所述ADC模数转换电路连接,所述ADC模数转换电路与单片机控制电路连接,所述单片机控制电路与DAC数模转换电路连接,所述DAC数模转换电路与所述高压控制电路连接,所述单片机控制电路、ADC模数转换电路和DAC数模转换电路均与电源连接。
5.根据权利要求4所述的量子密钥分配系统中APD的温度自适应控制电路,其特征在于:所述ADC模数转换电路采用ADC模数转换芯片MAX1087,所述DAC数模转换电路采用DAC数模转换芯片AD5624。
6.一种基于权利要求4所述的量子密钥分配系统中APD的温度自适应控制电路的控制方法,其特征在于:包括以下步骤:
步骤1:温度采样电路通过热敏电阻R1产生与环境温度T相关的电压值Vtemp,单片机控制电路控制ADC模数转换电路对电压值Vtemp进行采样,ADC模数转换电路产生与电压值Vtemp相对应的数字量A;
步骤2:获取ADC模数转换电路产生的数字量A与单片机控制电路需要向DAC数模转换电路输入的数字量D的关系式;
步骤3:单片机控制电路接收ADC模数转换电路产生的数字量A并根据步骤2的关系式计算出数字量D的值;
步骤4:单片机控制电路向DAC数模转换电路输入数字量D,DAC数模转换电路产生与数字量D相对应的电压Vb
步骤5:高压控制电路接收DAC数模转换电路产生的电压Vb,并产生APD偏压VAPD从而为APD提供温度自适应的偏压VAPD
7.根据权利要求6所述的量子密钥分配系统中APD的温度自适应控制电路的控制方法,其特征在于:所述的步骤2包括以下步骤:
(1)获取雪崩光电二极管APD的偏压VAPD与环境温度T的关系式:
VAPD=k1×T+λVBR (公式1);
其中k1为雪崩光电二极管APD的温度系数,T为雪崩光电二极管APD工作的环境温度,λ为雪崩光电二极管APD的偏压系数,VBR为雪崩光电二极管APD在25℃工作温度下的雪崩电压;
(2)获取温度采样电路产生的电压值Vtemp与环境温度T的关系式:
Vtemp=k3×T+b2 (公式2);
通过热敏电阻R1的电阻值与环境温度T的关系式和公式(2)得到热敏电阻R1的电阻值与电压值Vtemp的关系式,测量不同环境温度下的多组热敏电阻R1的电阻值与其对应的电压值Vtemp,将多组热敏电阻R1的电阻值与其对应的电压值Vtemp代入热敏电阻R1的电阻值与电压值Vtemp的关系式,计算获得k3和b2的值;
(3)计算ADC模数转换电路产生的数字量A:
其中VREF1为ADC模数转换电路中采用的ADC模数转换芯片的基准电压,X为ADC模数转换电路中采用的ADC模数转换芯片的采样精度;
(4)根据公式(2)和公式(3)得到ADC模数转换电路产生的数字量A与环境温度T的关系式;
(5)计算DAC数模转换电路产生的电压值Vb和高压控制电路产生的APD偏压VAPD的关系式如下:
VAPD=k4×Vb (公式4);
其中Vb为DAC数模转换电路产生的电压值,D为单片机控制电路向DAC数模转换电路输入数字量,VREF2为DAC数模转换电路中采用的DAC数模转换芯片的基准电压,Y为DAC数模转换电路中采用的DAC数模转换芯片的采样精度;R6为高压控制电路中的电阻R6的电阻值,R5为高压控制电路中的电阻R5的电阻值;
(6)根据公式(1)、公式(4)和步骤(4)获得的关系式,得到数字量D与数字量A之间的关系式:
CN201810295016.8A 2018-04-04 2018-04-04 量子密钥分配系统中apd的温度自适应控制电路及方法 Pending CN108445946A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810295016.8A CN108445946A (zh) 2018-04-04 2018-04-04 量子密钥分配系统中apd的温度自适应控制电路及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810295016.8A CN108445946A (zh) 2018-04-04 2018-04-04 量子密钥分配系统中apd的温度自适应控制电路及方法

Publications (1)

Publication Number Publication Date
CN108445946A true CN108445946A (zh) 2018-08-24

Family

ID=63199123

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810295016.8A Pending CN108445946A (zh) 2018-04-04 2018-04-04 量子密钥分配系统中apd的温度自适应控制电路及方法

Country Status (1)

Country Link
CN (1) CN108445946A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109901638A (zh) * 2019-04-19 2019-06-18 洛阳顶扬光电技术有限公司 一种适用于激光测距的apd反向偏压温度自适应电路
CN110597342A (zh) * 2019-10-21 2019-12-20 苏州玖物互通智能科技有限公司 激光雷达apd电压式开环随温调节系统
CN110889242A (zh) * 2019-12-10 2020-03-17 深圳市普威技术有限公司 Apd电压的调整方法、装置、存储介质及onu设备
CN110989753A (zh) * 2019-11-25 2020-04-10 中国辐射防护研究院 一种适用于SiPM的可调节高分辨率电源输出模块
CN114389686A (zh) * 2022-01-11 2022-04-22 微网优联科技(成都)有限公司 一种关于bosa apd查找表的计算系统及方法
CN114389686B (zh) * 2022-01-11 2024-05-03 微网优联科技(成都)有限公司 一种关于bosa apd查找表的计算系统及方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284954A (ja) * 1997-04-04 1998-10-23 Mitsubishi Electric Corp アバランシェフォトダイオードのバイアス電圧制御回路
JPH11211563A (ja) * 1998-01-30 1999-08-06 Hamamatsu Photonics Kk 光検出回路
JP2001154746A (ja) * 1999-11-25 2001-06-08 Hitachi Ltd 温度制御電圧発生回路、バイアス電圧発生回路及び光受信器
JP2004072324A (ja) * 2002-08-05 2004-03-04 Sumitomo Electric Ind Ltd 光受信器、光送受信器及びその製造方法
CN101593786A (zh) * 2009-06-23 2009-12-02 上海华魏光纤传感技术有限公司 用于雪崩光电二极管的温度补偿电路
CN101692465A (zh) * 2009-09-30 2010-04-07 国网电力科学研究院武汉南瑞有限责任公司 光电二极管恒温控制方法及装置
CN102098016A (zh) * 2010-10-15 2011-06-15 中国科学院上海光学精密机械研究所 雪崩光电二极管增益稳定的控制装置和控制方法
CN103076827A (zh) * 2012-12-30 2013-05-01 安徽问天量子科技股份有限公司 小范围内高精度温度控制装置
CN203276080U (zh) * 2013-01-31 2013-11-06 安徽问天量子科技股份有限公司 基于雪崩光电二极管的单光子探测器偏压产生电路
CN106342289B (zh) * 2013-06-05 2015-04-15 中国北方车辆研究所 雪崩光电二极管偏压控制电路
CN105843274A (zh) * 2016-03-28 2016-08-10 中国科学院半导体研究所 基于热电致冷器的温控电路及采用其的量子级联激光器
CN106094963A (zh) * 2016-07-31 2016-11-09 桂林理工大学 Apd阵列芯片偏置电压全自动温度补偿系统
CN106610322A (zh) * 2016-12-28 2017-05-03 安徽问天量子科技股份有限公司 光纤量子密钥分配系统中光电子器件高精度温度检测装置
CN207965712U (zh) * 2018-04-04 2018-10-12 安徽问天量子科技股份有限公司 量子密钥分配系统中apd的温度自适应控制电路

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284954A (ja) * 1997-04-04 1998-10-23 Mitsubishi Electric Corp アバランシェフォトダイオードのバイアス電圧制御回路
JPH11211563A (ja) * 1998-01-30 1999-08-06 Hamamatsu Photonics Kk 光検出回路
JP2001154746A (ja) * 1999-11-25 2001-06-08 Hitachi Ltd 温度制御電圧発生回路、バイアス電圧発生回路及び光受信器
JP2004072324A (ja) * 2002-08-05 2004-03-04 Sumitomo Electric Ind Ltd 光受信器、光送受信器及びその製造方法
CN101593786A (zh) * 2009-06-23 2009-12-02 上海华魏光纤传感技术有限公司 用于雪崩光电二极管的温度补偿电路
CN101692465A (zh) * 2009-09-30 2010-04-07 国网电力科学研究院武汉南瑞有限责任公司 光电二极管恒温控制方法及装置
CN102098016A (zh) * 2010-10-15 2011-06-15 中国科学院上海光学精密机械研究所 雪崩光电二极管增益稳定的控制装置和控制方法
CN103076827A (zh) * 2012-12-30 2013-05-01 安徽问天量子科技股份有限公司 小范围内高精度温度控制装置
CN203276080U (zh) * 2013-01-31 2013-11-06 安徽问天量子科技股份有限公司 基于雪崩光电二极管的单光子探测器偏压产生电路
CN106342289B (zh) * 2013-06-05 2015-04-15 中国北方车辆研究所 雪崩光电二极管偏压控制电路
CN105843274A (zh) * 2016-03-28 2016-08-10 中国科学院半导体研究所 基于热电致冷器的温控电路及采用其的量子级联激光器
CN106094963A (zh) * 2016-07-31 2016-11-09 桂林理工大学 Apd阵列芯片偏置电压全自动温度补偿系统
CN106610322A (zh) * 2016-12-28 2017-05-03 安徽问天量子科技股份有限公司 光纤量子密钥分配系统中光电子器件高精度温度检测装置
CN207965712U (zh) * 2018-04-04 2018-10-12 安徽问天量子科技股份有限公司 量子密钥分配系统中apd的温度自适应控制电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
颜佩琴等: "基于温漂自动补偿的高稳定性Si-APD单光子探测器", 《激光与光电子学进展》, vol. 54, 31 December 2017 (2017-12-31), pages 1 - 7 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109901638A (zh) * 2019-04-19 2019-06-18 洛阳顶扬光电技术有限公司 一种适用于激光测距的apd反向偏压温度自适应电路
CN110597342A (zh) * 2019-10-21 2019-12-20 苏州玖物互通智能科技有限公司 激光雷达apd电压式开环随温调节系统
CN110989753A (zh) * 2019-11-25 2020-04-10 中国辐射防护研究院 一种适用于SiPM的可调节高分辨率电源输出模块
CN110889242A (zh) * 2019-12-10 2020-03-17 深圳市普威技术有限公司 Apd电压的调整方法、装置、存储介质及onu设备
CN110889242B (zh) * 2019-12-10 2023-10-20 深圳市联洲国际技术有限公司 Apd电压的调整方法、装置、存储介质及onu设备
CN114389686A (zh) * 2022-01-11 2022-04-22 微网优联科技(成都)有限公司 一种关于bosa apd查找表的计算系统及方法
CN114389686B (zh) * 2022-01-11 2024-05-03 微网优联科技(成都)有限公司 一种关于bosa apd查找表的计算系统及方法

Similar Documents

Publication Publication Date Title
CN108445946A (zh) 量子密钥分配系统中apd的温度自适应控制电路及方法
CN207965712U (zh) 量子密钥分配系统中apd的温度自适应控制电路
WO2003077447A1 (fr) Module recepteur de lumiere a regulation numerique et procede de regulation associe
CN100443904C (zh) I/f变换装置和光检测装置
CN109217874A (zh) 余量转移环路、逐次逼近型模数转换器和增益校准方法
CN102415109A (zh) 用于助听器的输入转换器和信号转换方法
CN201749387U (zh) 一种v/i转换电路
CN102931925A (zh) 一种基于cmos工艺的低温度系数对数放大器
CN109936369A (zh) 一种混合结构sar-vco adc
CN109782835A (zh) 一种宽量程且闭环控制的直流电流源及处理方法
CN211017736U (zh) 一种电流驱动电路及激光器波长控制电路
CN111953348A (zh) 积分器和模数转换器
JP4689024B2 (ja) A/d変換装置および固体撮像装置
CN210294391U (zh) 一种基于i-f变换的电流测量电路
CN2535807Y (zh) 基于开关电容积分器的弱信号检测电路
CN101551344A (zh) 医用直线加速器高稳定的剂量测量电路及方法
CN201332100Y (zh) 雪崩光电二极管偏置电压的温度补偿电路
CN111141424A (zh) 差分电容式压力检测装置
CN201243275Y (zh) 一种模拟数字转换电路
CN110274687A (zh) 光强检测电路和方法
CN218352509U (zh) 一种qkd的同步光检测与监控纠正系统
CN109724729A (zh) 无线扭矩信号采集和接收模块及其控制方法
CN213041386U (zh) 一种正弦门探测器的门控信号功率维稳系统
CN207816475U (zh) 多信号高精度温度采样电路
CN107765078A (zh) 一种可实现红外校准的传感器电路模块

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination