CN108417481A - 氮化硅介电层的处理方法、薄膜晶体管和显示装置 - Google Patents

氮化硅介电层的处理方法、薄膜晶体管和显示装置 Download PDF

Info

Publication number
CN108417481A
CN108417481A CN201810242123.4A CN201810242123A CN108417481A CN 108417481 A CN108417481 A CN 108417481A CN 201810242123 A CN201810242123 A CN 201810242123A CN 108417481 A CN108417481 A CN 108417481A
Authority
CN
China
Prior art keywords
silicon nitride
dielectric layer
nitride dielectric
processing method
ultraviolet light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810242123.4A
Other languages
English (en)
Other versions
CN108417481B (zh
Inventor
毛元杰
王凤涛
卢凯
李京鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOE Technology Group Co Ltd
Beijing BOE Optoelectronics Technology Co Ltd
Original Assignee
BOE Technology Group Co Ltd
Beijing BOE Optoelectronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOE Technology Group Co Ltd, Beijing BOE Optoelectronics Technology Co Ltd filed Critical BOE Technology Group Co Ltd
Priority to CN201810242123.4A priority Critical patent/CN108417481B/zh
Publication of CN108417481A publication Critical patent/CN108417481A/zh
Application granted granted Critical
Publication of CN108417481B publication Critical patent/CN108417481B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02334Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment in-situ cleaning after layer formation, e.g. removing process residues
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02345Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
    • H01L21/02348Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light treatment by exposure to UV light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/3115Doping the insulating layers
    • H01L21/31155Doping the insulating layers by ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明提供一种氮化硅介电层的处理方法、防止半导体结构异常放电的方法、薄膜晶体管和显示装置,氮化硅介电层的处理方法包括对所述氮化硅介电层进行深紫外光照射,其中,在所述深紫外光照射前,对所述氮化硅介电层进行掺杂。通过采用人为制造缺陷的方法,在氮化硅介电层中掺杂不同元素,引入缺陷能级作为光生电子和空穴的复合中心,诱导并促进电子和空穴的复合,从而有效防止半导体结构中的氮化硅介电层在清洁过程进行深紫外光照射所导致的电子积累及进而产生的异常放电现象,减少产品中放电击毁的发生率。

Description

氮化硅介电层的处理方法、薄膜晶体管和显示装置
技术领域
本发明涉及半导体技术领域,具体涉及一种氮化硅介电层的处理方法和防止半导体结构异常放电的方法。
背景技术
氮化硅由于其较高的介电常数(k≈7),可以用在半导体制造领域的栅极介电层。制备氮化硅现阶段通常采用等离子束增强化学气相沉积的方法(PECVD),现阶段由于PECVD设备的洁净度要求,在进行化学气相沉积之前需要对沉积目标材料进行清洁,其中清洁的一个重要单元是使用深紫外光进行照射,在深紫外光的照射下,氧气会变为臭氧进而形成氧自由基,进而氧化有机污染物生成水二氧化碳等产物。
但如上所述,深紫外光不但可以与氧气反应,其较高的能量也会与氮化硅进行作用,使氮化硅材料发生电子的从价带到导带的跃迁,产生光生自由电子与空穴对。由于氮化硅层通常紧贴着金属导线层,与金属导线形成异质结,金属起到一个促进光生电子空穴分离的作用,容易在金属导线的端点积累电荷导致异常放电,击穿介电层导致上下层短路,产生不良。
在实际生产中,解决上述问题的方法通常是缩短金属层导线的长度和宽度,减少电荷积累量,长线通过跳孔经过其他层进行连接。但随着产品设计版图的余量有限,不能无限制的减小布线的长度;另一种解决方法是生产清洗过程关闭紫外灯,或加装离子风机来中和电荷,但是这种对设备的改造具有很大的限制,关闭紫外灯又会导致相应杂质得不到去除,产生其他不良。
因此,亟需一种新的氮化硅介电层的清洁方法,以克服上述存在的种种问题。
发明内容
本发明的目的是提供一种半导体结构及其制造方法,用以解决半导体结构中的氮化硅介电层进行深紫外光照射易发生电子跃迁而异常放电的问题,减少产品中放电击毁的发生率。
为了实现上述目的,本发明采用如下技术方案:
本发明提供一种氮化硅介电层的处理方法,包括对所述氮化硅介电层进行深紫外光照射,其中,在所述深紫外光照射前,对所述氮化硅介电层进行掺杂。
根据本发明的一个实施方式,所述氮化硅介电层由等离子束增强化学气相沉积方法制备。
根据本发明的一个实施方式,所述掺杂方法包括通过扩散的方式,在所述等离子束增强化学气相沉积的过程中向氮化硅介电层通入磷烷。
根据本发明的一个实施方式,所述掺杂方法包括在形成所述氮化硅介电层后,通过溅射装置将稀土离子注入至所述氮化硅介电层。
根据本发明的一个实施方式,所述溅射装置的靶材为稀土氧化物靶材。
根据本发明的一个实施方式,所述稀土离子选自镧离子、钇离子和铈离子中的一种或多种。
根据本发明的一个实施方式,所述深紫外光的波长小于234nm。
本发明还提供一种防止半导体结构异常放电的方法,所述半导体结构包括导电层和与其相邻的氮化硅介电层,采用上述方法对氮化硅介电层清洁。
本发明还提供一种薄膜晶体管,包括掺杂的氮化硅介电层。
本发明还提供一种薄膜晶体管,包括上述薄膜晶体管。
根据上述技术方案的描述可知,本发明的有益效果在于:
本发明通过采用人为制造缺陷的方法,在氮化硅介电层中掺杂不同元素,引入缺陷能级作为光生电子和空穴的复合中心,诱导并促进电子和空穴的复合,从而有效防止半导体结构中的氮化硅介电层在清洁过程进行深紫外照射所导致的电子积累及进而产生的异常放电现象,,减少产品中放电击毁的发生率。
附图说明
图1显示一种现有半导体产品的异常放电现象;
图2为氮化硅受深紫外光激发产生光生电子和空穴的示意图;
图3为对氮化硅掺杂后电子和空穴复合的示意图。
具体实施方式
以下通过特定的具体实施例说明本发明的实施方式,本领域普通技术人员可由本说明书所公开的内容轻易地了解本发明的优点及功效。本发明也可通过其它不同的实施方式加以施行或应用,本说明书中的各项细节也可基于不同观点与应用,在不悖离本发明所公开的构思下赋予不同的修饰与变更。
本发明提供一种氮化硅介电层的处理方法,包括对所述氮化硅介电层进行深紫外光照射,在所述深紫外光照射前,对所述氮化硅介电层进行掺杂。氮化硅作为半导体领域常用的栅极介电层,在受到深紫外光照射时,其较高的能量会与氮化硅进行作用,使氮化硅材料发生电子的从价带到导带的跃迁,产生光生自由电子与空穴对,导致与其相邻的导电层积累电荷而异常放电,击穿介电层导致上下层短路,产生不良。通过对氮化硅介电层进行掺杂工艺,可以人为制造缺陷,使缺陷作为复合中心,促进光生电子和空穴的复合,从而避免因深紫外光照射产生的电荷积累现象,进而避免异常放电。
在一些实施例中,所述氮化硅介电层由等离子束增强化学气相沉积方法制备。等离子束增强化学气相沉积(plasma enhanced chemical vapor deposition,PECVD)是一种在沉积室利用辉光放电使其电离后在衬底上进行化学反应沉积的半导体薄膜材料制备和其他材料薄膜的制备方法。等离子束增强化学气相沉积的主要优点是沉积温度低,对基体的结构和物理性质影响小;膜的厚度及成分均匀性好;膜组织致密、针孔少;膜层的附着力强等。现阶段制备氮化硅主要通过PECVD的方法制备,但由于PECVD设备的洁净度要求,通常需要在化学气相沉积之前对沉积目标材料进行清洗,其中清洗的一个重要单元是使用深紫外光照射,此时氧气会变为臭氧,进而形成氧自由基氧化有机污染物生成二氧化碳等产物。但如前述,深紫外光照射产生的较高能量也会与氮化硅进行作用,最终导致产品异常放电。因此,采用前述掺杂的方法可大大避免在氮化硅制备的清洗步骤中所产生的异常放电问题,提高产品良率。
在一些实施例中,所述掺杂方法包括通过扩散的方式,在所述等离子束增强化学气相沉积的过程中向氮化硅介电层通入磷烷。所述扩散的方式具体是指半导体掺杂技术中的热扩散技术,即对于施主或受主杂质的掺入,需要进行较高温度的热扩散。通过加热,让晶体原子的热运动加剧,以使得某些原子获得足够高的能量而离开晶格位置、留下空位(与此同时也产生出等量的间隙原子,空位和间隙原子统称为热缺陷),也因此原子的扩散系数随着温度的升高而指数式增大。
前述掺杂的磷烷与氮化硅的质量比可根据实际需要进行调整。
在一些实施例中,掺杂方法包括在形成所述氮化硅介电层后,通过溅射装置将稀土离子注入至所述氮化硅介电层。溅射是以一定能量的粒子(离子或中性原子、分子)轰击固体表面,使固体近表面的原子或分子获得足够大的能量而最终逸出固体表面的工艺。溅射只能在一定的真空状态下进行。溅射用的轰击粒子包括但不限于氩离子等带正电荷的惰性气体离子。
在一些实施例中,所述溅射装置的靶材为稀土氧化物靶材。轰击粒子如氩离子在电场加速下获得动能轰击稀土氧化物靶材,当轰击粒子的能量低于5电子伏时,仅对靶极最外表层产生作用,主要使靶极表面原来吸附的杂质脱附。当轰击粒子能量达到靶极原子的结合能(约为靶极材料的升华热)时,引起靶材表面的原子迁移,产生表面损伤。轰击粒子的能量超过靶极材料升华热的四倍时,原子被推出晶格位置成为汽相逸出而产生溅射。
在一些实施例中,所述稀土离子与氮化硅的质量比可根据实际需要进行调整,所述稀土离子包括但不限于镧离子、钇离子和铈离子等。
在一些实施例中,所述深紫外光的波长小于234nm。例如,在PECVD工艺中采用172nm的深紫外光照射对氮化硅介电层进行清洗。
在一些实施例中,提供一种防止半导体结构异常放电的方法,所述半导体结构包括导电层和与其相邻的氮化硅介电层,采用上述方法对所述氮化硅介电层清洁。所述导电层包括但不限于金属导线层等。
图1显示一种现有半导体产品的异常放电现象。该半导体产品中含有氮化硅介电层,以及与该氮化硅介电层相邻的一金属导线层。当其受深紫外光照射后会出现由于电荷积累导致的异常放电现象。具体而言,图1中圆圈内的小黑点为异常放电导致静电释放(ESD)击穿点。此放电主要是因为金属线比较细长,在器件制造过程中由于传送、震荡会产生电荷,当在深紫外光照射时会产生离子电荷,如果两种电荷为异性,当积累到一定程度就会放电产生ESD击穿。
具体地,当氮化硅受深紫外光激发时,会使氮化硅材料发生从价带到导带的电子跃迁,产生光生自由电子与空穴对(见图2)。由于氮化硅层紧贴着金属导线层,与金属导线形成异质结,金属起到一个促进光生电子空穴分离的作用,容易在金属导线的端点积累电荷导致异常放电,击穿介电层导致上下层短路,产生不良。
本发明的氮化硅介电层的处理方法,包括对所述氮化硅介电层进行深紫外光照射,其中,在所述深紫外光照射前,对所述氮化硅介电层进行掺杂。通过采用人为造缺陷的方法,对氮化硅介电层进行掺杂,使其掺入不同元素,形成缺陷能级,增大缺陷态密度,从而促进光生电子和空穴的复合(见图3)。避免了由于深紫外光照射造成的电子积累而导致异常放电,使产品发生不良。其中,所述深紫外光的波长小于234nm。
氮化硅介电层由等离子束增强化学气相沉积(PECVD)方法制备。由于PECVD设备的洁净度要求,在进行化学气相沉积之前需要对沉积目标材料(即氮化硅介电层)进行清洁,其中清洁的一个重要单元是深紫外光的照射。通过采用上述方法,可以有效避免对氮化硅介电层清洁时,深紫外光照射对产品造成的不良影响。
上述掺杂方法可以包括通过扩散的方式,在等离子束增强化学气相沉积的过程中向氮化硅介电层通入磷烷,例如PH3。通过扩散的方法,在氮化硅中掺入磷(P),形成复合中心,使得光生电子和空穴可以在迁移到材料表面前,在复合中心复合放出热量,从而消耗掉多余电荷。获得掺杂磷的氮化硅材料的方法,可以兼容现有的PECVD工艺,只需在通过PECVD进行氮化硅沉积过程中通入磷烷,比较容易实现。所述磷烷的含量可根据实际需要进行调整,例如,控制在1%~5%,用以确保氮化硅电介质材料的介电常数稳定。采用该掺杂方法时以电介质材料载流子寿命的测试结果为衡量标准。
掺杂方法还可以包括在形成所述氮化硅介电层后,通过溅射装置将稀土离子注入至所述氮化硅介电层。通过在氮化硅介电层中掺入稀土元素如镧(La),钇(Y),铈(Ce)等,使得光生电子和空穴在掺杂处复合,放出对应波长的光子,多余的自由电子以发光的形式向外辐射掉,从而消耗掉多余电荷。
所述溅射装置的靶材为稀土氧化物靶材。具体地,可在形成氮化硅介电层后,使用溅射装置,以Ar为载体,溅射稀土氧化物靶材,激发出稀土离子和氧离子,再把离子注入至氮化硅膜层内,从而生成掺杂有稀土元素和氧的氮化硅介电层。所述稀土离子的含量可根据实际需要进行调整,用以确保氮化硅电介质材料的介电常数稳定。采用该掺杂方法时以深紫外光(172nm)激发下光致发光的光强为衡量标准。
本发明还提供一种防止半导体结构异常放电的方法,所述半导体结构包括导电层和与其相邻的氮化硅介电层,采用上面任一所述的方法对所述氮化硅介电层清洁。具体地,所述导电层可为金属导线层,也可以为单晶硅、多晶硅、砷化镓(GaAs)、氮化镓(GaN)等半导体化合物材料的导电层。
本发明还提供一种薄膜晶体管,包括通过上述方法掺杂的氮化硅介电层。
本发明还提供一种薄膜晶体管,包括上述薄膜晶体管。
本发明通过设计前述两种掺杂方法在氮化硅中引入缺陷能级作为光生电子和空穴的复合中心,其可分别以发热复合和发光复合的两种方式消耗多余电荷。通过使用不同掺杂氮化硅材料作为半导体介电层,从而解决现有氮化硅介电层在深紫外光照射后发生电子跃迁进而导致半导体产品异常放电的问题,减少了产品中放电击毁的发生率。
应当理解,前述掺杂所用元素并不局限于以上所列举的元素,当采用前述类似的方法可防止半导体结构异常放电现象的,均应视为本发明所保护的范围之内。本领域技术人员应当注意的是,本发明所描述的实施方式仅仅是示范性的,可在本发明的范围内作出各种其他替换、改变和改进。因而,本发明不限于上述实施方式,而仅由权利要求书限定。

Claims (10)

1.一种氮化硅介电层的处理方法,包括对所述氮化硅介电层进行深紫外光照射,其特征在于,在所述深紫外光照射前,对所述氮化硅介电层进行掺杂。
2.根据权利要求1所述的处理方法,其特征在于,所述氮化硅介电层由等离子束增强化学气相沉积方法制备。
3.根据权利要求2所述的处理方法,其特征在于,所述掺杂方法包括通过扩散的方式,在所述等离子束增强化学气相沉积的过程中向氮化硅介电层通入磷烷。
4.根据权利要求1或2所述的处理方法,其特征在于,所述掺杂方法包括在形成所述氮化硅介电层后,通过溅射装置将稀土离子注入至所述氮化硅介电层。
5.根据权利要求4所述的处理方法,其特征在于,所述溅射装置的靶材为稀土氧化物靶材。
6.根据权利要求4所述的处理方法,其特征在于,所述稀土离子选自镧离子、钇离子和铈离子中的一种或多种。
7.根据权利要求1所述的处理方法,其特征在于,所述深紫外光的波长小于234nm。
8.一种防止半导体结构异常放电的方法,所述半导体结构包括导电层和与其相邻的氮化硅介电层,其特征在于,采用权利要求1-7任一项所述的处理方法对所述氮化硅介电层清洁。
9.一种薄膜晶体管,其特征在于,包括掺杂的氮化硅介电层。
10.一种显示装置,其特征在于,包括根据权利要求9的薄膜晶体管。
CN201810242123.4A 2018-03-22 2018-03-22 氮化硅介电层的处理方法、薄膜晶体管和显示装置 Active CN108417481B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810242123.4A CN108417481B (zh) 2018-03-22 2018-03-22 氮化硅介电层的处理方法、薄膜晶体管和显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810242123.4A CN108417481B (zh) 2018-03-22 2018-03-22 氮化硅介电层的处理方法、薄膜晶体管和显示装置

Publications (2)

Publication Number Publication Date
CN108417481A true CN108417481A (zh) 2018-08-17
CN108417481B CN108417481B (zh) 2021-02-23

Family

ID=63133162

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810242123.4A Active CN108417481B (zh) 2018-03-22 2018-03-22 氮化硅介电层的处理方法、薄膜晶体管和显示装置

Country Status (1)

Country Link
CN (1) CN108417481B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110265290A (zh) * 2019-06-27 2019-09-20 英特尔半导体(大连)有限公司 增强半导体蚀刻能力的方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1716548A (zh) * 2004-06-29 2006-01-04 国际商业机器公司 掺杂的氮化物膜、掺杂的氧化物膜、以及其它掺杂的膜
CN1949464A (zh) * 2005-10-14 2007-04-18 联华电子股份有限公司 氮化硅层的制造方法及半导体元件的制造方法
CN101271947A (zh) * 2008-05-06 2008-09-24 南京大学 可控非对称掺杂势垒纳米硅基发光器件及其制备方法
CN101496145A (zh) * 2006-06-20 2009-07-29 应用材料股份有限公司 利用原位氮等离子体处理及非原位紫外光固化来增加氮化硅拉伸应力的方法
CN101652843A (zh) * 2007-03-26 2010-02-17 东京毅力科创株式会社 氮化硅膜的形成方法、非易失性半导体存储装置的制造方法、非易失性半导体存储装置和等离子体处理装置
CN102130177A (zh) * 2010-01-15 2011-07-20 三星电子株式会社 晶体管、制造该晶体管的方法及包括该晶体管的电子装置
CN102184740A (zh) * 2011-01-31 2011-09-14 清华大学 垂直折叠式存储器阵列结构
CN102197483A (zh) * 2008-10-21 2011-09-21 应用材料股份有限公司 具有氮化硅电荷陷阱层的非挥发性内存
CN102439742A (zh) * 2009-05-26 2012-05-02 欧司朗光电半导体有限公司 用于制造发光二极管的方法
CN103035524A (zh) * 2011-09-29 2013-04-10 中国科学院微电子研究所 半导体器件及其制造方法
CN104037245A (zh) * 2014-07-01 2014-09-10 中国科学院宁波材料技术与工程研究所 具有带负电荷抗反射层的太阳电池及其制法
CN104425633A (zh) * 2013-08-30 2015-03-18 中国科学院宁波材料技术与工程研究所 一种介质钝化膜和太阳能电池及其制备方法
US20150340511A1 (en) * 2013-03-28 2015-11-26 Boe Technology Group Co., Ltd. Thin film transistor, amorphous silicon flat detection substrate and manufacturing method
CN107230619A (zh) * 2016-03-25 2017-10-03 北京大学 增强型氮化镓晶体管的制作方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1716548A (zh) * 2004-06-29 2006-01-04 国际商业机器公司 掺杂的氮化物膜、掺杂的氧化物膜、以及其它掺杂的膜
CN1949464A (zh) * 2005-10-14 2007-04-18 联华电子股份有限公司 氮化硅层的制造方法及半导体元件的制造方法
CN101496145A (zh) * 2006-06-20 2009-07-29 应用材料股份有限公司 利用原位氮等离子体处理及非原位紫外光固化来增加氮化硅拉伸应力的方法
CN101652843A (zh) * 2007-03-26 2010-02-17 东京毅力科创株式会社 氮化硅膜的形成方法、非易失性半导体存储装置的制造方法、非易失性半导体存储装置和等离子体处理装置
CN101271947A (zh) * 2008-05-06 2008-09-24 南京大学 可控非对称掺杂势垒纳米硅基发光器件及其制备方法
CN102197483A (zh) * 2008-10-21 2011-09-21 应用材料股份有限公司 具有氮化硅电荷陷阱层的非挥发性内存
CN102439742A (zh) * 2009-05-26 2012-05-02 欧司朗光电半导体有限公司 用于制造发光二极管的方法
CN102130177A (zh) * 2010-01-15 2011-07-20 三星电子株式会社 晶体管、制造该晶体管的方法及包括该晶体管的电子装置
CN102184740A (zh) * 2011-01-31 2011-09-14 清华大学 垂直折叠式存储器阵列结构
CN103035524A (zh) * 2011-09-29 2013-04-10 中国科学院微电子研究所 半导体器件及其制造方法
US20150340511A1 (en) * 2013-03-28 2015-11-26 Boe Technology Group Co., Ltd. Thin film transistor, amorphous silicon flat detection substrate and manufacturing method
CN104425633A (zh) * 2013-08-30 2015-03-18 中国科学院宁波材料技术与工程研究所 一种介质钝化膜和太阳能电池及其制备方法
CN104037245A (zh) * 2014-07-01 2014-09-10 中国科学院宁波材料技术与工程研究所 具有带负电荷抗反射层的太阳电池及其制法
CN107230619A (zh) * 2016-03-25 2017-10-03 北京大学 增强型氮化镓晶体管的制作方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
力一轩 等: "铈掺杂氮化硅电子结构及其光学性能的第一性原理", 《兰州理工大学学报》 *
房少华等: ""DFT方法研究掺杂氮化硅对SONOS器件保持性能的作用"", 《物理学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110265290A (zh) * 2019-06-27 2019-09-20 英特尔半导体(大连)有限公司 增强半导体蚀刻能力的方法
CN110265290B (zh) * 2019-06-27 2020-06-30 英特尔半导体(大连)有限公司 增强半导体蚀刻能力的方法

Also Published As

Publication number Publication date
CN108417481B (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
Gupta et al. Defect-induced photoluminescence from gallium-doped zinc oxide thin films: influence of doping and energetic ion irradiation
US7141489B2 (en) Fabrication of p-type group II-VI semiconductors
US7473925B2 (en) P-type group II-VI semiconductor compounds
Kumar et al. Deep level defect correlated emission and Si diffusion in ZnO: Tb3+ thin films prepared by pulsed laser deposition
Parra et al. Evolution of ZnO nanostructures as hexagonal disk: Implementation as photoanode material and efficiency enhancement in Al: ZnO based dye sensitized solar cells
WO2004105099A2 (en) Group ii-vi semiconductor devices
TW200915393A (en) Compound thin film and method of forming the same, and electronic device using the thin film
Song et al. Improved performance of CsPbBr 3 perovskite light-emitting devices by both boundary and interface defects passivation
Balakrishna et al. Synthesis, structure and optical studies of ZnO: Eu3+, Er3+, Yb3+ thin films: Enhanced up-conversion emission
Kim et al. Investigation on doping behavior of copper in ZnO thin film
Li et al. Inorganic perovskite light emitting diodes with ZnO as the electron transport layer by direct atomic layer deposition
Guziewicz et al. Atomic layer deposited ZnO films implanted with Yb: The influence of Yb location on optical and electrical properties
Otieno et al. Effect of thermal treatment on ZnO: Tb 3+ nano-crystalline thin films and application for spectral conversion in inverted organic solar cells
Xu et al. Electroluminescent polycrystalline Er-doped Lu3Al5O12 nanofilms fabricated by atomic layer deposition on silicon
Martínez-Olmos et al. Synthesis, characterization and luminescence studies in ZrO2: Dy3+ and ZrO2: Dy3+, Gd3+ films deposited by the Pyrosol method
CN108417481A (zh) 氮化硅介电层的处理方法、薄膜晶体管和显示装置
Antić et al. Effect of annealing conditions on structural and luminescencent properties of Eu3+-doped Gd2Ti2O7 thin films
Abrarov et al. Effect of photonic band-gap on photoluminescence of ZnO deposited inside the green synthetic opal
Xie et al. Enhanced ultraviolet and visible photoluminescence of ZnO/Zn2SiO4/SiO2/Si multilayer structure
US20080164466A1 (en) Light emitting devices with a zinc oxide thin film structure
Machado et al. Influence of thermal annealing on the properties of evaporated Er-doped SnO2
Scarangella et al. Bismuth doping of silicon compatible thin films for telecommunications and visible light emitting devices
Chawla et al. Enhancement of luminescence in ZnMgO thin‐film nanophosphors and application for white light generation
Tetelbaum et al. Effect of carbon implantation on visible luminescence and composition of Si-implanted SiO2 layers
Akazawa et al. Energy transfer and dissipation processes studied using photoluminescence of Eu3+ ions doped in epitaxial ZnO films

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant