CN108404942B - 一种氟改性Fe3O4磁性纳米材料及其制备方法和应用 - Google Patents

一种氟改性Fe3O4磁性纳米材料及其制备方法和应用 Download PDF

Info

Publication number
CN108404942B
CN108404942B CN201810107550.1A CN201810107550A CN108404942B CN 108404942 B CN108404942 B CN 108404942B CN 201810107550 A CN201810107550 A CN 201810107550A CN 108404942 B CN108404942 B CN 108404942B
Authority
CN
China
Prior art keywords
fluorine
source
nano material
use according
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810107550.1A
Other languages
English (en)
Other versions
CN108404942A (zh
Inventor
陈逢喜
陈武
张家维
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Institute of Technology
Original Assignee
Wuhan Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Institute of Technology filed Critical Wuhan Institute of Technology
Priority to CN201810107550.1A priority Critical patent/CN108404942B/zh
Publication of CN108404942A publication Critical patent/CN108404942A/zh
Application granted granted Critical
Publication of CN108404942B publication Critical patent/CN108404942B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/128Halogens; Compounds thereof with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明公开了一种氟改性Fe3O4磁性纳米材料及其制备方法和应用,属于磁性功能材料及水处理研究领域。本发明首次提出对Fe3O4磁性纳米材料进行阴离子氟掺杂改性,采用溶剂热法原位合成氟改性Fe3O4磁性纳米材料,所得氟改性Fe3O4磁性纳米材料对橙黄G染料废水表现出优异的降解能力,易于磁性分离回收和循环使用,且涉及的原料廉价易得,操作简单方便,具有潜在应用前景。

Description

一种氟改性Fe3O4磁性纳米材料及其制备方法和应用
技术领域
本发明属于磁性功能材料及水处理技术领域,具体涉及一种氟改性Fe3O4磁性纳米材料及其制备方法和应用。
背景技术
橙黄G属于偶氮型阴离子染料。与天然染料相比,偶氮染料具有成本低、结构稳定、颜色种类齐全等优点,全球每年使用量约占总染料的50%以上,被广泛应用于纺织、纸张、塑料、皮革、制药等行业。偶氮染料难以生物降解,具有潜在的致癌、致畸和致突变毒性,在生产和使用过程中排出的废水已经成为水体污染的重要来源之一,对人类的健康和社会的可持续发展构成了严重威胁。
处理橙黄G废水主要有生物法、物理法和化学法。生物法处理时间较长,菌种对pH、温度、培养条件等要求较高,限制了其推广应用。物理法只能转移而并未真正去除环境污染物。以Fenton氧化法为代表的高级氧化技术是常用的处理有机废水的化学方法。均相Fenton 氧化技术通过生成具有强氧化能力的羟基自由基(·OH),可氧化降解大部分有机物。但均相 Fenton体系存在使用pH低(~3)、易产生铁泥以及铁离子引起色度等问题。以Fe3O4磁性纳米颗粒为代表的多相Fenton体系有望弥补这些不足,拓宽pH值应用范围至环境中性条件,减少水溶液中铁离子的浸出量,实现催化剂的磁性分离回收和循环使用等。但是单一Fe3O4颗粒活化H2O2的能力非常有限(如H2O2用量大,反应时间长,温度高等),难以满足实际应用。大量文献报道了使用过渡金属离子(如Mn2+、Co2+、Cu2+、Ti4+等)掺杂可提高Fe3O4纳米颗粒的催化活性,但金属离子掺杂Fe3O4通常因等电点低而难以在中性条件下吸附和降解阴离子污染物。
发明内容
本发明的目的是提供一种氟改性Fe3O4磁性纳米材料,并将其应用于催化降解橙黄G染料废水。该方法反应速率快、无二次污染、催化剂易于磁性分离且循环使用性能稳定,适合推广应用。
为实现上述目的,本发明采用的技术方案为:
一种氟改性Fe3O4磁性纳米材料的制备方法,它包括以下步骤:
1)将碱源加入含有铁源的乙二醇溶液中,搅拌均匀得混合液;再加入氟源,继续搅拌均匀得反应液;
2)将所得反应液转入反应釜中,加热进行反应后淬冷至室温,磁性分离收集所得黑色固体,洗涤干燥后即得氟改性Fe3O4磁性纳米材料。
上述方案中,所述铁源为氯化铁、硝酸铁或硫酸铁等可溶性三价铁盐;碱源为乙酸钠、 NaOH、KOH中的一种或几种;氟源为氟化钠或氟化钾等无机氟盐,
上述方案中,所述乙二醇为溶剂和还原剂。
上述方案中,所述反应液中铁源浓度为0.7~1.6mol/L,碱源与铁源摩尔比为(2~5):1,氟源与铁源摩尔比为(0.05~1.10):1。
上述方案中,所述反应温度为180~200℃,时间为6~20h。
优选的,所述反应时间为14~16h。
根据上述方案制备的氟改性Fe3O4磁性纳米材料可作为多相类芬顿催化剂,对橙黄G染料废水表现出优异的催化降解性能,且易于磁性分离回收、循环使用性能稳定(如循环使用 8次后橙黄G染料废水脱色率仍达84%,反应速率为0.0151min-1,COD去除率达65.2%)。催化降解典型工艺条件为:氟改性Fe3O4磁性纳米材料的加入量0.5g/L,橙黄G初始浓度为 0.05~0.1mmol/L,初始pH为6.5~7.5,反应温度为25~55℃;优选为40~55℃。
本发明通过对Fe3O4磁性纳米材料进行氟改性,由于F-与O2-离子半径相近,有利于氟取代氧进入Fe3O4晶格;此外,由于F-与O2-两者所带电荷数不同,氟取代晶格氧后的Fe3O4骨架带正电,有利于提高氟改性Fe3O4颗粒的等电点,促进中性条件下对阴离子化合物(如橙黄G)的吸附和催化降解。
与现有技术相比,本发明的有益效果为:
1)本发明首次提出对Fe3O4磁性纳米材料进行氟离子掺杂改性;由于F-与O2-两者所带电荷数不同,氟取代晶格氧后的Fe3O4骨架带正电,从而提高氟改性Fe3O4颗粒的等电点,促进中性条件下对阴离子化合物(如橙黄G)的吸附和催化降解。
2)本发明采用溶剂热法一步制备了氟掺杂改性Fe3O4磁性纳米材料,所得产物结晶度高,原料广泛易得且成本低,制备工艺和反应条件简单,对反应设备要求低,操作易于控制,有利于批量生产
3)本发明使用无机氟盐作为氟源,避免了使用HF、F2等强腐蚀性氟源,有利于工艺操作和过程控制。
4)本发明提供的氟改性Fe3O4磁性纳米材料尤其适用于催化降解橙黄G染料;催化降解能力强,反应速率快,且催化剂稳定性好、易于磁性分离回收、可实现多次循环利用。
附图说明
图1为本发明实施例1所得产物的X射线衍射图(XRD)。
图2为本发明实施例1所得产物的扫描电镜图(SEM)。
图3为本发明实施例1所得产物的F1S X射线光电子能谱图(XPS)。
图4为本发明实施例1所得产物的Zeta电位图。
图5为本发明实施例1所得氟改性Fe3O4磁性纳米材料催化降解橙黄G的循环实验结果。
具体实施方式
为了更好地理解本发明,下面结合一些实例对本发明进行进一步详细说明,但本发明不仅仅局限于下面的实例。
以下实例如无具体说明,采用的试剂为市售化学试剂。
实施例1
一种氟改性Fe3O4磁性纳米材料,其制备方法包括如下步骤:称量1.856g FeCl3·6H2O于 50℃下溶解于4.5mL乙二醇,加入1.801g CH3COONa搅拌10min,再加入0.3g NaF继续搅拌10min得反应液;将所得反应液转入反应釜中,于198℃下反应14h,然后淬冷至室温,磁性分离收集所得黑色固体,用乙醇洗涤一次,去离子水洗涤四次,于60℃下干燥12h,即得最终产物。
本实施例所得产物的XRD谱(图1)与Fe3O4的标准图谱一致(JCPDS No.65-3107),表明产物粒子具有立方反尖晶石结构;所得产物的F1s XPS谱(图2)在684eV和686eV的两个峰表明氟以表面氟与晶格氟两种方式存在;SEM(图3)表明所得产物以球形颗粒为主,粒径约为220±34nm。Zeta电位图(图4)表明所得产物的等电点为pH=8.68,明显高于未经改性的Fe3O4颗粒(5-7);当降解反应pH为6.5-7.5时,样品表面带有正电荷,有利于橙黄G 在样品表面发生吸附与催化降解。
实施例2
一种氟改性Fe3O4磁性纳米材料,其制备方法包括如下步骤:称量1.856g FeCl3·6H2O于 50℃下溶解于4.5mL乙二醇,加入1.801g CH3COONa搅拌10min,再加入0.15g NaF继续搅拌10min得反应液;将所得反应液转入反应釜中,于198℃下反应14h,然后淬冷至室温,磁性分离收集所得黑色固体,用乙醇洗涤一次,去离子水洗涤四次,于60℃下干燥12h,即得最终产物。
实施例3
一种氟改性Fe3O4磁性纳米材料,其制备方法包括如下步骤:称量1.856g FeCl3·6H2O于 50℃下溶解于4.5mL乙二醇,加入1.801g CH3COONa搅拌10min,再加入0.03g NaF继续搅拌10min得反应液;将所得反应液转入反应釜中,于198℃下反应14h,然后淬冷至室温,磁性分离收集所得黑色固体,用乙醇洗涤一次,去离子水洗涤四次,于60℃下干燥12h,即得最终产物。
实施例4
一种氟改性Fe3O4磁性纳米材料,其制备方法包括如下步骤:称量3.712g FeCl3·6H2O于 50℃下溶解于9mL乙二醇,加入3.602g CH3COONa搅拌10min,再加入0.6g NaF继续搅拌10min得反应液;将所得反应液转入反应釜中,于198℃下反应14h,然后淬冷至室温,磁性分离收集所得黑色固体,用乙醇洗涤一次,去离子水洗涤四次,于60℃下干燥12h,即得最终产物。
应用例1
将实施例1制备的氟改性Fe3O4磁性纳米材料应用于25℃降解橙黄G,具体步骤如下:将0.025g氟改性Fe3O4磁性纳米材料与50mL橙黄G(~0.1mmol/L)溶液混合,预吸附15min后加入0.23g H2O2(30wt%),在25℃和pH6.5的条件下降解橙黄G,2h后橙黄G溶液的脱色率为32.6%,反应速率为0.0028min-1
对比例
以未改性Fe3O4磁性纳米颗粒(粒径约10nm)于55℃降解橙黄G,具体步骤如下:将0.025g未改性Fe3O4磁性纳米颗粒与50mL橙黄G(~0.05mmol/L)溶液混合,预吸附15min 后加入0.23g H2O2(30wt%),在25℃和pH 6.5的条件下降解橙黄G,2h后橙黄G溶液的脱色率为24.0%,反应速率为0.0023min-1
本对比例所述降解体系在55℃条件下对橙黄G的降解效果与应用例1中的催化降解效果相当。
应用例2
将实施例1制备的氟改性Fe3O4磁性纳米材料应用于40℃降解橙黄G,具体步骤如下:将0.025g氟改性Fe3O4磁性纳米材料与50mL橙黄G(~0.1mmol/L)溶液混合,预吸附15min后加入0.23g H2O2(30wt%),在40℃和pH6.5的条件下降解橙黄G,2h后橙黄G溶液的脱色率达96%,反应速率达到0.0284min-1
应用例3
氟改性Fe3O4磁性纳米材料的循环使用性能
针对应用例2降解脱色橙黄G溶液后的混合液,在外加磁铁作用下回收氟改性Fe3O4磁性纳米材料,然后加入50mL橙黄G(~0.1mmol/L)溶液,按照应用例2中的步骤进行下一次降解实验。如此循环,所得降解结果见图5。
结果表明,本发明所得氟改性Fe3O4磁性纳米材料在第8次循环使用时仍保持高催化活性 (橙黄G溶液2h脱色率达84%,反应速率为0.0151min-1)。
应用例4
将实施例1所得氟改性Fe3O4磁性纳米材料应用于55℃降解橙黄G,具体步骤如下:将 0.025g氟改性Fe3O4磁性纳米材料与50mL橙黄G(~0.1mmol/L)溶液混合,预吸附15min后加入0.23g H2O2(30wt%),在55℃和pH6.5的条件下降解橙黄G,1.5h后橙黄G溶液的脱色率达98%,反应速率达到0.0445min-1
显然,上述实施例仅仅是为了清楚地说明本发明,而并非对实施方式的限制。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而因此所引申的显而易见的变化或变动仍处于本发明创造的保护范围之内。

Claims (8)

1.一种氟改性Fe3O4磁性纳米材料在催化降解水体有机污染物中的应用,其特征在于,包括如下步骤:
将氟改性Fe3O4磁性纳米材料与橙黄G 溶液混合,预吸附后加入H2O2,在25~55℃ 和pH为6.5~7.5的条件下降解橙黄G;
所述氟改性Fe3O4磁性纳米材料的制备方法包括如下步骤:
1)将碱源加入含有铁源的乙二醇溶液中,搅拌均匀得混合液;再加入氟源,继续搅拌均匀得反应液;
2)将所得反应液转入反应釜中,加热进行反应后淬冷至室温,磁性分离收集所得黑色固体,洗涤干燥后即得氟改性Fe3O4磁性纳米材料。
2.根据权利要求1所述的应用,其特征在于,所述铁源为可溶性三价铁盐;所述氟源为无机氟盐。
3.根据权利要求2所述的应用,其特征在于,所述可溶性三价铁盐为氯化铁、硝酸铁或硫酸铁;氟源为氟化钠或氟化钾。
4.根据权利要求1所述的应用,其特征在于,所述碱源为乙酸钠、NaOH、KOH中的一种或几种。
5.根据权利要求1所述的应用,其特征在于,所述反应液中铁源浓度为0.7~1.6mol/L。
6.根据权利要求1所述的应用,其特征在于,所述碱源与铁源摩尔比为(2~5):1。
7.根据权利要求1所述的应用,其特征在于,所述氟源与铁源摩尔比为(0.05~1.10):1。
8.根据权利要求1所述的应用,其特征在于,所述反应温度为180~200℃ ,时间为6~20h。
CN201810107550.1A 2018-02-02 2018-02-02 一种氟改性Fe3O4磁性纳米材料及其制备方法和应用 Active CN108404942B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810107550.1A CN108404942B (zh) 2018-02-02 2018-02-02 一种氟改性Fe3O4磁性纳米材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810107550.1A CN108404942B (zh) 2018-02-02 2018-02-02 一种氟改性Fe3O4磁性纳米材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN108404942A CN108404942A (zh) 2018-08-17
CN108404942B true CN108404942B (zh) 2022-03-15

Family

ID=63127534

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810107550.1A Active CN108404942B (zh) 2018-02-02 2018-02-02 一种氟改性Fe3O4磁性纳米材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN108404942B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110713242B (zh) * 2019-08-09 2020-12-01 中国科学院地理科学与资源研究所 一种零价铁材料Fe@铁氟化物及其制备方法
CN111346652A (zh) * 2020-04-15 2020-06-30 同济大学 氟掺杂尖晶石结构四氧化三钴电催化材料及其制备方法
CN112656958B (zh) * 2020-12-29 2022-12-13 中国人民解放军陆军军医大学第二附属医院 一种氟掺杂氧化铁纳米粒造影剂及其制备方法
CN114308083A (zh) * 2021-12-29 2022-04-12 延安大学 催化去除水体抗生素的方法及催化剂制备方法、应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105214664A (zh) * 2015-10-29 2016-01-06 武汉工程大学 一种铜掺杂Fe3O4磁性复合纳米材料及其制备方法和应用
CN106582626A (zh) * 2015-10-15 2017-04-26 济南大学 一种新型银离子掺杂TiO2复合材料的制备方法及应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106582626A (zh) * 2015-10-15 2017-04-26 济南大学 一种新型银离子掺杂TiO2复合材料的制备方法及应用
CN105214664A (zh) * 2015-10-29 2016-01-06 武汉工程大学 一种铜掺杂Fe3O4磁性复合纳米材料及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Porous Fluorine-Doped gamma-Fe2O3 Hollow Spheres: Synthesis, Growth Mechanism, and TheirApplication in Photocatalysis;Lu-Ping Zhu等;《APPLIED MATERIALS & INTERFACES》;20131118;第12478-12487页 *
Solvothermal synthesis of sub-200 nm Fe3O4 submicrospheres with enhanced catalytic performances by using acicular goethite as solid precursor;Wu Chen等;《MICRO & NANO LETTERS》;20170930;第711-713页 *

Also Published As

Publication number Publication date
CN108404942A (zh) 2018-08-17

Similar Documents

Publication Publication Date Title
CN108404942B (zh) 一种氟改性Fe3O4磁性纳米材料及其制备方法和应用
Yang et al. Improved removal capacity of magnetite for Cr (VI) by electrochemical reduction
Feng et al. Photocatalytic reduction of Uranium (VI) under visible light with Sn-doped In2S3 microspheres
Karimipourfard et al. Heterogeneous degradation of stabilized landfill leachate using persulfate activation by CuFe2O4 nanocatalyst: an experimental investigation
CN104437539B (zh) 一种磁性oms-2催化剂及其降解有机污染物的应用
CN108745397A (zh) 一种过渡金属掺杂氮化碳/wo3的复合光催化剂及其制备方法和应用
Cheng et al. Recovery of cobalt from spent lithium-ion batteries as the dopant of TiO2 photocatalysts for boosting ciprofloxacin degradation
CN108452813B (zh) 一种MoS2/SrFe12O19复合磁性光催化剂的制备方法
CN113209968B (zh) 一种磁性铜铁双金属生物质炭微球的制备方法及应用
Yang et al. Degradation of orange II by Fe@ Fe2O3 core shell nanomaterials assisted by NaHSO3
CN104437502A (zh) 以芬顿含铁污泥为铁源的磁性芬顿催化剂尖晶石铁氧体及应用
Hu et al. Decontamination of Cr (VI) by graphene oxide@ TiO2 in an aerobic atmosphere: effects of pH, ferric ions, inorganic anions, and formate
dos Santos et al. Iron mining wastes collected from Mariana disaster: Reuse and application as catalyst in a heterogeneous electro-Fenton process
CN108246334A (zh) 一种功能化三元复合光催化材料及其制备方法与用途
CN104043396A (zh) 一种磁性氨基化氧化石墨烯的制备方法与应用
CN108339514B (zh) 一种ldh负载纳米零价铁复合材料的制备方法及应用于提取硒/碲
Farajollahi et al. Efficient degradation of crystal violet by GO/CuMn2O4 nanocomposite via peroxymonosulfate activation
CN111170284A (zh) 含氯废硫酸脱氯的可再生方法
CN114797781B (zh) 一种载镧氮掺杂多孔碳磷吸附材料的制备方法
CN110075929B (zh) 多酸插层3D-LDHs光Fenton催化剂的制备方法
Gao et al. Complete mineralization of a humic acid by SO4·− generated on CoMoO4/gC3N4 under visible-light irradiation
Zou et al. Oxalic acid modified hexagonal ZnIn2S4 combined with bismuth oxychloride to fabricate a hierarchical dual Z-scheme heterojunction: Accelerating charge transfer to improve photocatalytic activity
CN114212831B (zh) 一种钴修饰的硫化零价铁及其制备方法和应用
CN107413343A (zh) 一种磁性四氧化三钴/氢氧化钴/还原氧化石墨烯三元异质结光催化剂的制备方法
CN110560064A (zh) 一种磁性碳球负载四氧化三钴催化剂的制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant