CN108745397A - 一种过渡金属掺杂氮化碳/wo3的复合光催化剂及其制备方法和应用 - Google Patents

一种过渡金属掺杂氮化碳/wo3的复合光催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN108745397A
CN108745397A CN201810418219.1A CN201810418219A CN108745397A CN 108745397 A CN108745397 A CN 108745397A CN 201810418219 A CN201810418219 A CN 201810418219A CN 108745397 A CN108745397 A CN 108745397A
Authority
CN
China
Prior art keywords
catalyst
composite photo
carbonitride
transient metal
metal doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810418219.1A
Other languages
English (en)
Inventor
吴磊
张黎明
邵云
李莲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201810418219.1A priority Critical patent/CN108745397A/zh
Publication of CN108745397A publication Critical patent/CN108745397A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0259Compounds of N, P, As, Sb, Bi
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/023Reactive oxygen species, singlet oxygen, OH radical
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种过渡金属掺杂氮化碳/WO3的复合光催化剂,复合光催化剂由过渡金属掺杂的g‑C3N4与WO3组成;WO3作为载体,过渡金属掺杂的g‑C3N4负载在WO3载体的表面;其中,过渡金属掺杂的g‑C3N4呈二维片层状,WO3呈空心球壳状。本发明还公开了上述过渡金属掺杂氮化碳/WO3的复合光催化剂的制备方法及其在光催化降解水体中抗生素方面的应用。本发明复合光催化剂采用过渡金属离子掺杂与半导体复合相结合的方式同时对g‑C3N4进行改性,大大提高了g‑C3N4的光催化性能,使本发明复合光催化剂在光催化降解水体中抗生素、化妆品等新兴污染物时具有去除率高、反应速率快、光催化反应稳定的优点。

Description

一种过渡金属掺杂氮化碳/WO3的复合光催化剂及其制备方法 和应用
技术领域
本发明涉及一种过渡金属掺杂氮化碳/WO3的复合光催化剂,还涉及上述复合光催化剂的制备方法和应用,属于光催化材料技术领域。
背景技术
近年来,随着纳米材料技术的发展,在处理环境中的有机或无机污染物的技术中,半导体光催化氧化技术具有广阔的应用前景,尤其是可见光响应半导体光催化材料的发展更进一步促进半导体光催化技术在环境修复领域中的应用。
石墨相氮化碳(g-C3N4)由于其独特的二维类石墨结构,低成本无毒性,优异的化学稳定性以及可见光响应等特点,成为目前最具前景的光催化剂之一,在水的光解产氢产氧,CO2还原,以及污染物降解方面有了越来越多的研究。虽然g-C3N4禁待宽度窄,不含金属、稳定性较好,在可见光利用方面有着巨大的优势,但纯g-C3N4催化剂在光催化性能方面不能令人满意,主要在于其比表面积小,团聚严重,吸附性能较差,同时由于价带电势较低,空穴不能与H2O发生反应,一方面体系中不能生产·OH自由基进行氧化,另一方面造成体系中电子-空穴复合速率快,光生载流子传输慢,光催化活性低,反应速率慢。因此,需要对g-C3N4进行改性,充分利用超氧自由基、空穴的羟基自由基的氧化能力,抑制电子空穴对的复合速率,提高g-C3N4的吸附性能与光催化氧化性能,缩短光催化反应时间。
发明内容
发明目的:本发明所要解决的技术问题是提供一种过渡金属掺杂氮化碳/WO3的复合光催化剂,该复合光催化剂对水体中的抗生素具有高吸附性能和高光催化氧化活性,且反应速率快,催化效果稳定。
本发明还要解决的技术问题是提供上述过渡金属掺杂氮化碳/WO3的复合光催化剂的制备方法。
本发明最后要解决的技术问题是提供上述过渡金属掺杂氮化碳/WO3的复合光催化剂在光催化降解水体中抗生素方面的应用。
为解决上述技术问题,本发明所采用的技术方案为:
一种过渡金属掺杂氮化碳/WO3的复合光催化剂,所述复合光催化剂由过渡金属掺杂的g-C3N4与WO3组成;WO3作为载体,过渡金属掺杂的g-C3N4负载在WO3载体的表面;其中,过渡金属掺杂的g-C3N4呈二维片层状,WO3呈空心球壳状。
其中,所述过渡金属为铬、锰、铁、钴、镍或铜中的一种或多种,优选铜。
其中,所述过渡金属与g-C3N4前驱体尿素的摩尔比为0.0002∶1~0.0032∶1,优选0.0016∶1;WO3与过渡金属掺杂的g-C3N4复合质量比为0.01∶1~0.2∶1,优选0.05∶1。
上述过渡金属掺杂氮化碳/WO3的复合光催化剂的制备方法,包含如下步骤:
步骤1,将所需量的过渡金属盐溶于尿素溶液中,超声混合后得到混合溶液;
步骤2,将步骤1的混合溶液烘干后研磨,研磨后置于500℃~550℃下煅烧,煅烧后得到过渡金属掺杂的g-C3N4
步骤3,将步骤2制得的过渡金属掺杂的g-C3N4溶于无水甲醇中,超声混合后加入所需量的WO3,搅拌至溶剂蒸发,烘干后煅烧即可得到复合光催化剂。
其中,步骤1中,尿素溶液中尿素与超纯水的混合质量比为5∶4。
其中,步骤1中,所述过渡金属盐为金属的氯化盐、硝酸盐或硫酸盐中的一种,优选金属的氯化盐。
其中,步骤2中,所述煅烧温度为550℃,煅烧时间为4h,升温速度为2.3℃/min~5℃/min。
其中,步骤3中,所述煅烧温度为400℃,煅烧时间为2h,升温速度为5℃/min。
上述过渡金属掺杂氮化碳/WO3的复合光催化剂在光催化降解水体中抗生素方面的应用。
本发明将金属离子掺杂改性与半导体复合改性相结合,通过过渡金属离子掺杂改性,增大g-C3N4的比表面积,改变g-C3N4的电子结构与光吸收性能,再将过渡金属掺杂的氮化碳与WO3复合,形成Z型异质结构,抑制电子空穴对的复合,大大提升了g-C3N4催化剂的光催化性能,并将其应用于抗生素废水的治理,具有优异的处理效果。g-C3N4含有6个氮孤电子对,有利于金属元素的掺杂,过渡金属离子以离子键的形式与g-C3N4结合,可以抑制g-C3N4的缩合,增大g-C3N4的比表面积,改变g-C3N4的电子结构和光吸收性能;而通过将g-C3N4与半导体复合,形成界面异质结,通过两种半导体间化学势能的差异,电荷在界面处重新分配,可有效抑制光生电子空穴的复合,WO3是一种禁带宽度小,能被可见光激发的半导体,且价带、导带电势低于g-C3N4,与g-C3N4复合后形成Z型异质结构,电势较低的WO3导带中电子在界面处与g-C3N4价带上的空穴复合湮灭,此时氧化反应发生在价带电势更负的WO3半导体上,还原反应发生在导带电势更正的g-C3N4半导体上,从而提高了材料整体的氧化还原能力,进而提高材料的光催化降解性能。
有益效果:本发明复合光催化剂采用过渡金属离子掺杂与半导体复合相结合的方式同时对g-C3N4进行改性,大大提高了g-C3N4的光催化性能,使本发明复合光催化剂在光催化降解水体中抗生素、化妆品等新兴污染物时具有去除率高、反应速率快、光催化反应稳定的优点。
附图说明
图1为本发明实施例1制备的Cu掺杂氮化碳/WO3复合光催化剂、对比实施例1制备的氮化碳、对比实施例2制备的Cu掺杂氮化碳以及WO3的XRD图;
图2为对比实施例1制备的氮化碳的SEM图;
图3为WO3的SEM图;
图4为对比实施例2制备的Cu掺杂氮化碳的SEM图;
图5为实施例1制备的Cu掺杂氮化碳/WO3复合光催化剂的SEM图;
图6为实施例1制备的Cu掺杂氮化碳/WO3复合光催化剂、对比实施例1制备的氮化碳和对比实施例2制备的Cu掺杂氮化碳的UV-Vis图;
图7为实施例中1制备的Cu掺杂氮化碳/WO3复合光催化剂、对比实施例1制备的氮化碳以及对比实施例2制备的Cu掺杂氮化碳三种催化剂光催化剂降解四环素溶液的时间-降解率关系图;
图8为实施例中1制备的Cu掺杂氮化碳/WO3复合光催化剂、对比实施例1制备的氮化碳以及对比实施例2制备的Cu掺杂氮化碳三种催化剂光催化剂降解四环素溶液的反应速率图;
图9为实施例中1制备的Cu掺杂氮化碳/WO3复合光催化剂、对比实施例1制备的氮化碳以及对比实施例2制备的Cu掺杂氮化碳三种催化剂光催化剂活性自由基捕获实验结果对比图;
图10为实施例中1制备的Cu掺杂氮化碳/WO3复合光催化剂重复使用降解效果图。
具体实施方式
以下结合附图和具体实施例对本发明的技术方案做进一步说明。
以下实施例中采用的原料和仪器均为市售。
实施例1
本发明过渡金属掺杂氮化碳/WO3的复合光催化剂,复合光催化剂由二维片层状过渡金属掺杂的g-C3N4与空心球壳状WO3共同组成;空心球壳状WO3颗粒较大作为载体,过渡金属掺杂的g-C3N4负载(聚集)在WO3载体的表面。
本实施例中,掺杂金属为Cu,选用掺杂物质为氯化铜,氯化铜与尿素比例为0.0016∶1;WO3与过渡金属掺杂的g-C3N4复合质量比为0.05∶1。
上述Cu掺杂g-C3N4/WO3复合光催化剂的制备方法,包括以下步骤:
步骤1,将50g尿素溶于40mL超纯水中,制得尿素溶液;然后往尿素溶液中加入0.2272g氯化铜,充分搅拌后超声混合1h,得到混合溶液;
步骤2,将步骤1的混合溶液置于烘箱中于100℃下干燥12h,烘干后固体研磨15min充分混合,将研磨后的固体放入马弗炉中于550℃下煅烧4h,升温速度为2.3℃/min;煅烧后自然冷却,得到块状Cu掺杂的氮化碳,将其研磨成粉末;
步骤3,称取1g步骤2制得的粉末状Cu掺杂的氮化碳溶于50mL无水甲醇中,超声混合0.5h后加入0.05gWO3,将混合物料置于磁力搅拌器上搅拌至溶剂蒸发,然后放入烘箱中烘干,最后进行煅烧,煅烧温度为400℃,煅烧时间2h,升温速度5℃/min,将煅烧后的固体研磨即可得到Cu掺杂氮化碳/WO3的复合光催化剂。
对比实施例1
一种氮化碳的制备方法,具体采用如下步骤制得:将50g尿素溶于40mL超纯水中,充分搅拌后超声混合1h,得到混合溶液;将混合溶液置于烘箱中于100℃下干燥12h,烘干后固体研磨15min充分混合,将研磨后固体放入马弗炉中550℃煅烧4h,升温速度为2.3℃/min;煅烧后自然冷却,得到块状氮化碳,将其研磨成粉末,得到粉末状g-C3N4光催化剂。
对比实施例2
一种Cu掺杂氮化碳的制备方法,具体采用如下步骤制得:将50g尿素溶于40mL超纯水中,制得尿素溶液;然后往尿素溶液中加入0.2272g氯化铜,充分搅拌后超声混合1h,得到混合溶液;将混合溶液置于烘箱中于100℃下干燥12h,烘干后固体研磨15min充分混合,将研磨后的固体放入马弗炉中于550℃下煅烧4h,升温速度为2.3℃/min;煅烧后自然冷却,得到块状Cu掺杂的氮化碳,将其研磨成粉末,得到粉末状Cu-g-C3N4光催化剂。
将实施例1制备的Cu掺杂氮化碳/WO3复合光催化剂、对比实施例1制备的氮化碳和对比实施例2制备的Cu掺杂氮化碳分别进行XRD分析,结果如图1所示。g-C3N4催化剂的XRD图谱在2θ=12.6°和2θ=27.5°左右都存在特征峰,2θ=12.6°处衍射峰对应g-C3N4的(100)晶面,是由层内芳香物质sp2杂化形成的,说明样品具有3-s-三嗪结构;2θ=27.5°处特征峰对应(002)晶面,由芳香化合物层与层间堆积形成的,这两处峰的存在说明样品具有类石墨层状结构。Cu-g-C3N4在2θ=12.6°处衍射峰变弱,说明Cu离子与g-C3N4通过化学键节后掺入了3-s-三嗪结构内,Cu-g-C3N4/WO3与WO3和Cu-g-C3N4图谱相比,表现出WO3与Cu-g-C3N4特征峰组合的特点,且并没有发现其他杂质相,这表明两者间进行了很好的物理复合。
将实施例1制备的Cu掺杂氮化碳/WO3复合光催化剂、对比实施例1制备的氮化碳催化剂和对比实施例2制备的Cu掺杂氮化碳分别进行SEM分析,结果如图2~5所示。从图2可以看出,对比实施例1制备的g-C3N4为层状结构,样品团聚严重,表现为大块团聚颗粒,体积较大;图4中,金属Cu离子的掺杂抑制了g-C3N4的缩聚,使得样品具有更小的体积与比表面积;从图3WO3的SEM图片看出,制备的WO3为空心球状结构;空心球状结构的WO3与Cu-g-C3N4复合后,Cu-g-C3N4包裹在WO3表面形成异质结构,如图5。
将实施例1制备的Cu掺杂氮化碳/WO3复合光催化剂、对比实施例1制备的氮化碳和对比实施例2制备的Cu掺杂氮化碳分别进行UV-Vis分析,结果如图6所示。Cu掺杂的氮化碳和Cu掺杂的氮化碳/WO3复合光催化剂相对于单纯的g-C3N4不仅紫外光区吸收强度得到增强,可见光吸收范围也发生了红移,从而可以说明通过过渡金属离子掺杂和半导体复合相结合的改性能够大大提高材料的光催化剂性能和光能利用率。
实施例2
实施例1制得的Cu掺杂的氮化碳/WO3复合光催化剂在处理含有抗生素废水中的应用:
(1)称取50mg实施例1制得的Cu掺杂的氮化碳/WO3复合光催化剂添加到500mL初始浓度为20mg/L的盐酸四环素废水中,暗反应吸附1h后开灯,采用LED白光灯作为可见光光源。
(2)测定光照时间为0min、15min、30min、45min、60min时反应溶液在365nm波长处的吸光度值,结合标准曲线,得到不同光照时间对应的四环素浓度C,根据公式(η=(C0-C)/C0×100%)计算不同光照时间下盐酸四环素的去除率η,结果如图7所示。
(3)根据公式ln(Ct/C0)=-KT和T1/2=ln2/K,得到催化剂的表观反应速率K及四环素在该条件下的半衰期T1/2,结果如图8所示。
另外分别称取50mg对比实施例1、2中制得的g-C3N4和Cu-g-C3N4,重复上述步骤,得到两种催化剂g-C3N4和Cu-g-C3N4在不同光照时间下废水中四环素的去除率、反应速率及半衰期,结果如图7和图8所示。同时为了消除四环素溶液自身降解对降解效果的影响,设置未加任何催化剂直接光源照射的对照组,结果如图7所示。
图7为实施例1制得的Cu掺杂的氮化碳/WO3复合光催化剂与对比实施例中纯g-C3N4、Cu掺杂氮化碳光催化剂在降解过程中盐酸四环素的浓度随光催化时间变化的关系示意图。由图7可知,Cu掺杂的氮化碳/WO3复合光催化剂比纯g-C3N4及单一Cu掺杂的氮化碳有更高的吸附性能和光催化活性,吸附平衡时四环素去除率由g-C3N4的9%提升至46%,光催化降解1h,四环素去除率由53%提高至92%,吸附性能和光催化氧化性能得到显著提升。
图8为实施例1制得的Cu掺杂的氮化碳/WO3复合光催化剂与对比实施例中纯g-C3N4、Cu掺杂氮化碳光催化剂降解盐酸四环素的反应速率示意图,由图8可知,Cu掺杂的氮化碳/WO3复合光催化剂反应速率(0.02985min-1)更快,约为纯g-C3N4的(0.01003min-1)3倍左右,半衰期由69.11min降为23.22min。
实施例3
实施例1制备的Cu掺杂氮化碳/WO3复合光催化剂、对比实施例1制备的氮化碳和对比实施例2制备的Cu掺杂氮化碳催化剂活性自由基的确定。向初始反应溶液中分别加入0.1mM的1,4-苯醌、三乙醇胺和异丙醇作为体系中超氧自由基(·O2 -)、空穴(hv+)和羟基自由基(·OH)的猝灭剂,并进行实施例2中的反应过程,实验结果如图9所示。从图9中看出,g-C3N4体系中主要依靠电子还原O2生成·O2 -进行污染物的降解,而Cu离子掺杂后,电子空穴对的复合受到抑制,空穴的直接氧化能力得到增强,能利用空穴和·O2 -进行污染物的降解,而Cu-g-C3N4/WO3复合体系中,溶液中H2O和OH-可被氧化生成·OH活性基团,能充分利用·O2 -,空穴和·OH三者进行氧化降解污染物,提高了催化剂的氧化降解能力。
实施例4
实施例1制得的Cu掺杂的氮化碳/WO3复合光催化剂降解效果稳定性。将实施例1中反应之后的Cu掺杂的氮化碳/WO3复合光催化剂材料进行离心收集,然后用乙醇和超纯水多次清洗,并于100℃的烘箱中干燥,然后重复实施例2中的光催化过程并检测四环素的降解率,实验结果参见图10。从图10中看出重复试验进行了4次后,检测到四环素的光催化去除率仍可以达到76%,说明本材料具有较好的光催化稳定性。
本发明通过对氮化碳进行过渡金属掺杂改性以及和氧化钨复合改性后,能够充分利用超氧自由基、空穴的羟基自由基的氧化能力,抑制电子空穴对的复合速率,从而提高g-C3N4的吸附性能与光催化氧化性能,缩短光催化反应时间,且光催化效果稳定性高。

Claims (9)

1.一种过渡金属掺杂氮化碳/WO3的复合光催化剂,其特征在于:所述复合光催化剂由过渡金属掺杂的g-C3N4与WO3组成;WO3作为载体,过渡金属掺杂的g-C3N4负载在WO3载体的表面;其中,过渡金属掺杂的g-C3N4呈二维片层状,WO3呈空心球壳状。
2.根据权利要求1所述的过渡金属掺杂氮化碳/WO3的复合光催化剂,其特征在于:所述过渡金属为铬、锰、铁、钴、镍或铜中的一种或多种。
3.根据权利要求1所述的过渡金属掺杂氮化碳/WO3的复合光催化剂,其特征在于:所述过渡金属与g-C3N4前驱体尿素的摩尔比为0.0002∶1~0.0032∶1,WO3与过渡金属掺杂的g-C3N4复合质量比为0.01∶1~0.2∶1。
4.一种权利要求1所述的过渡金属掺杂氮化碳/WO3的复合光催化剂的制备方法,其特征在于,包含如下步骤:
步骤1,将所需量的过渡金属盐溶于尿素溶液中,超声混合后得到混合溶液;
步骤2,将步骤1的混合溶液烘干后研磨,研磨后置于500℃~550℃下煅烧,煅烧后得到过渡金属掺杂的g-C3N4
步骤3,将步骤2制得的过渡金属掺杂的g-C3N4溶于无水甲醇中,超声混合后加入所需量的WO3,搅拌至溶剂蒸发,烘干后煅烧即可得到复合光催化剂。
5.根据权利要求4所述的过渡金属掺杂氮化碳/WO3的复合光催化剂的制备方法,其特征在于:步骤1中,尿素溶液中尿素与超纯水的混合质量比为5∶4。
6.根据权利要求4所述的过渡金属掺杂氮化碳/WO3的复合光催化剂的制备方法,其特征在于:步骤1中,所述过渡金属盐为金属的氯化盐、硝酸盐或硫酸盐中的一种。
7.根据权利要求4所述的过渡金属掺杂氮化碳/WO3的复合光催化剂的制备方法,其特征在于:步骤2中,所述煅烧温度为550℃,煅烧时间为4h,升温速度为2.3℃/min~5℃/min。
8.根据权利要求4所述的过渡金属掺杂氮化碳/WO3的复合光催化剂的制备方法,其特征在于:步骤3中,所述煅烧温度为400℃,煅烧时间为2h,升温速度为5℃/min。
9.权利要求1所述过渡金属掺杂氮化碳/WO3的复合光催化剂在光催化降解水体中抗生素方面的应用。
CN201810418219.1A 2018-05-03 2018-05-03 一种过渡金属掺杂氮化碳/wo3的复合光催化剂及其制备方法和应用 Pending CN108745397A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810418219.1A CN108745397A (zh) 2018-05-03 2018-05-03 一种过渡金属掺杂氮化碳/wo3的复合光催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810418219.1A CN108745397A (zh) 2018-05-03 2018-05-03 一种过渡金属掺杂氮化碳/wo3的复合光催化剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN108745397A true CN108745397A (zh) 2018-11-06

Family

ID=64009881

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810418219.1A Pending CN108745397A (zh) 2018-05-03 2018-05-03 一种过渡金属掺杂氮化碳/wo3的复合光催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN108745397A (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110026219A (zh) * 2019-04-22 2019-07-19 武汉科技大学 一种过渡金属掺杂g-C3N4粉体及其制备方法
CN110152709A (zh) * 2019-05-28 2019-08-23 重庆理工大学 多孔g-C3N4/FeTa光催化材料的制备方法
CN110201703A (zh) * 2019-07-04 2019-09-06 肇庆市华师大光电产业研究院 一种多元金属掺杂氮化碳复合材料的制备方法
CN110252381A (zh) * 2019-07-31 2019-09-20 泉州师范学院 一种2d-2d三氧化钨/类石墨相氮化碳异质结构光催化剂的制备和应用
CN111203262A (zh) * 2020-03-05 2020-05-29 上海纳米技术及应用国家工程研究中心有限公司 快速制备氮化碳纳米片负载纳米铜的方法及其产品和应用
CN111408397A (zh) * 2020-03-30 2020-07-14 浙江工商大学 改性氮化碳与氧化钨耦合的p-n型异质结复合材料及其制备方法和应用
CN111889122A (zh) * 2019-05-06 2020-11-06 天津大学 三氧化钨/石墨相氮化碳复合材料及其制备方法
CN111889121A (zh) * 2019-05-06 2020-11-06 天津大学 三氧化钨/石墨相氮化碳复合材料在降解cip中的应用
CN112007679A (zh) * 2020-08-19 2020-12-01 江苏大学 一种Co/V双金属掺杂g-C3N4光催化剂及其制备方法和应用
CN112697859A (zh) * 2020-12-10 2021-04-23 武汉工程大学 环境激素对硝基酚的电化学传感分析方法
CN113070084A (zh) * 2021-03-22 2021-07-06 湖南大学 一种基于石墨相氮化碳的三元复合材料及其制备方法和应用
CN114100658A (zh) * 2021-11-23 2022-03-01 湖南农业大学 氮化碳/三氧化钨/硫掺杂氯氧化锑双z型复合光催化剂及其制备方法和应用
CN114514979A (zh) * 2020-11-19 2022-05-20 中国农业科学院油料作物研究所 一种消减黄曲霉毒素的绿色方法
CN115055197A (zh) * 2022-03-09 2022-09-16 南京工业大学 一种MOF衍生Co掺杂空心氮化碳催化剂及其制备方法和应用
CN115582116A (zh) * 2022-10-28 2023-01-10 南京师范大学 一种分子掺杂制备WO3/g-C3N4复合光催化剂的方法及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104772158A (zh) * 2015-03-23 2015-07-15 上海应用技术学院 一种wo3/c3n4混合光催化剂的制备方法
WO2016087976A1 (en) * 2014-12-01 2016-06-09 Sabic Global Technologies B.V. Synthesis of trimetallic nanoparticles by homogeneous deposition precipitation, and application of the supported catalyst for carbon dioxide reforming of methane
CN106423245A (zh) * 2016-10-17 2017-02-22 扬州大学 一种碳化氮负载铜催化剂的合成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016087976A1 (en) * 2014-12-01 2016-06-09 Sabic Global Technologies B.V. Synthesis of trimetallic nanoparticles by homogeneous deposition precipitation, and application of the supported catalyst for carbon dioxide reforming of methane
CN104772158A (zh) * 2015-03-23 2015-07-15 上海应用技术学院 一种wo3/c3n4混合光催化剂的制备方法
CN106423245A (zh) * 2016-10-17 2017-02-22 扬州大学 一种碳化氮负载铜催化剂的合成方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
MINJI YOON,ET AL: "Synergistically enhanced photocatalytic activity of graphitic carbon nitride and WO3 nanohybrids mediated by photo-Fenton reaction and H2O2", 《APPLIED CATALYSIS B: ENVIRONMENTAL》 *
TINGTING XIAO,ET AL: "In situ construction of hierarchical WO3/g-C3N4 composite hollow microspheres as a Z-scheme photocatalyst for the degradation of antibiotics", 《APPLIED CATALYSIS B: ENVIRONMENTAL》 *
孙开涌: "金属元素掺杂g-C3N4的制备及其光催化性能研究", 《万方学位论文库》 *
梁红玉等: "不同g-C3N4/WO3异质结材料的制备及其光催化性能研究", 《辽宁石油化工大学期刊社》 *
金瑞瑞等: "Fe掺杂g-C3N4的制备及其可见光催化性能", 《物理化学学报》 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110026219A (zh) * 2019-04-22 2019-07-19 武汉科技大学 一种过渡金属掺杂g-C3N4粉体及其制备方法
CN110026219B (zh) * 2019-04-22 2022-04-29 武汉科技大学 一种过渡金属掺杂g-C3N4粉体及其制备方法
CN111889122B (zh) * 2019-05-06 2021-07-27 天津大学 三氧化钨/石墨相氮化碳复合材料及其制备方法
CN111889122A (zh) * 2019-05-06 2020-11-06 天津大学 三氧化钨/石墨相氮化碳复合材料及其制备方法
CN111889121A (zh) * 2019-05-06 2020-11-06 天津大学 三氧化钨/石墨相氮化碳复合材料在降解cip中的应用
CN111889121B (zh) * 2019-05-06 2021-07-27 天津大学 三氧化钨/石墨相氮化碳复合材料在降解cip中的应用
CN110152709A (zh) * 2019-05-28 2019-08-23 重庆理工大学 多孔g-C3N4/FeTa光催化材料的制备方法
CN110152709B (zh) * 2019-05-28 2021-09-28 重庆理工大学 多孔g-C3N4/FeTa光催化材料的制备方法
CN110201703A (zh) * 2019-07-04 2019-09-06 肇庆市华师大光电产业研究院 一种多元金属掺杂氮化碳复合材料的制备方法
CN110252381A (zh) * 2019-07-31 2019-09-20 泉州师范学院 一种2d-2d三氧化钨/类石墨相氮化碳异质结构光催化剂的制备和应用
CN111203262A (zh) * 2020-03-05 2020-05-29 上海纳米技术及应用国家工程研究中心有限公司 快速制备氮化碳纳米片负载纳米铜的方法及其产品和应用
CN111203262B (zh) * 2020-03-05 2023-03-31 上海纳米技术及应用国家工程研究中心有限公司 快速制备氮化碳纳米片负载纳米铜的方法及其产品和应用
CN111408397A (zh) * 2020-03-30 2020-07-14 浙江工商大学 改性氮化碳与氧化钨耦合的p-n型异质结复合材料及其制备方法和应用
CN112007679A (zh) * 2020-08-19 2020-12-01 江苏大学 一种Co/V双金属掺杂g-C3N4光催化剂及其制备方法和应用
CN114514979A (zh) * 2020-11-19 2022-05-20 中国农业科学院油料作物研究所 一种消减黄曲霉毒素的绿色方法
CN114514979B (zh) * 2020-11-19 2024-03-29 中国农业科学院油料作物研究所 一种消减黄曲霉毒素的绿色方法
CN112697859A (zh) * 2020-12-10 2021-04-23 武汉工程大学 环境激素对硝基酚的电化学传感分析方法
CN113070084A (zh) * 2021-03-22 2021-07-06 湖南大学 一种基于石墨相氮化碳的三元复合材料及其制备方法和应用
CN114100658A (zh) * 2021-11-23 2022-03-01 湖南农业大学 氮化碳/三氧化钨/硫掺杂氯氧化锑双z型复合光催化剂及其制备方法和应用
CN114100658B (zh) * 2021-11-23 2023-09-12 湖南农业大学 氮化碳/三氧化钨/硫掺杂氯氧化锑双z型复合光催化剂及其制备方法和应用
CN115055197A (zh) * 2022-03-09 2022-09-16 南京工业大学 一种MOF衍生Co掺杂空心氮化碳催化剂及其制备方法和应用
CN115582116A (zh) * 2022-10-28 2023-01-10 南京师范大学 一种分子掺杂制备WO3/g-C3N4复合光催化剂的方法及应用

Similar Documents

Publication Publication Date Title
CN108745397A (zh) 一种过渡金属掺杂氮化碳/wo3的复合光催化剂及其制备方法和应用
Wang et al. Fabrication of 1D/2D BiPO4/g-C3N4 heterostructured photocatalyst with enhanced photocatalytic efficiency for NO removal
Shao et al. A novel double Z-scheme photocatalyst Ag3PO4/Bi2S3/Bi2O3 with enhanced visible-light photocatalytic performance for antibiotic degradation
Dong et al. Self-assembled hollow sphere shaped Bi2WO6/RGO composites for efficient sunlight-driven photocatalytic degradation of organic pollutants
Jiang et al. A novel direct Z-scheme heterojunction BiFeO3/ZnFe2O4 photocatalyst for enhanced photocatalyst degradation activity under visible light irradiation
Shi et al. Effect of different carbon dots positions on the transfer of photo-induced charges in type I heterojunction for significantly enhanced photocatalytic activity
Chen et al. Metallic NiSe cocatalyst decorated g-C3N4 with enhanced photocatalytic activity
Guo et al. Fabrication of a direct Z-scheme heterojunction between MoS2 and B/Eu-g-C3N4 for an enhanced photocatalytic performance toward tetracycline degradation
Huang et al. In situ fabrication of ultrathin-g-C3N4/AgI heterojunctions with improved catalytic performance for photodegrading rhodamine B solution
Wan et al. Facile synthesis of mesoporous NiCo2O4 fibers with enhanced photocatalytic performance for the degradation of methyl red under visible light irradiation
Neena et al. Hierarchical hetero-architectures of in-situ g-C3N4-coupled Fe-doped ZnO micro-flowers with enhanced visible-light photocatalytic activities
Qiu et al. Cadmium sulfide quantum dots/dodecahedral polyoxometalates/oxygen-doped mesoporous graphite carbon nitride with Z-scheme and Type-II as tandem heterojunctions for boosting visible-light-driven photocatalytic performance
Yan et al. Construction of 3D/2D ZnFe2O4/g-C3N4 S-scheme heterojunction for efficient photo-Fenton degradation of tetracycline hydrochloride
Guan et al. Synthesis and characterization of ZnO@ RSDBC composites and their Photo-Oxidative degradation of Acid Orange 7 in water
Qiu et al. Bismuth molybdate photocatalyst for the efficient photocatalytic degradation of tetracycline in water under visible-light irradiation
Wang et al. Calcination synthesis of tin niobate loaded porous carbon nitride S-scheme heterojunction for photocatalytic H2 production and tetracycline degradation
Huang et al. Design and synthesis of Z-scheme LaFeO3/MoS2/graphene heterojunction with enhanced photocatalytic performance
Chen et al. Co/S co-doped Mn3O4-based sulfur-oxide nano-flakes catalyst for highly efficient catalytic reduction of organics and hexavalent chromium pollutants
Duan et al. High photocatalytic activity of 2D sheet structure ZnO/Bi2WO6 Z-scheme heterojunction under simulated sunlight
Li et al. Ultrasonic-assisted synthesis of LaFeO3/CeO2 heterojunction for enhancing the photocatalytic degradation of organic pollutants
Duan et al. Enhanced photocatalytic degradation of organic pollutants using carbon nanotube mediated CuO and Bi2WO6 sandwich flaky structures
Gao et al. AgCl/Ag/LaFeO3 heterojunction with a prolonged charge lifetime and enhanced visible light catalytic property
Yang et al. Highly efficient flower-like Dy3+-doped Bi2MoO6 photocatalyst under simulated sunlight: design, fabrication and characterization
Liu et al. In situ formation of BiVO4/MoS2 heterojunction: Enhanced photogenerated carrier transfer rate through electron transport channels constructed by graphene oxide
Chen et al. In situ growing Cu2 (OH) 2CO3 on oxidized carbon nitride with enhanced photocatalytic hydrogen evolution and pollutant degradation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181106

RJ01 Rejection of invention patent application after publication