CN108400864A - 一种分数阶多翅膀混沌信号发生器 - Google Patents

一种分数阶多翅膀混沌信号发生器 Download PDF

Info

Publication number
CN108400864A
CN108400864A CN201810474234.8A CN201810474234A CN108400864A CN 108400864 A CN108400864 A CN 108400864A CN 201810474234 A CN201810474234 A CN 201810474234A CN 108400864 A CN108400864 A CN 108400864A
Authority
CN
China
Prior art keywords
operational amplifier
resistance
negative input
connect
output end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810474234.8A
Other languages
English (en)
Other versions
CN108400864B (zh
Inventor
张朝霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foshan University
Original Assignee
Foshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foshan University filed Critical Foshan University
Priority to CN201810474234.8A priority Critical patent/CN108400864B/zh
Publication of CN108400864A publication Critical patent/CN108400864A/zh
Application granted granted Critical
Publication of CN108400864B publication Critical patent/CN108400864B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/001Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols using chaotic signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)

Abstract

本发明公开了一种分数阶多翅膀混沌信号发生器,包括:基本混沌信号产生电路N1,用于产生切换控制函数f(y)的序列发生器N2,基本混沌信号产生电路N1的输出端分别与序列发生器N2的输入端连接,序列发生器N2的输出端与基本混沌信号产生电路N1的输入端连接。用函数f(y)作为切换控制器来产生分数阶多翅膀混沌信号,其硬件电路的实现更加容易;采用本发明的混沌信号发生器,能产生分数阶多翅膀混沌信号,用于通讯中的加密,其性能更佳。该发明创造可用于混沌通讯技术领域。

Description

一种分数阶多翅膀混沌信号发生器
技术领域
本发明涉及混沌保密通信中所需的混沌电路,具体涉及一种基于切换控制函数的分数阶多翅膀混沌信号发生器。
背景技术
如何产生各种混沌电路并将它们用于混沌保密通信中是近年来非线性电路与系统学科的一个新的研究领域,目前已取得了一些有关的研究成果,如申请号为:200410015517.4,名称为:多螺旋混沌产生器;申请号为:200410052525.6,名称为:一种多折叠环面的混沌电路;申请号为:201410136855.7,名称为:多路图像数字信息混沌加密的方法;但是,现有的混沌信号发生器硬件复杂,加密性不够强。
发明内容
本发明的目的是:提供一种分数阶多翅膀混沌信号发生器,硬件简单,加密性更强。
本发明解决其技术问题的解决方案是:一种分数阶多翅膀混沌信号发生器,包括:基本混沌信号产生电路N1,用于产生切换控制函数f(y)的序列发生器N2,基本混沌信号产生电路N1的输出端分别与序列发生器N2的输入端连接,序列发生器N2的输出端与基本混沌信号产生电路N1的输入端连接。
进一步,所述基本混沌信号产生电路N1包括运算放大器OP1、OP2、OP3,OP26,乘法器MUL1;
运算放大器OP1的输出端分别通过电阻与运算放大器OP1的负输入端,运算放大器OP2的负输入端连接;
运算放大器OP2的输出端分别通过电阻与运算放大器OP26的负输入端,运算放大器OP2的负输入端连接,并与序列发生器N2的输入端相连;
运算放大器OP3的输出端通过电阻与运算放大器OP3的负输入端连接,并与乘法器MUL1的输入端相连;
运算放大器OP26的输出端与乘法器MUL 1的输入端相连;
乘法器MUL1的输出端通过电阻与运算放大器OP1的负输入端连接;
序列发生器N2的输出端通过电阻与运算放大器OP3的负输入端连接;
运算放大器OP1、OP2、OP3、OP26的正输入端均对地连接。
进一步,所述序列发生器N2包括:运算放大器OP4~OP25;
运算放大器OP4的输出端与运算放大器OP4的负输入端连接;运算放大器OP4的输出端与乘法器MUL2的两个输入端连接;
乘法器MUL2的输出端通过电阻与运算放大器OP25的负输入端连接;
运算放大器OP5的输出端分别通过电阻与运算放大器OP5,运算放大器OP25的负输入端连接;运算放大器OP5的正输入端通过电阻与地连接;运算放大器OP5的负输入端通过电阻与电压连接;
运算放大器OP6的输出端分别通过电阻与运算放大器OP6的负输入端,运算放大器OP5的负输入端连接;
运算放大器OP7的输出端通过电阻与运算放大器OP6的负输入端连接,运算放大器OP7的正输入端与电压连接;
运算放大器OP8的输出端分别通过电阻与运算放大器OP8的负输入端,运算放大器OP5的正输入端连接;
运算放大器OP9的输出端通过电阻与运算放大器OP8的负输入端连接,运算放大器OP9的正输入端与电压连接;
运算放大器OP10的输出端分别通过电阻与运算放大器OP10的负输入端,运算放大器OP25的负输入端连接;运算放大器OP10的正输入端通过电阻与地连接;运算放大器OP10的负输入端通过电阻与电压连接;
运算放大器OP11的输出端分别通过电阻与运算放大器OP11的负输入端,运算放大器OP10的负输入端连接;
运算放大器OP12的输出端通过电阻与运算放大器OP11的负输入端连接,运算放大器OP12的正输入端与电压连接;
运算放大器OP13的输出端分别通过电阻与运算放大器OP13的负输入端,运算放大器OP10的正输入端连接;
运算放大器OP14的输出端通过电阻与运算放大器OP13的负输入端连接,运算放大器OP14的正输入端与电压连接;
运算放大器OP15的输出端分别通过电阻与运算放大器OP15负输入端,运算放大器OP25的负输入端连接;运算放大器OP15的正输入端通过电阻与地连接;运算放大器OP15的负输入端通过电阻与电压连接;
运算放大器OP16的输出端分别通过电阻与运算放大器OP16的输入端,运算放大器OP15的负输入端连接;
运算放大器OP17的输出端通过电阻与运算放大器OP16的负输入端连接,运算放大器OP17的正输入端与电压连接;
运算放大器OP18的输出端分别通过电阻与运算放大器OP18的负输入端,运算放大器OP15的正输入端连接;
运算放大器OP19的输出端通过电阻与运算放大器OP18的负输入端连接,运算放大器OP19的正输入端与电压连接;
运算放大器OP20的输出端分别通过电阻与运算放大器OP20的负输入端,运算放大器OP25的负输入端连接;运算放大器OP20的正输入端通过电阻与地连接;运算放大器OP20的负输入端通过电阻与电压连接;
运算放大器OP21的输出端分别通过电阻与运算放大器OP21的负输入端,运算放大器OP20的负输入端连接;
运算放大器OP22的输出端通过电阻与运算放大器OP21的负输入端连接,运算放大器OP22的正输入端与电压连接;
运算放大器OP23的输出端分别通过电阻与运算放大器OP23的负输入端,运算放大器OP20的正输入端连接;
运算放大器OP24的输出端通过电阻与运算放大器OP23的负输入端连接,运算放大器OP24的正输入端与电压连接;
运算放大器OP6、OP8、OP11、OP13、OP16、OP18、OP21、OP23、OP25的正输入端接地;
基本混沌信号产生电路N1中所述运算放大器OP2的输出端分别与运算放大器OP4、OP7、OP9、OP12、OP14、OP17、OP19、OP22、OP24的负输入端连接;
运算放大器OP25输出端通过电阻与基本混沌信号产生电路N1中所述运算放大器OP3的负输入端连接。
进一步,所述序列发生器N2还包括给序列发生器N2提供延时电压的电源供给端E1、E2、E3、E4、E5、E6、E7、E8、E9、E10、E11、E12,电源供给端E1、E2、E3、E4分别通过电阻与所述运算放大器OP5、OP10、OP15、OP20的负输入端连接,电源供给端E5、E6、E7、E8、E9、E10、E11、E12分别与所述运算放大器OP7、OP9、OP12、OP14、OP17、OP19、OP22、OP24的正输入端连接。
进一步,所述基本混沌信号产生电路N1、序列发生器N2所采用的电阻均为精密可调的电阻。
进一步,所述序列发生器N2还包括开关K1、K2、K3、K4,开关K1设置在运算放大器OP5的输出端与运算放大器OP25的负输入端之间,开关K2设置在运算放大器OP10的输出端与运算放大器OP25的负输入端之间,开关K3设置在运算放大器OP15的输出端与运算放大器OP25的负输入端之间,开关K4设置在运算放大器OP20的输出端与运算放大器OP25的负输入端之间。
本发明的有益效果是:用函数f(y)作为切换控制器来产生分数阶多翅膀混沌信号,其硬件电路的实现更加容易;采用本发明的混沌信号发生器,能产生分数阶多翅膀混沌信号,用于通讯中的加密,其性能更佳。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单说明。显然,所描述的附图只是本发明的一部分实施例,而不是全部实施例,本领域的技术人员在不付出创造性劳动的前提下,还可以根据这些附图获得其他设计方案和附图。
图1是本发明创造的发生器的电路连接示意图;
图2是产生切换控制函数f(y)序列发生器N2的电路示意图。
具体实施方式
以下将结合实施例和附图对本发明的构思、具体结构及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。另外,文中所提到的所有联接/连接关系,并非单指构件直接相接,而是指可根据具体实施情况,通过添加或减少联接辅件,来组成更优的联接结构。本发明创造中的各个技术特征,在不互相矛盾冲突的前提下可以交互组合。
实施例1,参考图1和图2,一种分数阶多翅膀混沌信号发生器,包括:基本混沌信号产生电路N1,用于产生切换控制函数f(y)的序列发生器N2,基本混沌信号产生电路N1的输出端分别与序列发生器N2的输入端连接,序列发生器N2的输出端与基本混沌信号产生电路N1的输入端连接。
所述基本混沌信号产生电路N1包括运算放大器OP1、OP2、OP3,OP26,乘法器MUL1;其中,所述乘法器MUL1的放大倍数为0.1;
运算放大器OP1的输出端分别通过电阻与运算放大器OP1的负输入端,运算放大器OP2的负输入端连接;其中,运算放大器OP1的输出端依次通过电阻R5,R4,R3与运算放大器OP1的负输入端连接,其中,电阻R3、R4、R5分别并接电容C1、C2、C3。运算放大器OP1的输出端还通过电阻R1与运算放大器OP1的负输入端连接;运算放大器OP1的输出端通过电阻R6与运算放大器OP2的负输入端。
运算放大器OP2的输出端分别通过电阻与运算放大器OP26的负输入端,运算放大器OP2的负输入端连接,并与序列发生器N2的输入端相连;其中,运算放大器OP2的输出端依次通过电阻R10,R9,R8与运算放大器OP2的负输入端连接,其中,电阻R8、R9、R10分别并接电容C4、C5、C6。运算放大器OP2的输出端还通过电阻R58与运算放大器OP26的负输入端连接。
运算放大器OP3的输出端通过电阻与运算放大器OP3的负输入端连接,并与乘法器MUL1的输入端相连;其中,运算放大器OP3的输出端依次通过电阻R15,R14,R13与运算放大器OP3的负输入端连接,其中,电阻R13、R14、R15分别并接电容C7、C8、C9;运算放大器OP3的输出端通过电阻R11与运算放大器OP3的负输入端连接;运算放大器OP3的输出端与乘法器MUL1的输入端连接。
运算放大器OP26的输出端与乘法器MUL1的输入端相连;乘法器MUL1的输出端通过电阻R2与运算放大器OP1的负输入端连接;序列发生器N2的输出端通过电阻R12与运算放大器OP3的负输入端连接;运算放大器OP1、OP2、OP3、OP26的正输入端均对地连接。
所述序列发生器N2包括:运算放大器OP4~OP25,开关K1、K2、K3、K4,给序列发生器N2提供延时电压的电源供给端E1、E2、E3、E4、E5、E6、E7、E8、E9、E10、E11、E12;
运算放大器OP4的输出端与运算放大器OP4的负输入端连接;运算放大器OP4的输出端与乘法器MUL2的两个输入端连接;乘法器MUL2的输出端通过电阻R16与运算放大器OP25的负输入端连接;
运算放大器OP5的输出端通过电阻R18与运算放大器OP5的负输入端连接,运算放大器OP5的输出端通过电阻R17与开关K1的一端连接,开关K1的另一端与运算放大器OP25的负输入端连接;运算放大器OP5的正输入端通过电阻R23与地连接;运算放大器OP5的负输入端通过电阻R19与电源供给端E1连接;
运算放大器OP6的输出端通过电阻R20与运算放大器OP6的负输入端连接,运算放大器OP6的输出端通过电阻R22与运算放大器OP5的负输入端连接;
运算放大器OP7的输出端通过电阻R21与运算放大器OP6的负输入端连接,运算放大器OP7的正输入端与电源供给端E5连接;
运算放大器OP8的输出端通过电阻R25与运算放大器OP8的负输入端连接,运算放大器OP8的输出端通过电阻R24与运算放大器OP5的正输入端连接;
运算放大器OP9的输出端通过电阻R26与运算放大器OP8的负输入端连接,运算放大器OP9的正输入端与电源供给端E6连接;
运算放大器OP10的输出端通过电阻R28与运算放大器OP10的负输入端连接,运算放大器OP10的输出端通过电阻R27与开关K2的一端连接,开关K2的另一端与运算放大器OP25的负输入端连接;运算放大器OP10的正输入端通过电阻R33与地连接;运算放大器OP10的负输入端通过电阻R29与电源供给端E2连接;
运算放大器OP11的输出端通过电阻R30与运算放大器OP11的负输入端连接,运算放大器OP11的输出端通过电阻R32与运算放大器OP10的负输入端连接;
运算放大器OP12的输出端通过电阻R31与运算放大器OP11的负输入端连接,运算放大器OP12的正输入端与电源供给端E7连接;
运算放大器OP13的输出端通过电阻R35与运算放大器OP13的负输入端连接,运算放大器OP13的输出端通过电阻R34与运算放大器OP10的正输入端连接;
运算放大器OP14的输出端通过电阻R36与运算放大器OP13的负输入端连接,运算放大器OP14的正输入端与电源供给端E8连接;
运算放大器OP15的输出端通过电阻R38与运算放大器OP15的负输入端连接,运算放大器OP15的输出端通过电阻R37与开关K3的一端连接,开关K3的另一端与运算放大器OP25的负输入端连接;运算放大器OP15的正输入端通过电阻R43与地连接;运算放大器OP15的负输入端通过电阻R39与电源供给端E3连接;
运算放大器OP16的输出端通过电阻R40与运算放大器OP16的负输入端连接,运算放大器OP16的输出端通过电阻R42与运算放大器OP15的负输入端连接;
运算放大器OP17的输出端通过电阻R41与运算放大器OP16的负输入端连接,运算放大器OP17的正输入端与电源供给端E9连接;
运算放大器OP18的输出端通过电阻R45与运算放大器OP18的负输入端连接,运算放大器OP18的输出端通过电阻R44与运算放大器OP15的正输入端连接;
运算放大器OP19的输出端通过电阻R46与运算放大器OP18的负输入端连接,运算放大器OP19的正输入端与电源供给端E10连接;
运算放大器OP20的输出端通过电阻R48与运算放大器OP20的负输入端连接,运算放大器OP20的输出端通过电阻R47与开关K4的一端连接,开关K4的另一端与运算放大器OP25的负输入端连接;运算放大器OP20的正输入端通过电阻R53与地连接;运算放大器OP20的负输入端通过电阻R49与电源供给端E4连接;
运算放大器OP21的输出端通过电阻R50与运算放大器OP21的负输入端连接,运算放大器OP21的输出端通过电阻R52与运算放大器OP20的负输入端连接;
运算放大器OP22的输出端通过电阻R51与运算放大器OP21的负输入端连接,运算放大器OP22的正输入端与电源供给端E11连接;
运算放大器OP23的输出端通过电阻R55与运算放大器OP23的负输入端连接,运算放大器OP23的输出端通过电阻R54与运算放大器OP20的正输入端连接;
运算放大器OP24的输出端通过电阻R56与运算放大器OP23的负输入端连接,运算放大器OP24的正输入端与电源供给端E12连接;
运算放大器OP6、OP8、OP11、OP13、OP16、OP18、OP21、OP23、OP25的正输入端接地;
基本混沌信号产生电路N1中所述运算放大器OP2的输出端分别与运算放大器OP4、OP7、OP9、OP12、OP14、OP17、OP19、OP22、OP24的负输入端连接;
运算放大器OP25输出端通过电阻R12与基本混沌信号产生电路N1中所述运算放大器OP3的负输入端连接。
根据图2,得序列发生器N2的切换控制函数f(y)的数学表达式为
上式中,H0=560,H1=17.5,H2=23.5,H3=33,H4=43,C1=0.25,C2=0.375,C3=0.5,C4=0.625,N=4;
可得产生三维多涡卷混沌信号的状态方程为下式:
上式中,a=20,b=51,c=14,E=80,α=0.9
其中,本实施例的电路元件和电源电压的选择如下:
本发明电路元件和电源电压的选择:图1和图2中所有的运算放大器,型号为TL082,乘法器,型号为AD633。为了便于电路实验,为了保证电阻值的准确性,图1和图2中所有电阻均采用精密可调电阻。
本发明创造的元器件参数表如下,其中,表1为所有电容的容值参数表,表2为所有电阻的阻值参数表,表3为所有的电源供给端提供的延时电压值参数表。
表1(单位:nF)
C1 12.32 C2 18.35 C3 11
C4 12.32 C5 18.35 C6 11
C7 12.32 C8 18.35 C9 11
表2(单位:kΩ)
表3(单位:V)
将上述参数代入本发明创造的信号发生器,通过调节开关K1、K2、K3、K4的开关状态,可得到不同翅膀数的混沌信号,其中,各个开关状态对应的翅膀数如表4所示。
表4
K1 K2 K3 K4 翅膀数量
断开 断开 断开 断开 2
接通 断开 断开 断开 4
接通 接通 断开 断开 6
接通 接通 接通 断开 8
接通 接通 接通 接通 10
本发明创造与已有技术相比的有益效果为:1)用函数f(y)作为切换控制器来产生分数阶多翅膀混沌信号,其硬件电路的实现更加容易;2)采用本发明的混沌信号发生器,能产生分数阶多翅膀混沌信号,用于通讯中的加密,其性能更佳。
以上对本发明的较佳实施方式进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做出种种的等同变型或替换,这些等同的变型或替换均包含在本申请权利要求所限定的范围内。

Claims (6)

1.一种分数阶多翅膀混沌信号发生器,其特征在于,包括:基本混沌信号产生电路N1,用于产生切换控制函数f(y)的序列发生器N2,基本混沌信号产生电路N1的输出端分别与序列发生器N2的输入端连接,序列发生器N2的输出端与基本混沌信号产生电路N1的输入端连接。
2.根据权利要求1所述的一种分数阶多翅膀混沌信号发生器,其特征在于:所述基本混沌信号产生电路N1包括运算放大器OP1、OP2、OP3,OP26,乘法器MUL1;
运算放大器OP1的输出端分别通过电阻与运算放大器OP1的负输入端,运算放大器OP2的负输入端连接;
运算放大器OP2的输出端分别通过电阻与运算放大器OP26的负输入端,运算放大器OP2的负输入端连接,并与序列发生器N2的输入端相连;
运算放大器OP3的输出端通过电阻与运算放大器OP3的负输入端连接,并与乘法器MUL1的输入端相连;
运算放大器OP26的输出端与乘法器MUL 1的输入端相连;
乘法器MUL1的输出端通过电阻与运算放大器OP1的负输入端连接;
序列发生器N2的输出端通过电阻与运算放大器OP3的负输入端连接;
运算放大器OP1、OP2、OP3、OP26的正输入端均对地连接。
3.根据权利要求2所述的一种分数阶多翅膀混沌信号发生器,其特征在于:所述序列发生器N2包括:运算放大器OP4~OP25;
运算放大器OP4的输出端与运算放大器OP4的负输入端连接;运算放大器OP4的输出端与乘法器MUL2的两个输入端连接;
乘法器MUL2的输出端通过电阻与运算放大器OP25的负输入端连接;
运算放大器OP5的输出端分别通过电阻与运算放大器OP5,运算放大器OP25的负输入端连接;运算放大器OP5的正输入端通过电阻与地连接;运算放大器OP5的负输入端通过电阻与电压连接;
运算放大器OP6的输出端分别通过电阻与运算放大器OP6的负输入端,运算放大器OP5的负输入端连接;
运算放大器OP7的输出端通过电阻与运算放大器OP6的负输入端连接,运算放大器OP7的正输入端与电压连接;
运算放大器OP8的输出端分别通过电阻与运算放大器OP8的负输入端,运算放大器OP5的正输入端连接;
运算放大器OP9的输出端通过电阻与运算放大器OP8的负输入端连接,运算放大器OP9的正输入端与电压连接;
运算放大器OP10的输出端分别通过电阻与运算放大器OP10的负输入端,运算放大器OP25的负输入端连接;运算放大器OP10的正输入端通过电阻与地连接;运算放大器OP10的负输入端通过电阻与电压连接;
运算放大器OP11的输出端分别通过电阻与运算放大器OP11的负输入端,运算放大器OP10的负输入端连接;
运算放大器OP12的输出端通过电阻与运算放大器OP11的负输入端连接,运算放大器OP12的正输入端与电压连接;
运算放大器OP13的输出端分别通过电阻与运算放大器OP13的负输入端,运算放大器OP10的正输入端连接;
运算放大器OP14的输出端通过电阻与运算放大器OP13的负输入端连接,运算放大器OP14的正输入端与电压连接;
运算放大器OP15的输出端分别通过电阻与运算放大器OP15负输入端,运算放大器OP25的负输入端连接;运算放大器OP15的正输入端通过电阻与地连接;运算放大器OP15的负输入端通过电阻与电压连接;
运算放大器OP16的输出端分别通过电阻与运算放大器OP16的输入端,运算放大器OP15的负输入端连接;
运算放大器OP17的输出端通过电阻与运算放大器OP16的负输入端连接,运算放大器OP17的正输入端与电压连接;
运算放大器OP18的输出端分别通过电阻与运算放大器OP18的负输入端,运算放大器OP15的正输入端连接;
运算放大器OP19的输出端通过电阻与运算放大器OP18的负输入端连接,运算放大器OP19的正输入端与电压连接;
运算放大器OP20的输出端分别通过电阻与运算放大器OP20的负输入端,运算放大器OP25的负输入端连接;运算放大器OP20的正输入端通过电阻与地连接;运算放大器OP20的负输入端通过电阻与电压连接;
运算放大器OP21的输出端分别通过电阻与运算放大器OP21的负输入端,运算放大器OP20的负输入端连接;
运算放大器OP22的输出端通过电阻与运算放大器OP21的负输入端连接,运算放大器OP22的正输入端与电压连接;
运算放大器OP23的输出端分别通过电阻与运算放大器OP23的负输入端,运算放大器OP20的正输入端连接;
运算放大器OP24的输出端通过电阻与运算放大器OP23的负输入端连接,运算放大器OP24的正输入端与电压连接;
运算放大器OP6、OP8、OP11、OP13、OP16、OP18、OP21、OP23、OP25的正输入端接地;
基本混沌信号产生电路N1中所述运算放大器OP2的输出端分别与运算放大器OP4、OP7、OP9、OP12、OP14、OP17、OP19、OP22、OP24的负输入端连接;
运算放大器OP25输出端通过电阻与基本混沌信号产生电路N1中所述运算放大器OP3的负输入端连接。
4.根据权利要求3所述的一种分数阶多翅膀混沌信号发生器,其特征在于:所述序列发生器N2还包括给序列发生器N2提供延时电压的电源供给端E1、E2、E3、E4、E5、E6、E7、E8、E9、E10、E11、E12,电源供给端E1、E2、E3、E4分别通过电阻与所述运算放大器OP5、OP10、OP15、OP20的负输入端连接,电源供给端E5、E6、E7、E8、E9、E10、E11、E12分别与所述运算放大器OP7、OP9、OP12、OP14、OP17、OP19、OP22、OP24的正输入端连接。
5.根据权利要求3或4所述的一种分数阶多翅膀混沌信号发生器,其特征在于:所述基本混沌信号产生电路N1、序列发生器N2所采用的电阻均为精密可调的电阻。
6.根据权利要求5所述的一种分数阶多翅膀混沌信号发生器,其特征在于:所述序列发生器N2还包括开关K1、K2、K3、K4,开关K1设置在运算放大器OP5的输出端与运算放大器OP25的负输入端之间,开关K2设置在运算放大器OP10的输出端与运算放大器OP25的负输入端之间,开关K3设置在运算放大器OP15的输出端与运算放大器OP25的负输入端之间,开关K4设置在运算放大器OP20的输出端与运算放大器OP25的负输入端之间。
CN201810474234.8A 2018-05-17 2018-05-17 一种分数阶多翅膀混沌信号发生器 Active CN108400864B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810474234.8A CN108400864B (zh) 2018-05-17 2018-05-17 一种分数阶多翅膀混沌信号发生器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810474234.8A CN108400864B (zh) 2018-05-17 2018-05-17 一种分数阶多翅膀混沌信号发生器

Publications (2)

Publication Number Publication Date
CN108400864A true CN108400864A (zh) 2018-08-14
CN108400864B CN108400864B (zh) 2024-03-29

Family

ID=63102292

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810474234.8A Active CN108400864B (zh) 2018-05-17 2018-05-17 一种分数阶多翅膀混沌信号发生器

Country Status (1)

Country Link
CN (1) CN108400864B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109787744A (zh) * 2019-01-25 2019-05-21 湘潭大学 基于fpga实现的翅膀数量随机切换的混沌信号发生器
CN110830231A (zh) * 2019-10-31 2020-02-21 湘潭大学 一种产生风车形四翼吸引子的混沌电路
CN111835498A (zh) * 2020-06-24 2020-10-27 佛山科学技术学院 一种多翅膀混沌信号发生器和加密系统
CN111865554A (zh) * 2020-06-24 2020-10-30 佛山科学技术学院 一种多涡卷混沌信号发生器和加密系统
CN112129329A (zh) * 2020-10-14 2020-12-25 大连海事大学 一种摩擦电信号采集装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070248030A1 (en) * 2006-04-19 2007-10-25 Samsung Electronics Co., Ltd. Signal generator, signal generation method, and RF communication system using the same
US20110134963A1 (en) * 2009-12-04 2011-06-09 Ruchir Saraswat Phase-locked loop based chaotic spread spectrum generator
CN202998051U (zh) * 2012-12-27 2013-06-12 西南大学 一种基于忆阻器的超混沌系统实现电路
CN103684747A (zh) * 2014-01-07 2014-03-26 滨州学院 一个双层蝶形吸引子混沌发生器及电路
CN104320244A (zh) * 2014-10-30 2015-01-28 重庆邮电大学 一种产生网格多翼蝴蝶混沌吸引子的混沌电路及使用方法
CN105546357A (zh) * 2015-12-14 2016-05-04 中国人民解放军海军工程大学 一种基于混沌理论的输油管路泄漏监测系统
CN206042011U (zh) * 2016-09-28 2017-03-22 中南大学 一种无平衡点多翅膀超混沌信号发生器
US20170085367A1 (en) * 2015-03-31 2017-03-23 The Board Of Regents Of The University Of Texas System Method and apparatus for hybrid encryption
CN107124262A (zh) * 2017-06-22 2017-09-01 郑州轻工业学院 一种mmlc的混沌电路
CN107359980A (zh) * 2017-07-31 2017-11-17 哈尔滨理工大学 一种六维分数阶超混沌系统及混沌信号发生器设计
CN208190664U (zh) * 2018-05-17 2018-12-04 佛山科学技术学院 一种分数阶多翅膀混沌信号发生器

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070248030A1 (en) * 2006-04-19 2007-10-25 Samsung Electronics Co., Ltd. Signal generator, signal generation method, and RF communication system using the same
US20110134963A1 (en) * 2009-12-04 2011-06-09 Ruchir Saraswat Phase-locked loop based chaotic spread spectrum generator
CN202998051U (zh) * 2012-12-27 2013-06-12 西南大学 一种基于忆阻器的超混沌系统实现电路
CN103684747A (zh) * 2014-01-07 2014-03-26 滨州学院 一个双层蝶形吸引子混沌发生器及电路
CN104320244A (zh) * 2014-10-30 2015-01-28 重庆邮电大学 一种产生网格多翼蝴蝶混沌吸引子的混沌电路及使用方法
US20170085367A1 (en) * 2015-03-31 2017-03-23 The Board Of Regents Of The University Of Texas System Method and apparatus for hybrid encryption
CN105546357A (zh) * 2015-12-14 2016-05-04 中国人民解放军海军工程大学 一种基于混沌理论的输油管路泄漏监测系统
CN206042011U (zh) * 2016-09-28 2017-03-22 中南大学 一种无平衡点多翅膀超混沌信号发生器
CN107124262A (zh) * 2017-06-22 2017-09-01 郑州轻工业学院 一种mmlc的混沌电路
CN107359980A (zh) * 2017-07-31 2017-11-17 哈尔滨理工大学 一种六维分数阶超混沌系统及混沌信号发生器设计
CN208190664U (zh) * 2018-05-17 2018-12-04 佛山科学技术学院 一种分数阶多翅膀混沌信号发生器

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
QIAO XIAO-HUA ET AL.: "Amplitude linear-adjustable chaotic signal generator with invariant dynamics", 2010 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION TECHNOLOGY AND MANAGEMENT ENGINEERING *
李亚;禹思敏;戴青云;刘明华;刘庆;: "一种新的蔡氏电路设计方法与硬件实现", 物理学报, no. 08 *
毕伟光;吴爱国;: "一种用于混沌保密的新型混沌信号产生电路", 信息安全与通信保密, no. 05 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109787744A (zh) * 2019-01-25 2019-05-21 湘潭大学 基于fpga实现的翅膀数量随机切换的混沌信号发生器
CN109787744B (zh) * 2019-01-25 2022-04-15 湘潭大学 基于fpga实现的翅膀数量随机切换的混沌信号发生器
CN110830231A (zh) * 2019-10-31 2020-02-21 湘潭大学 一种产生风车形四翼吸引子的混沌电路
CN110830231B (zh) * 2019-10-31 2023-05-09 湘潭大学 一种产生风车形四翼吸引子的混沌电路
CN111835498A (zh) * 2020-06-24 2020-10-27 佛山科学技术学院 一种多翅膀混沌信号发生器和加密系统
CN111865554A (zh) * 2020-06-24 2020-10-30 佛山科学技术学院 一种多涡卷混沌信号发生器和加密系统
CN111865554B (zh) * 2020-06-24 2023-10-31 佛山科学技术学院 一种多涡卷混沌信号发生器和加密系统
CN111835498B (zh) * 2020-06-24 2024-03-29 佛山科学技术学院 一种多翅膀混沌信号发生器和加密系统
CN112129329A (zh) * 2020-10-14 2020-12-25 大连海事大学 一种摩擦电信号采集装置

Also Published As

Publication number Publication date
CN108400864B (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
CN108400864A (zh) 一种分数阶多翅膀混沌信号发生器
CN208190664U (zh) 一种分数阶多翅膀混沌信号发生器
CN102694643B (zh) 一种复合混沌信号发生器
CN107294699B (zh) 一种三维多涡卷混沌信号发生器
Bernardeau The quasi-Gaussian density-velocity relationship
Auslander Endomorphisms of minimal sets
CN101873210A (zh) 网状形多涡卷混沌电路及产生多涡卷的方法
Liu et al. Dual-coupled robust wireless power transfer based on parity-time-symmetric model
CN105743228B (zh) 一种任意恒压输出的无线电能传输系统谐振补偿方法
CN108599921A (zh) 一种网格多涡卷混沌信号发生器
CN107135063B (zh) 产生网格多翅膀超混沌隐藏吸引子的混沌电路及实现方法
CN204406259U (zh) 一种电源电路
CN109088305A (zh) 一种激光光源
CN205721464U (zh) 一种模拟电压输出电路
CN103957098A (zh) 一种产生多蝴蝶形吸引子的混沌电路及实现方法
CN105897171A (zh) 宽频带激磁信号发生器
CN206650633U (zh) 一种频率任意设定的高精度正弦信号发生器
CN206042011U (zh) 一种无平衡点多翅膀超混沌信号发生器
CN108683490B (zh) 一种多涡卷混沌电路
CN109361503A (zh) 一种基于锯齿波混沌反控制的多涡卷电路
CN206460695U (zh) 一种模拟波形发生器教学实验装置
CN205788002U (zh) 一种电源供电线压降补偿电路
CN207039621U (zh) 一种三维多涡卷混沌信号发生器
CN105790921A (zh) 一种基于阶梯波切换控制的多翅膀混沌信号发生器
CN105897397A (zh) 可用时间常数实现幅频控制的混沌电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant