CN108386184B - Horizontal well borehole collapse pressure testing device - Google Patents
Horizontal well borehole collapse pressure testing device Download PDFInfo
- Publication number
- CN108386184B CN108386184B CN201810377095.7A CN201810377095A CN108386184B CN 108386184 B CN108386184 B CN 108386184B CN 201810377095 A CN201810377095 A CN 201810377095A CN 108386184 B CN108386184 B CN 108386184B
- Authority
- CN
- China
- Prior art keywords
- probe
- seepage
- plug
- pressure
- rock
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 86
- 230000007246 mechanism Effects 0.000 claims abstract description 115
- 239000000523 sample Substances 0.000 claims abstract description 92
- 239000011435 rock Substances 0.000 claims abstract description 59
- 238000006073 displacement reaction Methods 0.000 claims abstract description 43
- 238000005259 measurement Methods 0.000 claims abstract description 18
- 230000005540 biological transmission Effects 0.000 claims abstract description 13
- 239000007788 liquid Substances 0.000 claims description 13
- 238000007789 sealing Methods 0.000 claims description 10
- 239000012530 fluid Substances 0.000 claims description 8
- 230000001681 protective effect Effects 0.000 claims description 6
- 230000000149 penetrating effect Effects 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 7
- 238000005553 drilling Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 230000001360 synchronised effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000005755 formation reaction Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000004308 accommodation Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000005325 percolation Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/06—Measuring temperature or pressure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/10—Geothermal energy
Landscapes
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Geophysics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
Abstract
Description
技术领域technical field
本发明涉及岩石力学实验领域,尤其涉及一种水平井井眼坍塌压力测试装置。The invention relates to the field of rock mechanics experiments, in particular to a horizontal well borehole collapse pressure testing device.
背景技术Background technique
随着油气开发的深入,钻井垂直深度已接近万米,不同井型裸眼井段长度不断增加,深层岩石的温度环境发生显著增加,在高温井钻井过程中深层井壁岩石温度甚至可达350℃以上,岩石温度的变化导致岩石的结构和力学特性会发生变化,因此准确了解温度变化对岩石力学特性和损伤破环机理的影响规律,判别和预测井壁强度,特别是高温状态下井壁稳定性对安全钻井工程具有重要的现实意义。With the deepening of oil and gas development, the vertical depth of drilling has approached 10,000 meters, the length of open-hole sections of different well types has been increasing, and the temperature environment of deep rocks has increased significantly. During the drilling of high-temperature wells, the temperature of deep rocks can even reach 350 °C As mentioned above, changes in rock temperature will lead to changes in the structure and mechanical properties of rocks. Therefore, it is necessary to accurately understand the influence of temperature changes on rock mechanical properties and damage mechanisms, and to judge and predict the strength of the borehole wall, especially the stability of the borehole wall under high temperature conditions. It has important practical significance for safe drilling engineering.
坍塌压力测量的方法较多,如室内测定、利用差分法计算、有限元预测等,但大多不是用于油田深部地层,尤其对于深层埋深高温地层目前还没有一种完善且连续的测试方法,主要原因如下:1、对于浅部低温地层,采用传统的机械测试方式能够满足岩石的物性参数的测定,且方法成熟,数据获取直接通常采用单轴、三轴等机械测试方法;2、随着高温高压井的开发,高温度、高压力共同作用对岩石物性参数的影响加剧,单一的温度或围压环境模拟已经不能精确模拟所需环境;3、将温度、围压同光学测试集成形成一套完整的测试系统,在压力腔、光学探头等环节都需要较高的集成度。There are many methods for measuring collapse pressure, such as indoor measurement, calculation by difference method, finite element prediction, etc., but most of them are not used in deep oilfield formations, especially for deep buried deep high-temperature formations. The main reasons are as follows: 1. For shallow low-temperature formations, traditional mechanical testing methods can satisfy the determination of physical parameters of rocks, and the methods are mature, and data acquisition usually adopts mechanical testing methods such as uniaxial and triaxial; 2. With the In the development of high-temperature and high-pressure wells, the combined effects of high temperature and high pressure have intensified the impact on petrophysical parameters, and a single temperature or confining pressure environment simulation can no longer accurately simulate the required environment; 3. Integrating temperature and confining pressure with optical testing to form a A complete test system requires a high degree of integration in the pressure chamber, optical probe and other links.
因此,因此研究一套经济简捷的室内测量方法及装置是解决深层高温井钻井井壁稳定力学研究的当务之急。Therefore, it is imperative to study a set of economical and simple indoor measurement methods and devices to solve the study of wellbore stability mechanics in deep high-temperature well drilling.
发明内容Contents of the invention
为了克服现有技术的上述缺陷,本发明所要解决的技术问题是提供一种水平井井眼坍塌压力测试装置,该结构简单直观,操作简便,可以实现温变状态下不同井型井眼力学实验过程中光学信号的同步采集,并实现信号的识别处理和蠕变位移的跟踪测试,进而得到井眼岩石温度对坍塌压力的具体位移信息。In order to overcome the above-mentioned defects of the prior art, the technical problem to be solved by the present invention is to provide a horizontal well borehole collapse pressure test device, which has a simple and intuitive structure and is easy to operate, and can realize wellbore mechanical experiments of different well types under temperature changes. During the process, the optical signal is collected synchronously, and the identification and processing of the signal and the tracking test of the creep displacement are realized, and then the specific displacement information of the borehole rock temperature to the collapse pressure is obtained.
本发明的具体技术方案是:一种水平井井眼坍塌压力测试装置,包括:The specific technical solution of the present invention is: a horizontal well borehole collapse pressure testing device, comprising:
压力釜,所述压力釜包括沿水平方向延伸的压力腔以及沿水平方向延伸的测试腔,所述测试腔包括位于所述压力腔内的刚性桶以及位于所述刚性桶内并能沿径向发生形变的弹性桶;An autoclave, the autoclave includes a pressure chamber extending in the horizontal direction and a test chamber extending in the horizontal direction, the test chamber includes a rigid barrel in the pressure chamber and a rigid barrel in the rigid barrel that can move radially a deformed elastic barrel;
导流堵头,所述导流堵头设置在所述弹性桶内的右侧,以供岩石容置,所述导流堵头具有第一透光部;A diversion plug, the diversion plug is arranged on the right side of the elastic barrel for rock accommodation, and the diversion plug has a first light-transmitting portion;
轴向推力机构,所述轴向推力机构相对所述导流堵头位于岩石的右侧,所述轴向推力机构能相对所述压力釜运动,所述轴向推力机构位于压力釜内的一端设置有能与所述压力腔和所述测试腔接合的导流机构,所述导流机构包括能在其与所述压力腔和所述测试腔接合时将所述压力腔和所述弹性桶之间连通的渗流通道,所述导流机构具有第二透光部;An axial thrust mechanism, the axial thrust mechanism is located on the right side of the rock relative to the diversion plug, the axial thrust mechanism can move relative to the autoclave, and the axial thrust mechanism is located at one end of the autoclave A flow guide mechanism capable of engaging with the pressure chamber and the test chamber is provided, and the flow guide mechanism includes a flow guide mechanism capable of connecting the pressure chamber and the elastic barrel when it is engaged with the pressure chamber and the test chamber. The percolation channels communicated therebetween, the flow guiding mechanism has a second light-transmitting part;
位移控制机构,所述位移控制机构能相对所述刚性桶沿横向移动,所述位移控制机构的一端位于所述压力腔内,所述位移控制机构的另一端设置在所述弹性桶上;A displacement control mechanism, the displacement control mechanism can move laterally relative to the rigid barrel, one end of the displacement control mechanism is located in the pressure chamber, and the other end of the displacement control mechanism is arranged on the elastic barrel;
温度控制机构,所述温度控制机构用于对所述弹性桶内的温度进行控制;a temperature control mechanism, the temperature control mechanism is used to control the temperature in the elastic barrel;
红外测量机构,所述红外测量机构包括设置在所述第一透光部右侧的第一探头和设置在所述第二透光部左侧并与所述第一探头沿横向对应的第二探头,所述第一探头和所述第二探头能沿水平方向同步运动;An infrared measurement mechanism, the infrared measurement mechanism includes a first probe arranged on the right side of the first light-transmitting part and a second probe arranged on the left side of the second light-transmitting part and corresponding to the first probe along the lateral direction Probes, the first probe and the second probe can move synchronously along the horizontal direction;
导向机构,导向机构包括导轨、能沿导轨的延伸方向移动地设置在所述导轨上的探头夹持机构、具有输出轴的电机,所述探头夹持机构用于夹持第一探头或第二探头,所述电机的输出轴和探头夹持机构传动连接。A guide mechanism, the guide mechanism includes a guide rail, a probe clamping mechanism that can move along the extension direction of the guide rail, and a motor with an output shaft. The probe clamping mechanism is used to clamp the first probe or the second probe. For the probe, the output shaft of the motor is in drive connection with the probe clamping mechanism.
优选地,所述压力釜包括外盖,所述轴向推力机构包括轴向加载装置、能与所述轴向加载装置传动连接并穿设在所述外盖上的推力杆,所述推力杆位于所述压力釜内的一端固定设置有与所述外盖密封的密封盖板,所述导流机构包括能与所述弹性桶配合并具有渗流通道的渗流堵头、设置在所述渗流堵头上的渗流接头,所述渗流接头的导流槽与所述渗流堵头的渗流通道连通,所述渗流通道与弹性桶内腔连通,所述导流槽与压力腔连通。Preferably, the autoclave includes an outer cover, and the axial thrust mechanism includes an axial loading device, a thrust rod capable of transmission connection with the axial loading device and pierced on the outer cover, and the thrust rod One end located in the autoclave is fixedly provided with a sealing cover plate that is sealed with the outer cover, and the flow guide mechanism includes a seepage plug that can cooperate with the elastic barrel and has a seepage channel, and is arranged on the seepage plug. The seepage joint on the head, the diversion groove of the seepage joint communicates with the seepage passage of the seepage plug, the seepage passage communicates with the inner cavity of the elastic barrel, and the diversion groove communicates with the pressure chamber.
优选地,所述渗流堵头在其背离岩石的一侧设置有保护罩,所述保护罩罩设在所述第一探头或第二探头外。Preferably, the seepage plug is provided with a protective cover on its side away from the rock, and the protective cover is arranged outside the first probe or the second probe.
优选地,所述压力腔具有侧壁,所述侧壁上设置有与所述压力腔连通的导液塞,所述导流管穿设在所述侧壁上。Preferably, the pressure chamber has a side wall, and a liquid guide plug communicating with the pressure chamber is provided on the side wall, and the guide tube is penetrated on the side wall.
优选地,所述温度控制机构包括自所述导流堵头向左延伸的加热器。Preferably, the temperature control mechanism includes a heater extending leftward from the diversion plug.
优选地,所述导流堵头与所述侧壁之间具有密封腔室,所述第一探头或第二探头设置在所述密封腔室内。Preferably, there is a sealed chamber between the diversion plug and the side wall, and the first probe or the second probe is arranged in the sealed chamber.
优选地,所述渗流接口在其朝向岩石的一侧设置有多个沿圆周方向排布的导流槽,各个所述导流槽与渗流通道连通。Preferably, the side of the seepage interface facing the rock is provided with a plurality of diversion grooves arranged in the circumferential direction, and each diversion groove communicates with the seepage channel.
优选地,包括控制单元,所述控制单元用于对轴向推力机构、位移控制机构、温度控制机构、红外测量机构进行控制。Preferably, a control unit is included, and the control unit is used to control the axial thrust mechanism, the displacement control mechanism, the temperature control mechanism, and the infrared measurement mechanism.
优选地,所述第二透光部沿径向位于所述渗流堵头和所述渗流接头之间。Preferably, the second light-transmitting portion is radially located between the seepage plug and the seepage joint.
本申请的目的在于提供一种测试岩石在不同温度变化下的坍塌压力测试装置,采用该装置能够实现岩石轴向压力控制、径向围压控制、温度控制、井眼控制、红外线(激光)多点测量,它可以监测井眼蠕变力学试验、井眼坍塌压力测试试验、水平井井眼温变坍塌压力测试试验等试验中的光学信息。The purpose of this application is to provide a collapse pressure testing device for testing rocks under different temperature changes, and the device can realize rock axial pressure control, radial confining pressure control, temperature control, wellbore control, infrared (laser) multiple Point measurement, it can monitor the optical information in wellbore creep mechanics test, wellbore collapse pressure test, horizontal well borehole temperature collapse pressure test and other tests.
附图说明Description of drawings
在此描述的附图仅用于解释目的,而不意图以任何方式来限制本发明公开的范围。另外,图中的各部件的形状和比例尺寸等仅为示意性的,用于帮助对本发明的理解,并不是具体限定本发明各部件的形状和比例尺寸。本领域的技术人员在本发明的教导下,可以根据具体情况选择各种可能的形状和比例尺寸来实施本发明。The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way. In addition, the shapes and proportional dimensions of the components in the drawings are only schematic and are used to help the understanding of the present invention, and do not specifically limit the shapes and proportional dimensions of the components in the present invention. Under the teaching of the present invention, those skilled in the art can select various possible shapes and proportional dimensions according to specific conditions to implement the present invention.
图1为根据本发明实施例的水平井井眼坍塌压力测试装置的结构示意图。Fig. 1 is a schematic structural diagram of a horizontal well borehole collapse pressure testing device according to an embodiment of the present invention.
图2为轴向推力机构的仰视图;Fig. 2 is the bottom view of axial thrust mechanism;
图3为图2的截面示意图;Fig. 3 is a schematic cross-sectional view of Fig. 2;
图4为压力釜的俯视图;Fig. 4 is the top view of autoclave;
图5为图4的剖视图;Fig. 5 is a sectional view of Fig. 4;
图6为导向机构一部分的结构示意图。Fig. 6 is a structural schematic diagram of a part of the guiding mechanism.
图7为导向机构另一部分的结构示意图。Fig. 7 is a structural schematic diagram of another part of the guiding mechanism.
图8为岩石受力测试示意图。Figure 8 is a schematic diagram of the rock force test.
以上附图的附图标记:1-压力釜;2-轴向推力机构;3-红外测量机构;4-导向机构;401-支座;402-导轨;403-探头夹持机构;404-电机;405-齿轮传动机构;6-温度控制机构;7-控制单元;201-轴向加载装置;202-密封装置;203-上盖;204-渗流堵头;205-第二透光部;206-渗流接口;207-密封盖板;208-渗流通道;209-保护罩;301-第二探头;303-接口;101-压力腔;102-测试腔;103-位移控制机构;104-导流堵头;105-第一透光部;106-第一探头;107-导液塞;108-刚性桶;109-弹性桶;110-加热器。The reference signs of the above drawings: 1-pressure kettle; 2-axial thrust mechanism; 3-infrared measurement mechanism; 4-guiding mechanism; 401-support; 402-guide rail; 403-probe clamping mechanism; 404-motor ; 405-gear transmission mechanism; 6-temperature control mechanism; 7-control unit; 201-axial loading device; 202-sealing device; 203-top cover; 204-seepage plug; -seepage interface; 207-sealing cover; 208-seepage channel; 209-protective cover; 301-second probe; 303-interface; 101-pressure chamber; 102-test chamber; 103-displacement control mechanism; 104-guidance Plug; 105-first light-transmitting part; 106-first probe; 107-drainage plug; 108-rigid barrel; 109-elastic barrel; 110-heater.
具体实施方式Detailed ways
结合附图和本发明具体实施方式的描述,能够更加清楚地了解本发明的细节。但是,在此描述的本发明的具体实施方式,仅用于解释本发明的目的,而不能以任何方式理解成是对本发明的限制。在本发明的教导下,技术人员可以构想基于本发明的任意可能的变形,这些都应被视为属于本发明的范围。The details of the present invention can be understood more clearly with reference to the accompanying drawings and the description of specific embodiments of the present invention. However, the specific embodiments of the present invention described here are only for the purpose of explaining the present invention, and should not be construed as limiting the present invention in any way. Under the teaching of the present invention, the skilled person can conceive any possible modification based on the present invention, and these should be regarded as belonging to the scope of the present invention.
参照图1、图2、图3、图4、图5、图6以及图7所示,本申请实施例中的水平井井眼坍塌压力测试装置包括:压力釜1,所述压力釜1包括沿水平方向延伸的压力腔101以及沿水平方向延伸的测试腔102,所述测试腔102包括位于所述压力腔101内的刚性桶108以及位于所述刚性桶108内并能沿径向发生形变的弹性桶109;导流堵头104,所述导流堵头104设置在所述弹性桶109内的左侧,以供岩石容置,所述导流堵头104具有第一透光部105;轴向推力机构2,所述轴向推力机构2相对所述导流堵头104位于岩石的右侧,所述轴向推力机构2能相对所述压力釜1运动,所述轴向推力机构2位于压力釜1内的一端设置有能与所述压力腔101和所述测试腔102接合的导流机构,所述导流机构包括能在所述渗流堵头204与所述压力腔101和所述测试腔102接合时将所述压力腔101和所述弹性桶109之间连通的渗流通道208,所述导流机构具有第二透光部205;位移控制机构103,所述位移控制机构103能相对所述刚性桶108沿径向移动,所述位移控制机构103的一端位于所述压力腔101内,所述位移控制机构103的另一端设置在所述弹性桶109上;温度控制机构5,所述温度控制机构5用于对所述弹性桶109内的温度进行控制;红外测量机构3,所述红外测量机构3包括设置在所述第一透光部105右侧的第一探头106和设置在所述第二透光部205左侧并与所述第一探头106沿纵向对应的第二探头301,所述第一探头106和所述第二探头301能沿水平方向同步运动。Referring to Fig. 1, Fig. 2, Fig. 3, Fig. 4, Fig. 5, Fig. 6 and Fig. 7, the horizontal well borehole collapse pressure test device in the embodiment of the present application includes: a pressure kettle 1, and the pressure kettle 1 includes A
借由上述结构,自压力腔101进入的流体可以从渗流堵头204的渗流通道208进入弹性桶109,压力腔101内的流体可以通过位移控制机构103对弹性桶109提供径向的作用力,进入弹性桶109内的流体可以对岩石提供轴向的作用力,温度控制机构5可以根据温度传感器来对弹性桶109内的流体的温度进行控制,由此构建出了岩石的高温高压结构。并且,红外测量机构3还可以对弹性桶109内的岩石进行测量。With the above structure, the fluid entering from the
参照图4和图5所示,具体的,压力釜1包括压力腔101和测试腔102。压力腔101具有左侧壁和右侧壁。压力腔101的左侧壁通过法兰连接盖203与基座连接。压力腔101的右侧壁通过法兰与基座连接。压力腔101的右侧壁上还设置有与所述压力腔101连通的导液塞107。Referring to FIG. 4 and FIG. 5 , specifically, the autoclave 1 includes a
测试腔102位于压力腔101内。测试腔102包括位于外侧的刚性桶108(例如,由钢结构制成)和位于内侧的弹性桶109(例如,由高变形金属制成)。其中,刚性桶108通过销钉固定在压力腔101的侧壁上。弹性桶109可以沿径向发生形变。The
在弹性桶109的右侧部设置有导流堵头104。岩石可以放置在导流堵头104上,并位于弹性桶109内。所述导流堵头104和所述侧壁上设置有与弹性桶109连通的导流管。所述导流管可以将弹性桶109内的流体排出。A
参照图1所示,所述位移控制机构103能相对所述刚性桶108沿径向移动,所述位移控制机构103的一端位于所述压力腔101内,所述位移控制机构103的另一端设置在所述弹性桶109上。位于压力腔101内的流体可以通过位移控制机构103来对弹性桶109产生径向的作用力,从而使弹性桶109产生沿径向的变形。所述位移控制机构103还包括能检测弹性桶109沿径向发生形变量的位移传感器。1, the
参照图2和图3所示,所述轴向推力机构2包括轴向加载装置201、能与所述轴向加载装置201传动连接并穿设在所述盖体203上的推力杆,所述推力杆位于所述压力釜1内的一端固定设置有与所述盖体203密封的密封盖板207,所述导流机构包括渗流堵头204和渗流接头。渗流堵头204通过螺栓连接渗流接口206,渗流接口206通过螺栓固定在密封盖板207上。所述推力杆上设置有能使盖体203密封的密封装置202。Referring to Figures 2 and 3, the
渗流接口206能与压力腔101的左侧配合密封,渗流堵头204能与弹性桶109的左侧密封配合。所述渗流接口206在其朝向岩石的一侧设置有多个沿圆周方向排布的导流槽,各个所述导流槽与渗流通道208连通。所述渗流通道208与弹性桶109内腔连通,所述导流槽与压力腔101连通。所述轴向推力机构2的推力杆能相对所述压力釜1运动,使所述压力腔101和所述弹性桶109连通。The
参照图1所示,在本实施方式中,所述温度控制机构5可以包括自所述导流堵头104向左延伸的加热器110、温度传感器、温度显示器、信号输出接口303、电阻控制阀等。可通过调节电阻控制阀,控制弹性桶109内部流体的温度。本申请实施例的温度控制机构5还包括安装于轴向推力机构2的渗流通道208内的温度传感器。控制单元6分别与信号输出接口303和温度显示器连接,控制电阻控制阀位置,调节加热电阻的大小,存储温度数据,显示当前温度值。1, in this embodiment, the
在本实施方式中,所述渗流堵头204在其背离岩石的一侧设置有保护罩209,所述保护罩209罩设在所述红外测量机构3外。所述导流堵头104与所述侧壁之间形成腔室,所述红外测量机构3设置在所述腔室内。In this embodiment, the
参照图1所示,第一探头106设置在第一透光部105的右侧。第二探头301设置在第二透光部205的左侧。其中,第一探头106和第二探头301沿横向对应设置。在本实施方式中,第一探头106和第二探头301各为四个。当然的,在其他可选的实施方式中,第一探头106和第二探头301的数量可以为其他对应个。Referring to FIG. 1 , the
参照图6和图7所示,所述红外测量机构3还包括导向机构4,导向机构4包括导轨402、能沿导轨402的延伸方向移动地设置在所述导轨402上的探头夹持机构403、具有输出轴的电机404,探头夹持机构403可以夹持住第一探头106或第二探头301,电机404的输出轴和探头夹持机构403通过齿轮传动机构405能够啮合,从而带动第一探头106或第二探头301沿导轨402移动。优选地,各个所述导轨402可以设置在一个呈环形的支座401上,从而便于安装和固定。6 and 7, the
本申请实施例还包括控制单元6,所述控制单元6用于对轴向推力机构2、位移控制机构103、温度控制机构5、红外测量机构3进行控制。具体的,所述控制单元6包括信号接收及转换组块、计算机、处理软件,可实施测试过程中温度、压力、位移、红外探头测量和控制。The embodiment of the present application also includes a control unit 6 , which is used to control the
本发明的目的及解决其技术问题可采用以下技术措施进一步实现。The purpose of the present invention and the solution to its technical problems can be further realized by adopting the following technical measures.
其中,测试探头径向位移控制装置分部于岩石力学压力腔101和轴向推力机构2内,测试探头径向位移控制装置内的齿轮传动系统发生同步位移,每个测试探头径向位移控制装置上安装4个(不限于4个)红外线探头。Among them, the radial displacement control device of the test probe is divided into the rock
其中,整个测试装置为密封容器,储液罐内介质不限于水。Wherein, the entire test device is a sealed container, and the medium in the liquid storage tank is not limited to water.
本发明是通过以下技术方案实现的:The present invention is achieved through the following technical solutions:
一种测试岩石在不同温度变化下的坍塌压力测试方法,其步骤是:A method for testing rock collapse pressure under different temperature changes, the steps are:
步骤1:井眼岩石按照测试腔102的安装尺寸制作成圆环状,安装于测试腔102内部,测试腔102底端安装有玻璃底板、渗流堵头204、测试探头径向位移控制装置、红外线接收探头和加热系统;轴向推力机构2下端安装有渗流堵头204和玻璃盖板,红外线发射探头径向位移控制装置、红外线发射探头和温度测试探头固定在玻璃盖板和盖体203组成的密封区域内;测试探头径向位移控制装置可实现红外线测试探头沿岩石压力腔101径向方向移动,测试探头径向位移控制装置与红外线测试压头通过螺栓连接;轴向推力机构2可施加轴向推力,并产生轴向位移;测试腔102采用膨胀材料,可传递压力腔101液体压力,对测试腔102产生轴向压力;Step 1: The wellbore rock is made into a ring shape according to the installation size of the
步骤2:调整红外线发射探头和接收探头的位置,满足红外线发射探头发出的红外线光束可以紧贴井眼岩石内环壁面,且不受到阻挡,红外线接收探头可以清晰地收到信号;Step 2: Adjust the position of the infrared emitting probe and the receiving probe so that the infrared beam emitted by the infrared emitting probe can be close to the inner ring wall of the borehole rock without being blocked, and the infrared receiving probe can clearly receive the signal;
步骤3:调整温度测试及控制装置,加热储液罐内液体到达预定温度值,记录测试探头径向位移控制装置显示的径向位置X1;Step 3: Adjust the temperature test and control device, heat the liquid in the liquid storage tank to a predetermined temperature value, and record the radial position X1 displayed by the radial displacement control device of the test probe;
步骤4:井眼岩石进行增压操作,通过进液泵将液体泵入导液塞107内,将压力腔101内压力增至预定压力,待盖体203内的温度测试探头达到稳定温度,记录测试探头径向位移控制装置显示的径向位置X2;Step 4: Pressurize the wellbore rock, pump the liquid into the
步骤5:调节岩石力学实验机压力腔101内部的内置加热器110加热内部介质,使测试腔102内温度达到预定温度T1,在整个过程中,红外线发射探头以时间激发周期T间隔激发,温度升高井眼岩石发生缩径,红外线接收探头被阻挡无信号,上下两空腔密封压头内的测试探头径向位移控制装置发生自动调节同步调节,向井眼中心方向移动,每次移动位移ΔS,第I次移动后,红外线接收探头接收到红外线信号,停止移动,记录位移S1=I·ΔS;继续加热,同样记录位移S2,S3,…,SN。Step 5: Adjust the built-in
本实施例提供的试验步骤如下:The test steps provided in this embodiment are as follows:
(1)将井眼岩石按照测试需求制作成井眼的环形结构,放入岩石压力腔101内。(1) The wellbore rock is made into an annular structure of the wellbore according to the test requirements, and put into the
(2)将调节加热炉,加热出液管内介质至设定温度,打开围压进液系统。(2) Adjust the heating furnace, heat the medium in the liquid outlet pipe to the set temperature, and open the confining pressure liquid inlet system.
(3)通过数据的同步采集和处理系统调整测试探头径向位移控制装置上红外线探头的位置,保证红外射线不被岩石侧壁阻挡,且紧贴岩石侧壁,记录探头位置。(3) Adjust the position of the infrared probe on the radial displacement control device of the test probe through the data synchronous acquisition and processing system to ensure that the infrared rays are not blocked by the rock side wall and close to the rock side wall, and record the position of the probe.
(4)进行加压。(4) pressurize.
(5)同样,调整红外线探头的位置,保证红外射线不被岩石侧壁阻挡,且紧贴岩石侧壁,记录探头位置。(5) Similarly, adjust the position of the infrared probe to ensure that the infrared rays are not blocked by the rock side wall and are close to the rock side wall, and record the position of the probe.
(6)进行加热。(6) Heating is carried out.
(7)同样,调整红外线探头的位置,保证红外射线不被岩石侧壁阻挡,且紧贴岩石侧壁,记录探头位置。(7) Similarly, adjust the position of the infrared probe to ensure that the infrared rays are not blocked by the rock side wall and are close to the rock side wall, and record the position of the probe.
(8)实验结束后,放油。(8) After the experiment, drain the oil.
(9)打开三轴室,将装置拿出试验台,排出工程液体。(9) Open the triaxial chamber, take the device out of the test bench, and drain the engineering liquid.
参照图8所示,本发明的优点:弥补现有岩石力学特性测试装置无法测量岩石变温对强度影响的不足,填补水平井的井眼坍塌压力测试的空白,创新研发一种测试岩石在不同温度变化下的坍塌压力测试装置,测试温度对高压岩石强度的影响,特别是对水平井的井眼周围岩石坍塌压力的影响,进而预测和评价井下井壁强度,为油气深井、超深井和高温井的井壁稳定预测提供指导依据。该技术可监测井眼周围岩石单轴加载试验、岩石三轴力学试验、岩石蠕变力学试验、岩石温变应力加载试验等试验中的力学和位移信息。As shown in Fig. 8, the advantages of the present invention are: to make up for the inability of the existing rock mechanical property testing device to measure the influence of rock temperature on strength, to fill the gap in the borehole collapse pressure test of horizontal wells, and to innovate and develop a method for testing rocks at different temperatures. Collapse pressure testing device under changing conditions, testing the influence of temperature on the strength of high-pressure rocks, especially the impact on the collapse pressure of rocks around the wellbore of horizontal wells, and then predicting and evaluating the strength of the downhole wall. The wellbore stability prediction provides guidance basis. This technology can monitor the mechanical and displacement information in the rock uniaxial loading test, rock triaxial mechanical test, rock creep mechanical test, rock temperature stress loading test and other tests around the wellbore.
本发明可以适用于恒温状态下岩石坍塌压力的同步监测,同时适用于钻井井眼周围岩石在不同温度和压力环境下的坍塌压力同步测量,同时适用于不同井型(直井、水平井、定向井)井眼周围岩石在不同温度和压力环境下的坍塌压力同步测量,能够解决高温高压状态下钻井井眼的稳定性预测。The present invention can be applicable to the synchronous monitoring of rock collapse pressure under the constant temperature state, simultaneously applicable to the synchronous measurement of the collapse pressure of the rock around the drilling borehole under different temperature and pressure environments, and applicable to different well types (vertical well, horizontal well, directional well) ) The simultaneous measurement of the collapse pressure of rocks around the wellbore under different temperature and pressure environments can solve the stability prediction of the drilling wellbore under high temperature and high pressure conditions.
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。Each embodiment in this specification is described in a progressive manner, each embodiment focuses on the difference from other embodiments, and the same and similar parts of each embodiment can be referred to each other.
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。The above-mentioned embodiments are only to illustrate the technical concept and characteristics of the present invention, and the purpose is to enable those skilled in the art to understand the content of the present invention and implement it accordingly, and not to limit the protection scope of the present invention. All equivalent changes or modifications made according to the spirit of the present invention shall fall within the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810377095.7A CN108386184B (en) | 2018-04-25 | 2018-04-25 | Horizontal well borehole collapse pressure testing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810377095.7A CN108386184B (en) | 2018-04-25 | 2018-04-25 | Horizontal well borehole collapse pressure testing device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108386184A CN108386184A (en) | 2018-08-10 |
CN108386184B true CN108386184B (en) | 2023-06-02 |
Family
ID=63065528
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810377095.7A Active CN108386184B (en) | 2018-04-25 | 2018-04-25 | Horizontal well borehole collapse pressure testing device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108386184B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109738297B (en) * | 2019-03-01 | 2024-01-05 | 中海石油(中国)有限公司湛江分公司 | Horizontal well borehole deformation infrared monitoring device and method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105334107A (en) * | 2015-10-28 | 2016-02-17 | 西安石油大学 | Clay shale borehole wall stabilizing drilling fluid density determination method based on formation viscoelasticity |
CN106351650A (en) * | 2015-07-16 | 2017-01-25 | 中国石油化工股份有限公司 | Calculation method of borehole sloughing pressure applicable to the bedding fractured stratum |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1509382A (en) * | 1974-05-06 | 1978-05-04 | Hasha M | Testing apparatus |
US6457528B1 (en) * | 2001-03-29 | 2002-10-01 | Hunting Oilfield Services, Inc. | Method for preventing critical annular pressure buildup |
CN2748917Y (en) * | 2004-09-30 | 2005-12-28 | 湖北汉科新技术股份有限公司 | High-temperature and high-pressure well wall stability tester |
CN101701520A (en) * | 2009-12-04 | 2010-05-05 | 中国石油大学(华东) | Deepwater Drilling Fluid Circulation Carrying Rock and Wellbore Stability Simulation Experimental Device |
CN202017486U (en) * | 2011-03-09 | 2011-10-26 | 中国石油集团西部钻探工程有限公司 | Testing and evaluating device for stability of gas-liquid conversion well wall |
CN103592205B (en) * | 2013-11-20 | 2014-09-17 | 中国石油大学(华东) | Device and method for testing diffusion coefficient of chemical potential in mudstone |
CN103711480B (en) * | 2013-12-27 | 2016-07-06 | 中国地质大学(北京) | Horizontal drilling assay device |
CN103775070B (en) * | 2014-01-10 | 2016-05-04 | 西南石油大学 | A kind of full-scale wellbore stability simulator |
EP2980348B1 (en) * | 2014-07-30 | 2017-07-05 | 3M Innovative Properties Company | Separator for separating solid particles from liquid and gas flows for high differential pressures |
CN106324189B (en) * | 2015-07-03 | 2019-08-09 | 中国石油化工股份有限公司 | A kind of casting bed blocks cementing analyzer and measuring method |
CN208777985U (en) * | 2018-04-25 | 2019-04-23 | 中国石油大学(北京) | Horizontal well borehole collapse pressure testing device |
-
2018
- 2018-04-25 CN CN201810377095.7A patent/CN108386184B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106351650A (en) * | 2015-07-16 | 2017-01-25 | 中国石油化工股份有限公司 | Calculation method of borehole sloughing pressure applicable to the bedding fractured stratum |
CN105334107A (en) * | 2015-10-28 | 2016-02-17 | 西安石油大学 | Clay shale borehole wall stabilizing drilling fluid density determination method based on formation viscoelasticity |
Also Published As
Publication number | Publication date |
---|---|
CN108386184A (en) | 2018-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108398325B (en) | Acoustic response test device for testing rock | |
CN111220452B (en) | True triaxial pressure chamber for coal rock simulation test and test method thereof | |
CN102680176B (en) | A kind of tubing stress corrosion (cracking) test machine in kind | |
CN109115145B (en) | An embedded landslide deep large deformation monitoring device and method | |
CN103868801B (en) | Rock performance evaluation device | |
CN108801799A (en) | Rock fracture physical simulation system and test method | |
AU2010279466B2 (en) | Systems and methods for monitoring a well | |
CN112903470B (en) | High-temperature seepage coupling experimental device and method based on hard rock true triaxial system | |
MX2013014651A (en) | Methods and apparatus for determining downhole parameters. | |
US11067492B2 (en) | Physical simulation and calibration device and method for formation pressure testing | |
CN109001040B (en) | Rock fracturing simulator | |
AU2010279465A1 (en) | Systems and methods for monitoring a well | |
CN103926184B (en) | Rock core gas surveys porosity detection method and detection device thereof | |
CN108318345B (en) | Multi-azimuth wellbore rupture pressure testing device | |
CN114778307A (en) | An experimental device and method for simulating mechanical testing of pipe strings | |
CN108386184B (en) | Horizontal well borehole collapse pressure testing device | |
CN208636152U (en) | Multi-azimuth borehole fracture pressure testing device | |
AU2010279468A1 (en) | Systems and methods for monitoring corrosion in a well | |
CN110954282B (en) | Packer rubber cylinder sealing performance testing device and method | |
RU2268988C2 (en) | All-purpose packer for tubing testing and surveying | |
CN112903957A (en) | Shale stress-damage-drilling fluid interaction experimental device and testing method | |
CN108318346B (en) | Borehole collapse pressure testing device | |
RU2424420C1 (en) | Procedure for determination of heat conduction coefficient of heat insulation of heat insulated lift pipe in well | |
CN208777985U (en) | Horizontal well borehole collapse pressure testing device | |
CN208366730U (en) | Borehole collapse pressure test device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |