CN108383158B - 一种金属元素掺杂Bi2O3材料的制备方法及其应用 - Google Patents

一种金属元素掺杂Bi2O3材料的制备方法及其应用 Download PDF

Info

Publication number
CN108383158B
CN108383158B CN201810303987.2A CN201810303987A CN108383158B CN 108383158 B CN108383158 B CN 108383158B CN 201810303987 A CN201810303987 A CN 201810303987A CN 108383158 B CN108383158 B CN 108383158B
Authority
CN
China
Prior art keywords
doped
metal element
bismuthate
balls
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810303987.2A
Other languages
English (en)
Other versions
CN108383158A (zh
Inventor
刘恩辉
韩秀莉
周勇
洪伟峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangtan University
Original Assignee
Xiangtan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangtan University filed Critical Xiangtan University
Priority to CN201810303987.2A priority Critical patent/CN108383158B/zh
Publication of CN108383158A publication Critical patent/CN108383158A/zh
Application granted granted Critical
Publication of CN108383158B publication Critical patent/CN108383158B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/843Arsenic, antimony or bismuth
    • B01J23/8437Bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种金属元素掺杂Bi2O3材料的制备方法及其应用。本发明以铋酸盐、掺杂源、还原剂、助剂为原料,将高能球磨的机械力同步作用于氧化还原及掺杂反应,再经过热处理、洗涤除杂、固液分离、干燥制备出金属元素掺杂的Bi2O3材料。所制备材料中掺杂金属元素与铋元素的摩尔比为(0.01~0.3):1,材料的比表面积为3~300m2/g、粒径为30~200nm。本发明具有工艺简单、易实现工业化生产、制造工艺成本低、环境友好等优势;所制备的金属元素掺杂Bi2O3材料在超级电容器、碱性二次电池、锂离子电池、光催化剂、珠光颜料、医药等领域具有广泛应用。

Description

一种金属元素掺杂Bi2O3材料的制备方法及其应用
技术领域
本发明涉及一种金属元素掺杂Bi2O3材料的制备方法及其应用,属于新型功能材料领域。
背景技术
为了进一步提高氧化铋材料的物理化学性能,金属元素掺杂是一种重要的手段。通过金属元素掺杂形成的材料,具有未掺杂材料所不具有的优良性能,已经受到了极大的关注。
目前,制备金属元素掺杂氧化铋复合材料的方法主要有液相法、固相法和气相法。而固相法,特别是机械化学法,因其操作简单、成本低、产量高、容易产业化的特点,被广泛关注。Jiang等[Bulletin of The Chinese Ceramic Society 2(2011)452-456]以Bi2O3和SiO2为原料,利用固相球磨法制备出Bi4Si3O12粉体材料。Fang等[Materials Science andEngineering of Powder Metallurgy 4(2014)566-569]以摩尔比为1:1的Bi2O3和WO3粉末为原料,通过高能球磨法制备核壳结构的Bi/WOx复合粉体材料,并进一步研究了富氧壳层对复合粉体耐氧化性和禁带宽度的影响。P.Malathy等[Ceramics International 40(2014)101-107]以 Bi(NO3)3和NiSO4作为原料,Bi和Ni的摩尔比为1:0.25,利用化学沉淀法制备出镍掺杂氧化铋材料。
发明专利[授权公告号CN102345163B]提供“一种利用固相反应法制备单相多晶钼酸铋的方法与应用”,该方法首先将铋粉与三氧化钼按摩尔比1:5混合,再经过球磨、压片和煅烧制备出单相多晶钼酸铋Bi0.27Mo2O5材料。发明专利[申请公布号CN102969164A]提供一种“钴-铋复合氧化物的制备及其在制备超级电容器电极中的应用”,该发明以钴和铋的硝酸盐为原料,采用溶剂热法制备出钴-铋复合氧化物用作超级电容器材料。
上述方法均获得了掺杂氧化铋材料,但仍然存在工艺复杂、反应条件苛刻等问题。
发明内容
本发明的目的在于提供一种金属元素掺杂Bi2O3材料的制备方法及其应用。所制备材料中掺杂金属元素与铋元素的摩尔比为(0.01~0.3):1,所制备出金属元素掺杂Bi2O3材料的比表面积为8~100m2/g、粒径范围为30~200nm。本发明以五价铋酸盐、掺杂源、还原剂、助剂为原料,将高能球磨的机械力同步作用于氧化还原及掺杂反应制备出金属元素掺杂Bi2O3材料,具有制备工艺简单、易于工业化生产、生产过程环境友好,产品纯度高、产品微观形貌及粒径易于控制等优势。
本发明通过以下技术方案实现:
一种金属元素掺杂Bi2O3材料的制备方法,包括如下步骤:
(1)将铋酸盐、掺杂源、还原剂、助剂按1:(0.01~0.3):(0.25~2):(0.01~0.3)的摩尔比(物质的量之比)混合均匀,得到原料混合物;
(2)将步骤(1)的原料混合物与磨球按1:(0.5~100)的质量比放入球磨罐中,在保护气氛下球磨0.2~20h;
(3)将步骤(2)得到的球磨混合物置于高温炉中在200~600℃下热处理 0.5~10h,再将热处理后的混合物经过洗涤除杂,然后进行固液分离和干燥,即得金属元素掺杂Bi2O3材料。
进一步地,所述的铋酸盐为铋酸钠、铋酸锂、铋酸钾、铋酸钙、铋酸镁、铋酸钡、铋酸锶中的一种或两种以上。
进一步地,掺杂源金属元素为铁、锰、铜、锌、钴、镍、钛、钨、钼、钒、稀土元素中的一种或两种以上,掺杂源为这些金属元素的单质、氧化物、氢氧化物、草酸盐、醋酸盐、柠檬酸盐、硝酸盐、卤化物、碳酸盐、硫酸盐及其含氧酸盐中的一种或两种以上。
进一步地,所述的还原剂为掺杂源金属元素的还原态物质、金属铋粉、碳粉、亚硫酸盐、甲醛(或多聚甲醛)、甲酸、还原糖、苯酚中的一种或两种以上。
进一步地,所述的分散剂为十二烷基磺酸钠、十二烷基苯磺酸钠、十六烷基三甲基溴化铵、聚乙烯吡咯烷酮、聚乙二醇、聚乙烯醇、三乙醇胺、乙二醇、丙三醇、非离子型表面活性剂、糖类物质、可溶性淀粉中的一种或两种以上。
进一步地,所述的球磨过程中的保护气氛为氮气、氩气、二氧化碳、空气中的一种或两种以上。
进一步地,球磨机的转速为30~3000rpm。
进一步地,所述的球磨机选自市场上的各种机型;所述的磨球为玛瑙球、刚玉球、氧化锆球、瓷球、不锈钢球中的一种或两种以上。
上述制备方法所得到的金属元素掺杂Bi2O3材料在超级电容器、碱性二次电池、锂离子电池、燃料电池、光催化剂或医药等领域中的应用。
本发明的有益效果在于:
(1)本发明方法制备工艺简单、工艺条件温和、易于工业化生产、生产过程环境友好,产品纯度高、产品微观形貌及粒径易于控制。
(2)本发明所制备的金属元素掺杂Bi2O3材料应用广泛,能够应用的领域包括但不限于在超级电容器、碱性二次电池、锂离子电池、光催化剂、珠光颜料、医药等。
附图说明
图1为实施例1中所制备的铁掺杂Bi2O3材料的扫描电子显微镜图。
图2为实施例2中所制备的铜掺杂Bi2O3材料的XPS光谱图。
图3为实施例3所制备的铜掺杂Bi2O3材料的X射线衍射图。
图4为实施例4所制备的铁掺杂Bi2O3材料的氮气等温吸脱附曲线。
图5为实施例4所制备的铁掺杂Bi2O3材料与氢氧化镍构成的二次碱性电池在不同电流密度下的恒电流充放电测试图。
具体实施方式
下面以具体实施例进一步说明本发明,但本发明并不局限于实施例。
实施例1
(1)将4mmol铋酸钠、0.32mmol草酸高铁铵、2mmol铋粉、0.04mmol聚乙烯吡咯烷酮混合均匀后,所得混合物与磨球按1:50的质量比一同装入球磨罐中,在空气环境及转速为1000rpm的条件下球磨5h,然后将球磨产物置于马弗炉中300℃恒温热处理5h,再将热处理产物用去离子水和无水乙醇洗涤除杂、采用过滤进行固液分离,最后将过滤所得的固体产物用在90℃下真空干燥12h,制备出8%铁掺杂Bi2O3材料。
(2)采用JEOLJEM-3010型扫描电子显微镜对实施例1所制备的铁掺杂 Bi2O3材料进行测试,如图1所示,所制备的8%铁掺杂Bi2O3材料由粒径为 100~300nm的纳米颗粒组成。
实施例2
(1)将4mmol铋酸钾、0.4mmol醋酸铜、4mmol亚硫酸钠、0.1mmol十六烷基三甲基溴化铵混合均匀后,所得混合物与磨球按1:80的质量比一同装入球磨罐中,在氮气环境及转速为800rpm的条件下球磨10h,然后将球磨产物置于马弗炉中450℃恒温热处理4h,再将热处理产物用去离子水和无水乙醇洗涤除杂、采用过滤进行固液分离,最后将过滤所得的固体产物用在110℃下干燥 12h,制备出10%铜掺杂Bi2O3材料。
(2)采用PHI Quantera II型仪器对实施例2中所制备的铜掺杂Bi2O3材料进行XPS测试。如图2所示,所制备的10%铜掺杂Bi2O3材料由Bi、Cu、O三种元素组成,碳元素来自XPS仪器分析中外来的含碳化合物。
实施例3
(1)将2mmol铋酸锂、0.24mmol氧化铜、4mmol多聚甲醛、0.05mmol十二烷基苯磺酸钠混合均匀后,所得混合物与磨球按1:40的质量比一同装入球磨罐中,在氩气环境及转速为1200rpm的条件下球磨2h,然后将球磨产物置于马弗炉中400℃恒温热处理6h,再将热处理产物用去离子水和无水乙醇洗涤除杂、采用过滤进行固液分离,最后将过滤所得的固体产物用在100℃下真空干燥10h,制备出12%铜掺杂Bi2O3材料。
(2)采用XRD-6000型X-射线衍射仪对实施例3所制备的12%铜掺杂Bi2O3材料进行测试,如图3所示,样品在2θ=17.3°、27.5°、30.1°、32.6°、41.2°、44.9°、 51.9°、53.5°等位置均有较明显的特征峰,与立方结构的γ-Bi2O3晶体的的标准卡片(JCPDS No.45-1344)一致,其所对应的晶面分别为(220)、(310)、(222)、(321)、 (332)、(431)、(433)、(442)、(532),未检测到其他的杂质峰。
实施例4
(1)将4mmol铋酸钠、0.6mmol氢氧化铁、4mmol亚硫酸钠、0.1mmol可溶性淀粉混合均匀后,所得混合物与磨球按1:50的质量比一同装入球磨罐中,在空气环境及转速为1500rpm的条件下球磨5h,然后将球磨产物置于马弗炉中 450℃恒温热处理6h,再将热处理产物用去离子水和无水乙醇洗涤除杂、采用过滤进行固液分离,最后将过滤所得的固体产物用在110℃下真空干燥10h,制备出15%铁掺杂Bi2O3材料。
(2)采用TriStar II 3020型比表面积仪对实施例4所制备的15%铁掺杂Bi2O3材料进行测试。由图4可见,该铁掺杂Bi2O3材料的比表面积为8.837m2/g,所制备材料的氮吸脱附等温线为典型的第Ⅳ类吸附等温线,在相对压力 P/P0=0.4~0.8的区间范围内,存在一个H3型滞后环。这个滞后环是由于纳米颗粒的堆叠形成的介孔结构。
(3)将所制备的15%铁掺杂Bi2O3材料以及所购买的氢氧化镍正极材料制作成电极片,采用6mol/L KOH溶液为电解液组装成碱性二次电池,采用上海辰华公司生产的CHI660A电化学工作站,对所构造的电池在室温下进行恒流充放电测试。由图5所示,所制备的电池在0.5A/g的电流密度下比容量为 245mAh/g,在电流密度为1、2和5A/g时的比容量分别为256、243和238 mAh/g。

Claims (4)

1.一种金属元素掺杂Bi2O3材料的制备方法,其特征在于,所述的金属元素掺杂Bi2O3材料应用于碱性二次电池中,所述的材料中掺杂金属元素与铋元素的摩尔比为(0.01~0.3):1,材料的比表面积为3~300m2/g、粒径为30~200nm;其制备方法包括如下步骤:
(1) 将铋酸盐、掺杂源、还原剂、助剂按1:(0.01~0.3):(0.25~2):(0.01~0.3)的摩尔比混合均匀,得到原料混合物;
(2) 将步骤(1)的原料混合物与磨球按1:(0.5~100)的质量比放入球磨罐中,在保护气氛下球磨0.2~20h;
(3) 将步骤(2)得到的球磨混合物置于高温炉中在200~600℃下热处理0.5~10h,再将热处理后的混合物经过洗涤除杂,然后进行固液分离和干燥,即得金属元素掺杂Bi2O3材料;
所述的铋酸盐为铋酸钠、铋酸锂、铋酸钾中的一种或两种以上;
所述的还原剂为掺杂源金属元素的还原态物质、金属铋粉、碳粉、亚硫酸盐、甲醛、多聚甲醛、甲酸、还原糖、苯酚中的一种或两种以上;
所述的助剂为十二烷基磺酸钠、十二烷基苯磺酸钠、十六烷基三甲基溴化铵、聚乙烯吡咯烷酮、聚乙二醇、聚乙烯醇、三乙醇胺、乙二醇、丙三醇、非离子型表面活性剂、糖类物质、可溶性淀粉中的一种或两种以上;
掺杂源金属元素为铁、锰、铜、锌、钴、镍、钛、钨、钼、钒、稀土元素中的一种或两种以上;掺杂源为这些金属元素的单质、氧化物、氢氧化物、草酸盐、醋酸盐、柠檬酸盐、硝酸盐、卤化物、碳酸盐、硫酸盐及其含氧酸盐中的一种或两种以上。
2.根据权利要求1所述的金属元素掺杂Bi2O3材料的制备方法,其特征在于,所述的球磨过程中的保护气氛为氮气、氩气、二氧化碳、空气中的一种或两种以上。
3.根据权利要求1所述的金属元素掺杂Bi2O3材料的制备方法,其特征在于,球磨机的转速为30~3000rpm。
4.根据权利要求1所述的金属元素掺杂Bi2O3材料的制备方法,其特征在于,所述的球磨机选自市场上的各种机型;所述的磨球为玛瑙球、刚玉球、氧化锆球、瓷球、不锈钢球中的一种或两种以上。
CN201810303987.2A 2018-04-04 2018-04-04 一种金属元素掺杂Bi2O3材料的制备方法及其应用 Expired - Fee Related CN108383158B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810303987.2A CN108383158B (zh) 2018-04-04 2018-04-04 一种金属元素掺杂Bi2O3材料的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810303987.2A CN108383158B (zh) 2018-04-04 2018-04-04 一种金属元素掺杂Bi2O3材料的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN108383158A CN108383158A (zh) 2018-08-10
CN108383158B true CN108383158B (zh) 2020-04-07

Family

ID=63072493

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810303987.2A Expired - Fee Related CN108383158B (zh) 2018-04-04 2018-04-04 一种金属元素掺杂Bi2O3材料的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN108383158B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109078633A (zh) * 2018-08-24 2018-12-25 西南交通大学 一种W掺杂Bi2O3纳米结构的制备方法
CN110605112B (zh) * 2019-05-10 2022-07-19 盐城工学院 一种锂氧化物光催化材料及其制备方法
CN116116421B (zh) * 2023-03-02 2024-06-11 湘潭大学 一种微波催化降解含抗生素有机废水的方法及其催化剂

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107840365A (zh) * 2016-09-20 2018-03-27 天津工业大学 一种氯氧化铋纳米花球的制备方法
CN106732524B (zh) * 2017-02-24 2021-01-01 云南大学 一种α/β-氧化铋相异质结光催化剂及其制法和用途

Also Published As

Publication number Publication date
CN108383158A (zh) 2018-08-10

Similar Documents

Publication Publication Date Title
CN108383160B (zh) 一种金属元素掺杂BiOCl纳米片材料的制备方法及其应用
Wang et al. Low‐temperature synthesis of praseodymium‐doped ceria nanopowders
CN108383158B (zh) 一种金属元素掺杂Bi2O3材料的制备方法及其应用
EP1803686B1 (en) Cerium-zirconium mixed oxide and method for manufacturing the same
Shi et al. Shape-controlled synthesis and characterization of cobalt oxides hollow spheres and octahedra
US11174171B2 (en) Hierarchical porous honeycombed nickel oxide microsphere and preparation method thereof
CN100532272C (zh) 一种钛酸锶多孔球的制备方法
CN108383159B (zh) 一种Bi2O3纳米片材料的制备方法及其应用
CN108408773B (zh) 一种BiOCl材料的制备方法及其应用
CN101311376A (zh) 一种一维结构钛酸锶纳米粉体的制备方法
CN113372108A (zh) 一种具有良好光吸收性能的高熵陶瓷材料的制备方法
CN104291382A (zh) 一种铁酸镧多孔微球的制备方法
Chandramouli et al. PVA aided microwave synthesis: A novel route for the production of nanocrystalline thoria powder
JPH1179746A (ja) ペロブスカイト型複合酸化物及びその製造方法
CN108262051B (zh) 一种机械球磨热处理两步法合成二氧化铈-碳酸氧铋纳米复合物的方法
Bassano et al. Synthesis of Y-doped BaCeO3 nanopowders by a modified solid-state process and conductivity of dense fine-grained ceramics
CN108046217B (zh) 纳米复合金属氧化物的制备方法
CN108502924B (zh) 一种金属元素掺杂BiOF材料的制备方法及其应用
CN105399418A (zh) 一种高性能铌酸钠介电陶瓷粉体的制备方法
CN114231253B (zh) 一种掺硼单斜相二氧化钒粉体及其制备方法
CN109678217A (zh) 高振实密度的Ni0.8Co0.1Mn0.1(OH)2材料的制备方法及应用
CN112573569B (zh) 一种具有高耐热性的稀土复合氧化物及其制备方法
CN110391455B (zh) 一种钇稳定二氧化锆-低熔点玻璃粉复合物及其制备方法
CN108483495B (zh) 一种BiOF材料的制备方法及其应用
CN101125302A (zh) 线状或棒状多晶Ce0.6Zr0.3Y0.1O2固溶体制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200407