CN108365517B - Preparation method and prepared structure of two-color single-photon source structure - Google Patents
Preparation method and prepared structure of two-color single-photon source structure Download PDFInfo
- Publication number
- CN108365517B CN108365517B CN201810004934.0A CN201810004934A CN108365517B CN 108365517 B CN108365517 B CN 108365517B CN 201810004934 A CN201810004934 A CN 201810004934A CN 108365517 B CN108365517 B CN 108365517B
- Authority
- CN
- China
- Prior art keywords
- nanowire
- quantum dot
- photon source
- dot structure
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 20
- 239000002096 quantum dot Substances 0.000 claims abstract description 58
- 239000002070 nanowire Substances 0.000 claims abstract description 56
- 238000000034 method Methods 0.000 claims abstract description 18
- 239000004065 semiconductor Substances 0.000 claims abstract description 10
- 239000000758 substrate Substances 0.000 claims abstract description 10
- 238000004519 manufacturing process Methods 0.000 claims abstract description 4
- 239000000463 material Substances 0.000 claims description 10
- 238000005516 engineering process Methods 0.000 claims description 9
- 239000010408 film Substances 0.000 claims description 9
- 239000010409 thin film Substances 0.000 claims description 8
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 7
- 229910052582 BN Inorganic materials 0.000 claims description 4
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 4
- 238000005844 autocatalytic reaction Methods 0.000 claims description 4
- UMIVXZPTRXBADB-UHFFFAOYSA-N benzocyclobutene Chemical compound C1=CC=C2CCC2=C1 UMIVXZPTRXBADB-UHFFFAOYSA-N 0.000 claims description 4
- ROUIDRHELGULJS-UHFFFAOYSA-N bis(selanylidene)tungsten Chemical compound [Se]=[W]=[Se] ROUIDRHELGULJS-UHFFFAOYSA-N 0.000 claims description 4
- 238000010894 electron beam technology Methods 0.000 claims description 4
- 238000005530 etching Methods 0.000 claims description 4
- 238000000799 fluorescence microscopy Methods 0.000 claims description 4
- 229920002120 photoresistant polymer Polymers 0.000 claims description 4
- 238000009616 inductively coupled plasma Methods 0.000 claims description 3
- 229910000673 Indium arsenide Inorganic materials 0.000 description 6
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 6
- 230000007547 defect Effects 0.000 description 5
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 150000002902 organometallic compounds Chemical class 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 230000005610 quantum mechanics Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Optics & Photonics (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Electromagnetism (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
技术领域technical field
本发明涉及半导体材料与器件技术领域,更具体地,涉及一种集成纳米线量子点及二维材料薄膜的双色单光子源结构的制备方法及制备的结构。The invention relates to the technical field of semiconductor materials and devices, and more particularly, to a preparation method and a prepared structure of a two-color single-photon source structure integrating nanowire quantum dots and two-dimensional material films.
背景技术Background technique
近年来,基于量子力学原理发展起来的量子信息技术,如量子计算机,量子密钥分配,量子隐形传态等应用逐渐展现出巨大的社会经济前景。其中,高品质的单光子源和纠缠光子源,是保证信息准确编码并高效传输与存储的前提条件,是未来光学量子计算以及量子保密通信等量子信息技术实用化的重要基础。In recent years, quantum information technologies based on the principles of quantum mechanics, such as quantum computers, quantum key distribution, quantum teleportation and other applications have gradually shown great social and economic prospects. Among them, high-quality single-photon sources and entangled photon sources are the prerequisites to ensure accurate information encoding and efficient transmission and storage, and are an important basis for the practical application of quantum information technologies such as optical quantum computing and quantum secure communication in the future.
以Stranski- Krastanov(SK)模式生长的低密度量子点,由于其可在类二能级体系中周期性地光泵浦或电注入电子、空穴,在低温下具有类原子光谱而用以制备单光子源。它具有高的振子强度、窄的谱线宽度、波长可调谐、且容易集成等优势。将量子点与锥形纳米线结构耦合,对量子点可实现宽光谱范围的增强,通过设计锥形的顶部,使其远场光斑近似为高斯分布,通过透镜后进入光纤的效率可达99%。但目前报道的纳米线量子点量子光源中,自组织量子点与纳米线结构的确定性耦合,波长的拓展等问题还亟待解决。Low-density quantum dots grown in Stranski-Krastanov (SK) mode are used to prepare due to their ability to periodically optically pump or electrically inject electrons and holes in a two-level-like system, and have atom-like spectra at low temperatures single photon source. It has the advantages of high oscillator strength, narrow spectral line width, tunable wavelength, and easy integration. Coupling the quantum dot with the tapered nanowire structure can enhance the quantum dot with a wide spectral range. By designing the top of the tapered, the far-field light spot is approximately Gaussian distribution, and the efficiency of entering the fiber after passing through the lens can reach 99% . However, in the currently reported nanowire quantum dot quantum light sources, the deterministic coupling of self-organized quantum dots and nanowire structures and the expansion of wavelengths still need to be solved urgently.
基于二维材料缺陷发光或局域化激子态发光的单光子源,已被证实具有制备简易,波长可调节等优点。本发明提出将其与纳米线量子点结构集成,构筑一种自对准的、高度集成的半导体双色单光子发射源,将对后续的量子光学实验(双色单光子和频、差频、量子通讯的多维复用等)提供有利的条件,因此具有很重要的理论研究与实践应用的价值。Single-photon sources based on two-dimensional material defect emission or localized exciton state emission have been proven to have the advantages of simple fabrication and adjustable wavelength. The present invention proposes to integrate it with the nanowire quantum dot structure to construct a self-aligned, highly integrated semiconductor two-color single-photon emission source, which will be used for subsequent quantum optical experiments (two-color single-photon sum frequency, difference frequency, quantum communication Multi-dimensional reuse, etc.) provide favorable conditions, so it has very important theoretical research and practical application value.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种能够使用纳米线顶端的应力小岛使二维薄膜产生缺陷发光或局域化的高亮度激子态,然后与自身的单量子点发射的激子态共同构筑的双色单光子源结构的制备方法。The purpose of the present invention is to provide a high-brightness exciton state that can generate defect luminescence or localization in a two-dimensional thin film by using the stress island at the top of the nanowire, and then construct it together with the exciton state emitted by its own single quantum dot. Preparation method of two-color single-photon source structure.
为实现以上发明目的,采用的技术方案是:In order to achieve the above purpose of the invention, the technical scheme adopted is:
双色单光子源结构的制备方法,包括有以下步骤:The preparation method of the dual-color single-photon source structure includes the following steps:
S1.在半导体衬底上生长并制备纳米线单量子点结构;S1. Growing and preparing a nanowire single quantum dot structure on a semiconductor substrate;
S2.对纳米线单量子点结构进行部分平整化,露出纳米线顶端的应力小岛;S2. Partially planarize the nanowire single quantum dot structure to expose the stress island at the top of the nanowire;
S3.使用机械剥离法制作二维薄膜,并将二维薄膜转移至应力小岛上,完成制备。S3. The two-dimensional film is fabricated by a mechanical lift-off method, and the two-dimensional film is transferred to the stress island to complete the fabrication.
优选地,所述半导体衬底的材料为GaAs、InP或Si。Preferably, the material of the semiconductor substrate is GaAs, InP or Si.
优选地,所述纳米线单量子点结构的高度为2-3μm,量子点位于纳米线的轴向位置,所处位置的直径需满足单横模条件,纳米线顶角的形状为锥形,锥形角的角度为2o。Preferably, the height of the single quantum dot structure of the nanowire is 2-3 μm, the quantum dot is located in the axial position of the nanowire, the diameter of the position should meet the single transverse mode condition, and the shape of the apex angle of the nanowire is a cone, The angle of the taper angle is 2o .
优选地,所述平整化后露出纳米线顶端的应力小岛的高度范围为150-200nm。Preferably, the height of the stress island exposed at the top of the nanowire after the planarization is in the range of 150-200 nm.
优选地,所述步骤S1通过方式1)或2)制备纳米线单量子点结构:Preferably, the step S1 prepares the nanowire single quantum dot structure by means 1) or 2):
1)通过液滴自催化生长纳米线单量子点结构;1) Nanowire single quantum dot structure grown by droplet autocatalysis;
2)生长自组织量子点,自组织量子点的密度小于10-8/cm-2,再利用量子点荧光成像方法,并利用电子束曝光结合电感耦合等离子体刻蚀技术进行制备。2) Grow self-organized quantum dots, the density of self-organized quantum dots is less than 10 -8 /cm -2 , and then use quantum dot fluorescence imaging method, and use electron beam exposure combined with inductively coupled plasma etching technology to prepare.
优选地,所述步骤S2采用SU8系列光刻胶/苯并环丁烯及对应的曝光技术对纳米线单量子点结构进行部分平整化。Preferably, the step S2 uses SU8 series photoresist/benzocyclobutene and corresponding exposure technology to partially planarize the nanowire single quantum dot structure.
优选地,所述二维薄膜的材料为二硒化钨或六方氮化硼。Preferably, the material of the two-dimensional thin film is tungsten diselenide or hexagonal boron nitride.
同时,本发明的另一发明目的在于提供一种应用以上制备方法制备得到的双色单光子源结构。Meanwhile, another object of the present invention is to provide a dual-color single-photon source structure prepared by applying the above preparation method.
与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:
本发明采用纳米线顶端的应力小岛对二维薄膜的缺陷态载流子进行更好的三维限制,可制备更高效的单光子源,并进一步提高工作温度。另一方面,本发明所提出的双色单光子源,具有自对准,波长可调节,发射效率高,可控性良好和制备工艺简单的优点,具备大规模制备双色量子器件的可能。因此在量子信息领域具有较大的应用潜力。The invention adopts the stress island at the top of the nanowire to better three-dimensionally confine the defect state carriers of the two-dimensional film, can prepare a more efficient single photon source, and further improve the working temperature. On the other hand, the dual-color single-photon source proposed by the present invention has the advantages of self-alignment, adjustable wavelength, high emission efficiency, good controllability and simple preparation process, and has the possibility of large-scale preparation of dual-color quantum devices. Therefore, it has great application potential in the field of quantum information.
附图说明Description of drawings
图1为制备方法的流程示意图。Figure 1 is a schematic flow chart of the preparation method.
图2为制备的结构的示意图。Figure 2 is a schematic representation of the prepared structures.
图3为制备的纳米线量子点结构的SEM图像。FIG. 3 is a SEM image of the prepared nanowire quantum dot structure.
具体实施方式Detailed ways
附图仅用于示例性说明,不能理解为对本专利的限制;The accompanying drawings are for illustrative purposes only, and should not be construed as limitations on this patent;
以下结合附图和实施例对本发明做进一步的阐述。The present invention will be further elaborated below in conjunction with the accompanying drawings and embodiments.
实施例1Example 1
本实施例提供了一种双色单光子源结构的制备方法,图1为该制备方法的制备流程图,结合图2,本发明提供的制备方法包括有以下步骤:This embodiment provides a method for preparing a dual-color single-photon source structure. Figure 1 is a flow chart of the preparation method. With reference to Figure 2, the preparation method provided by the present invention includes the following steps:
第一步、在半导体衬底1上生长并制备纳米线单量子点结构2。The first step is to grow and prepare a nanowire single
本实施例中,纳米线单量子点结构2可以通过方式1)或方式2)进行制备:In this embodiment, the nanowire single
1)通过液滴自催化生长的GaN/AlN或InAs/InP纳米线单量子点结构2;量子点位于纳米线的轴向,衬底1无选择性;1) Single
2)生长InAs/GaAs、GaAs/AlGaAs或InAs/InP自组织量子点,自组织量子点的密度小于10-8/cm-2,再利用量子点荧光成像方法,并利用电子束曝光结合电感耦合等离子体刻蚀技术进行制备。典型的纳米线量子点结构的SEM图如图3所示。这两种方式的生长可选择分子束外延或者金属有机化合物化学气相沉积方法。2) Grow InAs/GaAs, GaAs/AlGaAs or InAs/InP self-organized quantum dots, the density of self-organized quantum dots is less than 10 -8 /cm -2 , and then use quantum dot fluorescence imaging method, and use electron beam exposure combined with inductive coupling Prepared by plasma etching technology. The SEM image of a typical nanowire quantum dot structure is shown in Figure 3. The growth of these two methods can be selected by molecular beam epitaxy or metal organic compound chemical vapor deposition method.
需要说明的是,为产生高提取效率的纳米线量子点单光子发射,如图2所示,纳米线单量子点结构2的尺寸应满足,其高度约2-3 μm,量子点位于纳米线的轴向,量子点所处位置的直径需满足单横模条件,纳米线单量子点结构2的顶角需为锥形,锥形角的角度约为2o。It should be noted that, in order to generate single-photon emission of nanowire quantum dots with high extraction efficiency, as shown in Figure 2, the size of the nanowire single
第二步、对纳米线单量子点结构2进行部分平整化,露出纳米线顶端的应力小岛3。The second step is to partially planarize the nanowire single
上述方案中,采用SU8系列光刻胶/苯并环丁烯及对应的曝光技术对纳米线单量子点结构2进行部分平整化。其中,如图2所示,平整化后露出纳米线顶端的应力小岛3的高度范围为150-200nm。便于对二维薄膜4施加合适的应力作用产生高亮度的局域化激子5。In the above scheme, the nanowire single
第三步、使用机械剥离法制作二维薄膜4,并将二维薄膜4转移至应力小岛3上,完成制备。In the third step, the two-dimensional film 4 is fabricated by using a mechanical peeling method, and the two-dimensional film 4 is transferred to the
其中二维薄膜4的材料为二硒化钨(WSe2)或六方氮化硼(hBN)等缺陷发光及局域化激子态发光二维材料。The material of the two-dimensional thin film 4 is a two-dimensional material such as tungsten diselenide (WSe 2 ) or hexagonal boron nitride (hBN) for defect emission and localized exciton state emission.
至此,制备过程介绍完毕。So far, the preparation process is introduced.
实施例2Example 2
本实施例提供了一种双色单光子源结构,其制备的流程如图1所示,制备得到的结构如图2、3所示。This embodiment provides a dual-color single-photon source structure, and the preparation process is shown in FIG. 1 , and the prepared structure is shown in FIGS. 2 and 3 .
其制备的流程如下:Its preparation process is as follows:
S1.在半导体衬底1上生长并制备纳米线单量子点结构2;S1. Growing and preparing a nanowire single
S2.对纳米线单量子点结构2进行部分平整化,露出纳米线顶端的应力小岛3;S2. Partially planarize the nanowire single
S3.使用机械剥离法制作二维薄膜4,并将二维薄膜4转移至应力小岛3上,完成制备。S3. Use the mechanical peeling method to fabricate the two-dimensional thin film 4, and transfer the two-dimensional thin film 4 to the
上述方案中,本发明提供的双色单光子源结构能够使用纳米线顶端的应力小岛3使二维薄膜4产生缺陷发光或局域化的高亮度激子态5,然后与自身的单量子点发射的激子态共同构筑。In the above scheme, the two-color single-photon source structure provided by the present invention can use the
本实施例中,所述半导体衬底1的材料为GaAs、InP或Si。In this embodiment, the material of the
本实施例中,所述纳米线单量子点结构2的高度为2-3μm,量子点位于纳米线的轴向位置,所处位置的直径需满足单横模条件,纳米线顶角的形状为锥形,锥形角的角度为2o。In this embodiment, the height of the nanowire single
本实施例中,所述平整化后露出纳米线顶端的应力小岛3的高度范围为150-200nm。In this embodiment, the height of the
本实施例中,所述步骤S1通过方式1)或2)制备纳米线单量子点结构2,这两种结构的生长可选择分子束外延或者金属有机化合物化学气相沉积方法:In this embodiment, the step S1 prepares the nanowire single
1)通过液滴自催化生长的GaN/AlN,InAs/InP纳米线单量子点结构,量子点位于纳米线的轴向,衬底无选择性;1) Single quantum dot structure of GaN/AlN, InAs/InP nanowires grown by droplet autocatalysis, the quantum dots are located in the axial direction of the nanowires, and the substrate has no selectivity;
2)生长InAs/GaAs,GaAs/AlGaAs或InAs/InP自组织量子点,其密度应小于10-8/cm-2,再利用量子点荧光成像方法,并利用电子束曝光结合电感耦合等离子体刻蚀技术进行制备。2) Grow InAs/GaAs, GaAs/AlGaAs or InAs/InP self-organized quantum dots, the density should be less than 10 -8 /cm -2 , and then use the quantum dot fluorescence imaging method, and use electron beam exposure combined with inductively coupled plasma etching prepared by etching technique.
本实施例中,所述步骤S2采用光刻胶/苯并环丁烯及对应的曝光技术对纳米线单量子点结构2进行部分平整化。In this embodiment, the step S2 uses photoresist/benzocyclobutene and corresponding exposure technology to partially planarize the nanowire single
本实施例中,所述二维薄膜4的材料为二硒化钨或六方氮化硼。In this embodiment, the material of the two-dimensional thin film 4 is tungsten diselenide or hexagonal boron nitride.
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。Obviously, the above-mentioned embodiments of the present invention are only examples for clearly illustrating the present invention, rather than limiting the embodiments of the present invention. For those of ordinary skill in the art, changes or modifications in other different forms can also be made on the basis of the above description. There is no need and cannot be exhaustive of all implementations here. Any modifications, equivalent replacements and improvements made within the spirit and principle of the present invention shall be included within the protection scope of the claims of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810004934.0A CN108365517B (en) | 2018-01-03 | 2018-01-03 | Preparation method and prepared structure of two-color single-photon source structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810004934.0A CN108365517B (en) | 2018-01-03 | 2018-01-03 | Preparation method and prepared structure of two-color single-photon source structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108365517A CN108365517A (en) | 2018-08-03 |
CN108365517B true CN108365517B (en) | 2020-12-29 |
Family
ID=63011225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810004934.0A Active CN108365517B (en) | 2018-01-03 | 2018-01-03 | Preparation method and prepared structure of two-color single-photon source structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108365517B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111463659B (en) * | 2019-01-21 | 2021-08-13 | 华为技术有限公司 | Quantum dot semiconductor optical amplifier and preparation method thereof |
WO2022178580A1 (en) * | 2021-02-24 | 2022-09-01 | University Of Technology Sydney | Scalable and deterministic fabrication of quantum emitter arrays |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101830430A (en) * | 2010-05-24 | 2010-09-15 | 山东大学 | Manufacture method of large-area highly uniform sequential quantum dot array |
CN102437511A (en) * | 2011-12-21 | 2012-05-02 | 东南大学 | Surface plasmon laser of semiconductor nanowire-metal film structure |
US20130240348A1 (en) * | 2009-11-30 | 2013-09-19 | The Royal Institution For The Advancement Of Learning / Mcgill University | High Efficiency Broadband Semiconductor Nanowire Devices |
CN106784213A (en) * | 2017-01-16 | 2017-05-31 | 中国工程物理研究院电子工程研究所 | A kind of ring cavity nano wire electrical pumping single-photon source device |
CN107359226A (en) * | 2017-08-30 | 2017-11-17 | 中国工程物理研究院电子工程研究所 | A kind of single-photon source device of high emission speed, high collection efficiency |
CN107527962A (en) * | 2017-08-07 | 2017-12-29 | 北京工业大学 | A kind of oblique ZnO nano-wire/GaN heterojunction solar batteries of high photosensitive area |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107342351B (en) * | 2017-06-22 | 2019-04-05 | 北京工业大学 | One kind being based on oblique ZnO nano-wire/GaN pn-junction LED and preparation method |
-
2018
- 2018-01-03 CN CN201810004934.0A patent/CN108365517B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130240348A1 (en) * | 2009-11-30 | 2013-09-19 | The Royal Institution For The Advancement Of Learning / Mcgill University | High Efficiency Broadband Semiconductor Nanowire Devices |
CN101830430A (en) * | 2010-05-24 | 2010-09-15 | 山东大学 | Manufacture method of large-area highly uniform sequential quantum dot array |
CN102437511A (en) * | 2011-12-21 | 2012-05-02 | 东南大学 | Surface plasmon laser of semiconductor nanowire-metal film structure |
CN106784213A (en) * | 2017-01-16 | 2017-05-31 | 中国工程物理研究院电子工程研究所 | A kind of ring cavity nano wire electrical pumping single-photon source device |
CN107527962A (en) * | 2017-08-07 | 2017-12-29 | 北京工业大学 | A kind of oblique ZnO nano-wire/GaN heterojunction solar batteries of high photosensitive area |
CN107359226A (en) * | 2017-08-30 | 2017-11-17 | 中国工程物理研究院电子工程研究所 | A kind of single-photon source device of high emission speed, high collection efficiency |
Also Published As
Publication number | Publication date |
---|---|
CN108365517A (en) | 2018-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhou et al. | Semiconductor quantum dots | |
US7122827B2 (en) | Monolithic light emitting devices based on wide bandgap semiconductor nanostructures and methods for making same | |
Seo et al. | Low dimensional freestanding semiconductors for flexible optoelectronics: materials, synthesis, process, and applications | |
CN103346476B (en) | Photonic crystal nano cavity Quantum Rings single photon emission device and preparation method thereof | |
CN106299066B (en) | A kind of quantum dot single-photon source and preparation method thereof | |
CN102718180A (en) | Concentric ring core nano silicon micro-disk micro-cavity device and preparation method thereof | |
CN104201258B (en) | The preparation method of the visible light communication light emitting diode based on plasma high modulation bandwidth | |
US10586887B2 (en) | Deterministic quantum emitter operating at room temperature in optical communication wavelength using intersubband transition of nitride-based semiconductor quantum dot, method of fabricating same, and operating method thereof | |
CN111029446B (en) | Quantum dot single photon source and preparation method thereof | |
CN108365517B (en) | Preparation method and prepared structure of two-color single-photon source structure | |
Mukai | Semiconductor quantum dots for future optical applications | |
US20110263108A1 (en) | Method of fabricating semiconductor quantum dots | |
Zhu et al. | Nitride quantum light sources | |
CN110233427A (en) | A kind of two dimension exciton laser and preparation method thereof based on silicon based gallium nitride and tungsten disulfide monofilm | |
CN110346931B (en) | Deterministic quantum light source device based on gold reflective layer combined with microlens and its preparation method and application | |
CN105048284B (en) | A kind of single photon illuminator of multiple coupling and preparation method thereof | |
Shiraki et al. | Electroluminescence from Micro-Cavities of Photonic Crystals, Micro-Disks and Rings Including Ge Dots Formed on SOI Substrates | |
CN106785913A (en) | Composite construction nano laser of GaN base ultra-thin metal oxide semiconductor and preparation method thereof | |
Huang et al. | Highly integrated photonic crystal bandedge lasers monolithically grown on Si substrates | |
CN103066170A (en) | Manufacturing method of nanoscale patterned substrate | |
CN102590935B (en) | Germanium cantilever beam type two-dimensional photonic crystal microcavity and preparation method | |
CN112331747A (en) | Full-color Micro/Nano LED array direct epitaxy method and structure | |
Bucci et al. | Zincblende InAs x P1–x/InP Quantum Dot Nanowires for Telecom Wavelength Emission | |
CN109861077B (en) | Orbital angular momentum multiplexing device based on VCSEL and preparation method thereof | |
CN104157759A (en) | High density and high uniformity InGaN quantum dot structure and growth method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |