CN108355694A - 掺氮有序介孔碳负载过渡金属纳米颗粒催化剂的制备方法 - Google Patents

掺氮有序介孔碳负载过渡金属纳米颗粒催化剂的制备方法 Download PDF

Info

Publication number
CN108355694A
CN108355694A CN201810110033.XA CN201810110033A CN108355694A CN 108355694 A CN108355694 A CN 108355694A CN 201810110033 A CN201810110033 A CN 201810110033A CN 108355694 A CN108355694 A CN 108355694A
Authority
CN
China
Prior art keywords
nitrating
transition metal
metal nanoparticle
ordered mesopore
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810110033.XA
Other languages
English (en)
Inventor
倪伟
汪学广
盛瑶
邹秀晶
尚兴付
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong Longxiang New Materials Polytron Technologies Inc
Original Assignee
Nantong Longxiang New Materials Polytron Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong Longxiang New Materials Polytron Technologies Inc filed Critical Nantong Longxiang New Materials Polytron Technologies Inc
Priority to CN201810110033.XA priority Critical patent/CN108355694A/zh
Publication of CN108355694A publication Critical patent/CN108355694A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J35/23
    • B01J35/40
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon

Abstract

本发明公开了掺氮有序介孔碳负载过渡金属纳米颗粒催化剂的制备方法,本发明中,首次使用乙酰丙酮和1,10‑菲啰啉分别作为络合剂和氮源一步法制备掺氮有序介孔碳负载过渡金属纳米颗粒催化剂,所得催化剂分散性良好、纳米颗粒尺寸分布均匀。此催化剂对芳香类硝基化合物在水溶液中加氢有着良好的活性和选择性。

Description

掺氮有序介孔碳负载过渡金属纳米颗粒催化剂的制备方法
技术领域
本发明涉及无机纳米材料制备技术领域,具体为掺氮有序介孔碳负载过渡金属纳米颗粒催化剂的制备方法。
背景技术
由国际纯粹和应用化学协会(IUPAC)给出的关于多孔材料的定义可以得知,根据它们孔直径的大小,可以将其分为三类:微孔材料孔径小于2nm;介孔材料孔径在2-50nm;大孔材料孔径大于50nm。介孔材料具有极高的比表面积、规则有序的孔道结构、狭窄的孔径分布、孔径大小连续可调等特点,使得它在很多微孔沸石分子筛难以完成的大分子的吸附、分离,尤其是催化反应中发挥作用。其中有序介孔碳作为一类新型的非硅基介孔碳材料,具有巨大的比表面积和孔体积,在催化剂载体、储氢材料、电极材料以及环境科学等方面得到了重要应用。为了进一步改善介孔碳材料在这些方面的应用,通常将杂原子(例如N、B、S等)或含杂原子的基团(氨基,硝基,磺酸基等)掺杂到多孔碳材料的表面或结构中,使多孔碳材料的各方面的性能得到改进和提高。在众多的掺杂组分当中,氮是最受研究者们青睐和研究最多的一种元素。
目前,一般是用含N前体(如NH3、乙腈、尿素等含氮化合物)对碳材料进行后处理,将N元素掺入碳材料。但是应用1,10-菲啰啉作为氮源一步法制备掺氮有序介孔碳负载过渡金属纳米颗粒催化剂的报道几乎没有,而且这种方法能得到颗粒尺寸较小(<30nm),纳米颗粒分散度高,同时稳定性良好的催化剂。由于含氮官能团对Pt颗粒的抑制长大和固定作用,从而使过渡金属纳米颗粒均匀地分散在掺氮介孔碳上。此方法步骤简单,原料易得,成本低廉,处理方便。
发明内容
本发明的目的在于提供掺氮有序介孔碳负载过渡金属纳米颗粒催化剂的制备方法,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:掺氮有序介孔碳负载过渡金属纳米颗粒催化剂的制备方法,包括以下步骤:
A、10g苯酚放入圆底烧瓶中,40-42℃水浴条件下,加入2.13g 20wt%的NaOH溶液,搅拌10min-13min后,逐滴加入37wt%甲醛溶液17g,然后升温至70℃-80℃后搅拌反应1h,冷却至室温,然后滴入0.6mol/L的HCl将反应体系的pH值调至7.0,再旋转蒸发除去水,将得到的黄色油状产物用无水乙醇稀释至20wt%的酚醛树脂乙醇溶液备用;
B、1.6gF127于42℃溶于8g无水乙醇,搅拌至F127完全溶解后加入5.0g 20wt%酚醛树脂乙醇溶液,随后加入3g溶有0.15g六水合硝酸镍、六水合硝酸钴、九水合硝酸铁中任意一种和0.01-0.2g乙酰丙酮以及0.01g-0.2gl,10-菲啰啉乙醇溶液,随后搅拌1h-2h;于40℃-45℃蒸发乙醇,100℃-120℃聚合24h-26h,所得棕色固体待用;
C、将步骤B中所得固体置于管式炉中,持续通入氮气后进行升温并保温,所得黑色固体研磨成粉末状。
优选的,所述步骤A中蒸发温度50℃-60℃。
优选的,所述步骤C中,以2℃/min-3℃/min升温速率升温至800℃-850℃保温3h-5h。
与现有技术相比,本发明的有益效果是:本发明中,首次使用乙酰丙酮和1,10-菲啰啉作为络合剂和氮源一步法制备掺氮有序介孔碳负载过渡金属纳米颗粒催化剂,所得催化剂具有分散性良好和纳米颗粒尺寸分布均匀。此催化剂对芳香类硝基化合物在水溶液中加氢有着良好的活性和选择性。
附图说明
图1为本发明有序介孔碳比表面积分析图;
图2为本发明掺氮有序介孔碳负载镍比表面积分析图;
图3为本发明中证明材料是有序结构XRD表征图;
图4为本发明中证明催化剂活性成分为单质镍XRD表征图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一:
请参阅图1-4,本发明提供如下技术方案:掺氮有序介孔碳负载过渡金属纳米颗粒催化剂的制备方法,包括以下步骤:
A、10g苯酚放入圆底烧瓶中,40℃水浴条件下,加入2.13g 20wt%的NaOH溶液,搅拌10min-13min后,逐滴加入37wt%甲醛溶液17g,然后升温至70℃-80℃后搅拌反应1h,冷却至室温,然后滴入0.6mol/L的HCl将反应体系的pH值调至7.0,再旋转蒸发除去水,将得到的黄色油状产物用无水乙醇稀释至20wt%的酚醛树脂乙醇溶液备用;
B、1.6gF127于42℃溶于8g无水乙醇,搅拌至F127完全溶解后加入5.0g 20wt%酚醛树脂乙醇溶液,随后加入3g溶有0.15g六水合硝酸镍、六水合硝酸钴、九水合硝酸铁中任意一种和0.01g乙酰丙酮以及0.01g1,10-菲啰啉乙醇溶液,随后搅拌1h;于40℃蒸发乙醇,100℃聚合24h,所得棕色固体待用;
C、将步骤B中所得固体置于管式炉中,持续通入氮气后进行升温并保温,所得黑色固体研磨成粉末状。
本实施例中,步骤A中蒸发温度50℃。
本实施例中,步骤C中,以2℃/min升温速率升温至800℃保温3h-5h。
实施例二:
掺氮有序介孔碳负载过渡金属纳米颗粒催化剂的制备方法,包括以下步骤:
A、10g苯酚放入圆底烧瓶中,42℃水浴条件下,加入2.13g 20wt%的NaOH溶液,搅拌13min后,逐滴加入37wt%甲醛溶液17g,然后升温至80℃后搅拌反应1h,冷却至室温,然后滴入0.6mol/L的HCl将反应体系的pH值调至7.0,再旋转蒸发除去水,将得到的黄色油状产物用无水乙醇稀释至20wt%的酚醛树脂乙醇溶液备用;
B、1.6gF127于42℃溶于8g无水乙醇,搅拌至F127完全溶解后加入5.0g 20wt%酚醛树脂乙醇溶液,随后加入3g溶有0.15g六水合硝酸镍、六水合硝酸钴、九水合硝酸铁中任意一种和0.1g乙酰丙酮以及0.10gl,10-菲啰啉乙醇溶液,随后搅拌2h;于45℃蒸发乙醇,120℃聚合26h,所得棕色固体待用;
C、将步骤B中所得固体置于管式炉中,持续通入氮气后进行升温并保温,所得黑色固体研磨成粉末状。
本实施例中,步骤A中蒸发温度60℃。
本实施例中,步骤C中,以3℃/min升温速率升温至850℃保温5h。
实施例三:
掺氮有序介孔碳负载过渡金属纳米颗粒催化剂的制备方法,包括以下步骤:
A、10g苯酚放入圆底烧瓶中,41℃水浴条件下,加入2.13g 20wt%的NaOH溶液,搅拌12min后,逐滴加入37wt%甲醛溶液17g,然后升温至75℃后搅拌反应1h,冷却至室温,然后滴入0.6mol/L的HCl将反应体系的pH值调至7.0,再旋转蒸发除去水,将得到的黄色油状产物用无水乙醇稀释至20wt%的酚醛树脂乙醇溶液备用;
B、1.6gF127于42℃溶于8g无水乙醇,搅拌至F127完全溶解后加入5.0g 20wt%酚醛树脂乙醇溶液,随后加入3g溶有0.15g六水合硝酸镍、六水合硝酸钴、九水合硝酸铁中任意一种和0.2g乙酰丙酮以及0.2gl,10-菲啰啉乙醇溶液,随后搅拌1.5h;于42℃蒸发乙醇,110℃聚合25h,所得棕色固体待用:
C、将步骤B中所得固体置于管式炉中,持续通入氮气后进行升温并保温,所得黑色固体研磨成粉末状。
本实施例中,步骤A中蒸发温度55℃。
本实施例中,步骤C中,以2.5℃/min升温速率升温至825℃保温3h-5h。
本发明中,首次使用乙酰丙酮和1,10-菲啰啉作为络合剂和氮源一步法制备掺氮有序介孔碳负载过渡金属纳米颗粒催化剂,所得催化剂具有分散性良好和纳米颗粒尺寸分布均匀。此催化剂对芳香类硝基化合物在水溶液中加氢有着良好的活性和选择性。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (3)

1.掺氮有序介孔碳负载过渡金属纳米颗粒催化剂的制备方法,其特征在于:包括以下步骤:
A、10g苯酚放入圆底烧瓶中,40-42℃水浴条件下,加入2.13g 20wt%的NaOH溶液,搅拌10min-13min后,逐滴加入37wt%甲醛溶液17g,然后升温至70℃-80℃后搅拌反应1h,冷却至室温,然后滴入0.6mol/L的HCl将反应体系的pH值调至7.0,再旋转蒸发除去水,将得到的黄色油状产物用无水乙醇稀释至20wt%的酚醛树脂乙醇溶液备用;
B、1.6gF127于42℃溶于8g无水乙醇,搅拌至F127完全溶解后加入5.0g 20wt%酚醛树脂乙醇溶液,随后加入3g溶有0.15g六水合硝酸镍、六水合硝酸钴、九水合硝酸铁中任意一种和0.01-0.2g乙酰丙酮以及0.01g-0.2g1,10-菲啰啉乙醇溶液,随后搅拌1h-2h;于40℃-45℃蒸发乙醇,100℃-120℃聚合24h-26h,所得棕色固体待用;
C、将步骤B中所得固体置于管式炉中,持续通入氮气后进行升温并保温,所得黑色固体研磨成粉末状。
2.根据权利要求1所述的掺氮有序介孔碳负载过渡金属纳米颗粒催化剂的制备方法,其特征在于:所述步骤A中蒸发温度50℃-60℃。
3.根据权利要求1所述的掺氮有序介孔碳负载过渡金属纳米颗粒催化剂的制备方法,其特征在于:所述步骤C中,以2℃/min-3℃/min升温速率升温至800℃-850℃保温3h-5h。
CN201810110033.XA 2018-02-05 2018-02-05 掺氮有序介孔碳负载过渡金属纳米颗粒催化剂的制备方法 Pending CN108355694A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810110033.XA CN108355694A (zh) 2018-02-05 2018-02-05 掺氮有序介孔碳负载过渡金属纳米颗粒催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810110033.XA CN108355694A (zh) 2018-02-05 2018-02-05 掺氮有序介孔碳负载过渡金属纳米颗粒催化剂的制备方法

Publications (1)

Publication Number Publication Date
CN108355694A true CN108355694A (zh) 2018-08-03

Family

ID=63004428

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810110033.XA Pending CN108355694A (zh) 2018-02-05 2018-02-05 掺氮有序介孔碳负载过渡金属纳米颗粒催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN108355694A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109252183A (zh) * 2018-10-22 2019-01-22 华东师范大学 一种制备负载铜有序介孔碳电极材料方法及电催化应用
CN110562958A (zh) * 2019-09-27 2019-12-13 常州大学 一种金属氮化物@含氮介孔碳纳米碳球及其制备方法
WO2021078128A1 (zh) * 2019-10-22 2021-04-29 中国科学院青岛生物能源与过程研究所 一种制备介孔碳负载金属纳米粒子催化剂的方法
CN113862536A (zh) * 2021-09-14 2021-12-31 钢铁研究总院 一种Mg-Al-Y基储氢材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102101665A (zh) * 2011-01-11 2011-06-22 上海师范大学 一步法制备含镍有序介孔碳材料的方法
CN105536783A (zh) * 2015-12-23 2016-05-04 上海大学 有序介孔碳负载Ru纳米催化剂的制备方法
CN106517136A (zh) * 2016-10-26 2017-03-22 青岛科技大学 一种铁/氮共掺杂有序介孔碳材料的制备方法
CN106986320A (zh) * 2017-03-29 2017-07-28 上海出入境检验检疫局工业品与原材料检测技术中心 一种金属氧化物嵌入的磁性有序介孔碳复合材料及其制备方法与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102101665A (zh) * 2011-01-11 2011-06-22 上海师范大学 一步法制备含镍有序介孔碳材料的方法
CN105536783A (zh) * 2015-12-23 2016-05-04 上海大学 有序介孔碳负载Ru纳米催化剂的制备方法
CN106517136A (zh) * 2016-10-26 2017-03-22 青岛科技大学 一种铁/氮共掺杂有序介孔碳材料的制备方法
CN106986320A (zh) * 2017-03-29 2017-07-28 上海出入境检验检疫局工业品与原材料检测技术中心 一种金属氧化物嵌入的磁性有序介孔碳复合材料及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JING TANG等: "Synthesis and Electrochemical Characterization of N‑Doped Partially Graphitized Ordered Mesoporous Carbon−Co Composite", 《THE JOURNAL OF PHYSICAL CHEMISTRY C》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109252183A (zh) * 2018-10-22 2019-01-22 华东师范大学 一种制备负载铜有序介孔碳电极材料方法及电催化应用
CN109252183B (zh) * 2018-10-22 2021-03-26 华东师范大学 一种制备负载铜有序介孔碳电极材料方法及电催化应用
CN110562958A (zh) * 2019-09-27 2019-12-13 常州大学 一种金属氮化物@含氮介孔碳纳米碳球及其制备方法
CN110562958B (zh) * 2019-09-27 2023-03-24 常州大学 一种金属氮化物@含氮介孔碳纳米碳球及其制备方法
WO2021078128A1 (zh) * 2019-10-22 2021-04-29 中国科学院青岛生物能源与过程研究所 一种制备介孔碳负载金属纳米粒子催化剂的方法
CN113862536A (zh) * 2021-09-14 2021-12-31 钢铁研究总院 一种Mg-Al-Y基储氢材料及其制备方法
CN113862536B (zh) * 2021-09-14 2022-07-08 钢铁研究总院 一种Mg-Al-Y基储氢材料及其制备方法

Similar Documents

Publication Publication Date Title
CN108355694A (zh) 掺氮有序介孔碳负载过渡金属纳米颗粒催化剂的制备方法
CN102513099B (zh) 一种新型介孔碳担载的金属催化剂及其制备方法
Chi et al. One-pot synthesis of ordered mesoporous silver nanoparticle/carbon composites for catalytic reduction of 4-nitrophenol
CN102921422B (zh) 磁性纳米Cu-Fe3O4/石墨烯复合催化剂的制备及其在还原硝基化合物中的应用
Tian et al. In situ synthesis of copper nanoparticles/polystyrene composite
CN105344368B (zh) 一种用于加氢脱氯反应的过渡金属磷化物的制备方法及应用
Grouchko et al. Synthesis of copper nanoparticles catalyzed by pre-formed silver nanoparticles
Manesh et al. Silver nanoparticles distributed into polyaniline bridged silica network: A functional nanocatalyst having synergistic influence for catalysis
Kumar et al. Heterogeneous catalytic reduction of anthropogenic pollutant, 4-nitrophenol by Au/AC nanocatalysts
Verma et al. Kinetics of p-Nitrophenol reduction catalyzed by PVP stabilized copper nanoparticles
CN101444730B (zh) 一种纳米碳纤维/银纳米粒子复合催化剂的制备方法
Li et al. Silver nanoparticles encapsulated by metal-organic-framework give the highest turnover frequencies of 105 h− 1 for three component reaction by microwave-assisted heating
CN110201680B (zh) 一种用于α,β-不饱和醛/酮选择性加氢的催化剂、制备方法及催化方法
Lu et al. In situ synthesis of cobalt alginate/ammonium perchlorate composite and its low temperature decomposition performance
Guan et al. PtNi nanoparticles embedded in porous silica microspheres as highly active catalysts for p-nitrophenol hydrogenation to p-aminophenol
Goncharova et al. Water–ethanol CuOx nanoparticle colloids prepared by laser ablation: Colloid stability and catalytic properties in nitrophenol hydrogenation
CN107876796B (zh) 一种氨分解制氢钌基催化剂及其制备方法
CN107442180A (zh) 一种MOFs‑rGO负载的Pd纳米催化剂及其制备与应用
CN108080005B (zh) 一种高催化活性电催化剂1t’相硫化钨的制备方法
Zhou et al. Synthesis of porous Bi@ Cs networks by a one-step hydrothermal method and their superior catalytic activity for the reduction of 4-nitrophenol
CN104415765A (zh) 一种Ru-Ni双金属基有序介孔碳催化剂的制备方法
Kusumawati et al. Size-controllable gold nanoparticles prepared from immobilized gold-containing ionic liquids on SBA-15
Zheng et al. In-situ preparation of size-tunable gold nanoparticles in porous resorcinol–formaldehyde resin
CN106187783B (zh) 聚酰胺酸负载钯纳米催化剂在芳香硝基化合物的氢化反应中的应用
Vadakkekara et al. Hollow mesoporous silica spheres supported Ag and Ag–Au catalyzed reduction of 4-nitrobenzo-15-crown

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180803