CN108344698B - 基于电磁第一性原理反演粗糙表面光学常数的椭偏方法 - Google Patents

基于电磁第一性原理反演粗糙表面光学常数的椭偏方法 Download PDF

Info

Publication number
CN108344698B
CN108344698B CN201810156948.4A CN201810156948A CN108344698B CN 108344698 B CN108344698 B CN 108344698B CN 201810156948 A CN201810156948 A CN 201810156948A CN 108344698 B CN108344698 B CN 108344698B
Authority
CN
China
Prior art keywords
rough surface
electromagnetic
ellipsometry
optical constants
principle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810156948.4A
Other languages
English (en)
Other versions
CN108344698A (zh
Inventor
裘俊
刘源斌
赵军明
刘林华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201810156948.4A priority Critical patent/CN108344698B/zh
Publication of CN108344698A publication Critical patent/CN108344698A/zh
Application granted granted Critical
Publication of CN108344698B publication Critical patent/CN108344698B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/211Ellipsometry

Abstract

基于电磁第一性原理反演粗糙表面光学常数的椭偏方法,属于光学常数测量技术领域。本发明是为了解决由于样品表面粗糙度的存在,使采用椭偏法测量的材料光学常数存在误差的问题。它包括:获取粗糙表面样品的椭偏参数、均方根粗糙度σ和自相关长度ζ;将椭偏参数作为粗糙表面样品光学常数的函数并用一阶泰勒级数展开;定义目标函数和迭代的终止条件,结合电磁第一性原理和迭代公式计算光学常数。本发明用于获得粗糙表面的光学常数。

Description

基于电磁第一性原理反演粗糙表面光学常数的椭偏方法
技术领域
本发明涉及基于电磁第一性原理反演粗糙表面光学常数的椭偏方法,属于光学常数测量技术领域。
背景技术
自上世纪90年代起,随着计算机技术和加工仪器精度的提高,椭偏测量技术得到了快速的发展。由于其无扰动、高精度、无破坏性及测量速度快,并且能实现实时监控等优点,椭偏应用迅速被拓宽到了测量材料光学常数和薄膜厚度等领域。椭偏仪主要测量两个实验数据,即P偏振光与S偏振光反射系数比值的幅度值Ψ和相位差Δ。Ψ和Δ被称为椭偏参数。通常情况下利用光滑表面的Fresnel定律可以从椭偏参数直接获取得到材料的光学常数。但在实际过程中,无论如何打磨,物体表面的粗糙度都不可避免的存在,并且椭偏仪对材料表面的粗糙度十分敏感,因此若此时再用基于光滑表面的Fresnel公式反演材料的光学常数,将与实际出现偏差,产生伪光学常数。另一方面,目前对粗糙表面的修正主要是基于等效介质模型。等效介质模型是将粗糙层等效为均匀的一层薄膜,薄膜层的等效光学常数由Bruggeman的等效介质理论求取。薄膜层的厚度一般认为等于均方根粗糙度。而后利用该等效介质理论进行反演即可获取材料的光学常数。但是等效介质理论仅考虑了高度方向的不均匀性,而忽略了横向特征尺寸对粗糙表面电磁散射的影响,故使用等效介质模型去获取材料的光学常数仍存在一定的误差,并且很难计算等效介质模型的反演误差。
发明内容
本发明目的是为了解决由于样品表面粗糙度的存在,使采用椭偏法测量的材料光学常数存在误差的问题,提供了基于电磁第一性原理反演粗糙表面光学常数的椭偏方法。
本发明所述基于电磁第一性原理反演粗糙表面光学常数的椭偏方法,它包括:
获取粗糙表面样品的椭偏参数、均方根粗糙度σ和自相关长度ζ;
将椭偏参数作为粗糙表面样品光学常数的函数,则:
Ψ=f1(n,k),Δ=f2(n,k), (1)
式中Ψ为幅度值,Δ为相位差,n为折射率,k为消光系数;
将式(1)用一阶泰勒级数展开,再通过如下迭代公式计算光学常数:
Figure BDA0001581697680000021
式中下角标j为迭代次数,
Figure BDA0001581697680000022
为松弛因子,并且
Figure BDA0001581697680000023
Figure BDA0001581697680000024
为矩阵ηj的逆矩阵,ηj为偏导数矩阵;Ψ*为实验测量的幅度值,Δ*为实验测量的相位差;
定义目标函数为:
J(n,k)=(Ψ-Ψ*)2+(Δ-Δ*)2, (3)
迭代的终止条件定义为:
J(nj,kj)<|δΨ|2+|δΔ|2,j=1,2,3... (4)
式中δΨ为幅度值Ψ的标准偏差,δΔ为相位差Δ的标准偏差;
结合电磁第一性原理和迭代公式计算目标函数(3),直到满足终止条件(4),获得光学常数折射率n和消光系数k。
本发明的优点:本发明基于电磁波传输的第一性原理,通过椭偏反演算法获取粗糙表面样品的光学常数,针对不同的材料和不同的粗糙表面形貌均能获得高精度的光学常数。
附图说明
图1是本发明所述基于电磁第一性原理反演粗糙表面光学常数的椭偏方法的流程图;
图2是采用本发明方法获取高斯随机粗糙表面光学常数的n–k迭代示意图;
图3是采用本发明方法获取高斯随机粗糙表面的Ψ–Δ迭代示意图。
具体实施方式
下面结合图1至图3说明本实施方式,本实施方式所述基于电磁第一性原理反演粗糙表面光学常数的椭偏方法,它包括:
结合图1所示,获取粗糙表面样品的椭偏参数、均方根粗糙度σ和自相关长度ζ;
本实施方式中,椭偏参数Ψ和Δ可以看成是粗糙表面样品的入射角θ、波长λ、均方根粗糙度σ、自相关长度ζ和光学常数n、k的函数。在实验测量中,θ和λ为已知参量,均方根粗糙度σ和自相关长度ζ分别决定了粗糙表面样品的高度方向和横向的特征尺度。
通过实验获取到粗糙表面样品的椭偏参数后,样品表面的形貌,例如均方根粗糙度σ和自相关长度ζ可以由表面形貌检测仪获得,表面形貌检测仪可以是原子力显微镜(AFM)或者扫描电子显微镜(SEM),进而可认为σ及ζ为已知参量。在反演过程中,粗糙表面的形貌特征是保持不变的。因此,可以将椭偏参数作为粗糙表面样品光学常数的函数,则:
Ψ=f1(n,k),Δ=f2(n,k), (1)
式中Ψ为幅度值,Δ为相位差,n为折射率,k为消光系数;
由于式(1)很难用解析解的形式表现出来,因此需要用数值解去获取材料的光学常数。本公开中,将式(1)用一阶泰勒级数展开,再通过如下迭代公式计算材料的真实光学常数:
Figure BDA0001581697680000031
式中下角标j为迭代次数,
Figure BDA0001581697680000032
为松弛因子,并且
Figure BDA0001581697680000033
Figure BDA0001581697680000034
为矩阵ηj的逆矩阵,ηj为偏导数矩阵,偏导数矩阵的值可由数值差分方法求得;Ψ*为实验测量的幅度值,Δ*为实验测量的相位差;
本公开中,反演方法的目标函数可以看成是对目标函数的最小化优化。
定义目标函数为:
J(n,k)=(Ψ-Ψ*)2+(Δ-Δ*)2, (3)
迭代的终止条件定义为:
J(nj,kj)<|δΨ|2+|δΔ|2,j=1,2,3... (4)
式中δΨ为幅度值Ψ的标准偏差,δΔ为相位差Δ的标准偏差;
结合电磁第一性原理和迭代公式计算目标函数(3),直到满足终止条件(4),获得光学常数折射率n和消光系数k。
根据本公开的光学常数反演方法,模型精度可以根据测量误差进行估算,定义误差传递公式如下:
折射率n的测量误差δn和消光系数k的测量误差δk为:
Figure BDA0001581697680000035
式中δσ为粗糙表面样品高度方向特征尺度的标准偏差,δζ为粗糙表面样品横向特征尺度的标准偏差。式(5)中的偏导数可结合电磁波传输的第一性原理计算和数值差分方法获得。
比起等效介质理论模型无法估计其模型的精度,本发明可以根据仪器的测量误差对反演方法的误差进行估算。
结合图2和图3所示,假设高斯随机粗糙表面的均方根误差为σ=10nm,自相关长度为ζ=10nm。入射角θ为65°,入射波长λ为400nm。所选材料为Si。图2中‘S’点代表伪光学常数及其对应的相同粗糙表面下响应的椭偏参数,‘EMA’代表利用EMA模型获得的光学常数及其对应的相同粗糙表面下响应的椭偏参数。可以看出,伪光学常数及EMA模型反演光学常数都存在较大的误差。利用本发明提出的反演方法,选取‘EMA’点为初始迭代点,图2和图3中数字表示迭代次数。可以看出,经过4次迭代,本发明提出的反演方法可以准确的获取材料的光学常数。
表1为利用三种不同方式获取高斯随机粗糙表面光学常数的误差对比。所选材料Si,入射光波长为400nm,入射角为65°。三种方式分别为利用Fresnel公式获取的伪光学常数,EMA模型和反演算法获取的光学常数与真实光学常数对比的误差。其中,反演算法的迭代次数均小于5次。光学常数n和k的相对误差分别定义为
Figure BDA0001581697680000041
Figure BDA0001581697680000042
从表1可以看出利用Fresnel公式获取的伪光学常数随着粗糙度的增加,自相关长度的减小,误差在增大。EMA模型获取的光学常数随着表面形貌的改变误差也在改变。相较前面两种方法,本文提出的反演算法,对不同的粗糙表面形貌均可获得更为准确的光学常数。
表1
Figure BDA0001581697680000043
具体实施例:
通过椭偏实验可获得Ψ*和Δ*,通过表面形貌测量仪可以获得粗糙表面的形貌。在粗糙表面形貌及实验获得的椭偏参数已知的情况下,本实施例的具体实施步骤如下:
1)选取迭代的初始猜想(n0,k0)。初始猜想可认为是伪光学常数或者是EMA模型获取的光学常数。
2)已知(n0,k0)和粗糙表面形貌,基于电磁散射的第一性原理计算可以获得对应的椭偏参数(Ψ00)。此处可用到的电磁散射的第一性原理计算方法有时域有限差分法(FDTD),有限元法(FEM)及严格耦合波分析(RCWA)等。
3)分别给出n和k的第一个步长计算出η0,由于本发明提出的方法数值收敛性很好,因此对步长的要求没有具体的限制,实际操作过程中可根据(Ψ00)与(Ψ**)的差值大小选定。
4)设置松弛因子
Figure BDA0001581697680000051
并计算式(2)。
5)结合电磁第一性原理和迭代公式计算目标函数式(3),如果满足终止条件式(4),停止迭代。如果不满足,则进行第6步。
6)令j=j+1,计算ηj,回到第4步。
7)通过以上6步获得光学常数后,根据式(5)求出本发明提出的反演方法的误差。

Claims (4)

1.一种基于电磁第一性原理反演粗糙表面光学常数的椭偏方法,其特征在于,它包括:
获取粗糙表面样品的椭偏参数、均方根粗糙度σ和自相关长度ζ;
将椭偏参数作为粗糙表面样品光学常数的函数,则:
Ψ=f1(n,k),Δ=f2(n,k), (1)
式中Ψ为幅度值,Δ为相位差,n为折射率,k为消光系数;
将式(1)用一阶泰勒级数展开,再通过如下迭代公式计算光学常数:
Figure FDA0002563425150000011
式中下角标j为迭代次数,
Figure FDA0002563425150000012
为松弛因子,并且
Figure FDA0002563425150000013
Figure FDA0002563425150000014
为矩阵ηj的逆矩阵,ηj为偏导数矩阵;Ψ*为实验测量的幅度值,Δ*为实验测量的相位差;
定义目标函数为:
J(n,k)=(Ψ-Ψ*)2+(Δ-Δ*)2, (3)
迭代的终止条件定义为:
J(nj,kj)<|δΨ|2+|δΔ|2,j=1,2,3... (4)
式中δΨ为幅度值Ψ的标准偏差,δΔ为相位差Δ的标准偏差;
结合电磁第一性原理和迭代公式计算得到目标函数(3)中的光学常数折射率n和消光系数k,直到满足终止条件(4)。
2.根据权利要求1所述的基于电磁第一性原理反演粗糙表面光学常数的椭偏方法,其特征在于,
折射率n的测量误差δn和消光系数k的测量误差δk为:
Figure FDA0002563425150000015
式中δσ为粗糙表面样品高度方向特征尺度的标准偏差,δζ为粗糙表面样品横向特征尺度的标准偏差。
3.根据权利要求2所述的基于电磁第一性原理反演粗糙表面光学常数的椭偏方法,其特征在于,
公式(5)中的偏导数通过电磁波传输的第一性原理计算和数值差分方法获得。
4.根据权利要求1、2或3所述的基于电磁第一性原理反演粗糙表面光学常数的椭偏方法,其特征在于,
粗糙表面样品的均方根粗糙度σ和自相关长度ζ通过表面形貌检测仪检测获得。
CN201810156948.4A 2018-02-24 2018-02-24 基于电磁第一性原理反演粗糙表面光学常数的椭偏方法 Active CN108344698B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810156948.4A CN108344698B (zh) 2018-02-24 2018-02-24 基于电磁第一性原理反演粗糙表面光学常数的椭偏方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810156948.4A CN108344698B (zh) 2018-02-24 2018-02-24 基于电磁第一性原理反演粗糙表面光学常数的椭偏方法

Publications (2)

Publication Number Publication Date
CN108344698A CN108344698A (zh) 2018-07-31
CN108344698B true CN108344698B (zh) 2020-08-25

Family

ID=62960264

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810156948.4A Active CN108344698B (zh) 2018-02-24 2018-02-24 基于电磁第一性原理反演粗糙表面光学常数的椭偏方法

Country Status (1)

Country Link
CN (1) CN108344698B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110118754B (zh) * 2019-04-19 2020-12-29 华中科技大学 一种超薄膜光学常数快速测量方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7385697B2 (en) * 2003-02-28 2008-06-10 J.A. Woollam Co., Inc. Sample analysis methodology utilizing electromagnetic radiation
FR2820205B1 (fr) * 2001-02-01 2003-05-02 Centre Nat Rech Scient Procede de caracterisation ou de controle de l'elaboration d'un composant en couches minces par methodes optiques
US6597446B2 (en) * 2001-03-22 2003-07-22 Sentec Corporation Holographic scatterometer for detection and analysis of wafer surface deposits
JP4363368B2 (ja) * 2005-06-13 2009-11-11 住友電気工業株式会社 化合物半導体部材のダメージ評価方法、及び化合物半導体部材の製造方法
US8941831B2 (en) * 2009-05-04 2015-01-27 Theodore Peter Rakitzis Intra-cavity ellipsometer system and method
CN103323403B (zh) * 2013-05-27 2015-04-15 浙江大学 一种低辐射镀膜玻璃的光学参数检测方法
US9310684B2 (en) * 2013-08-22 2016-04-12 Inpria Corporation Organometallic solution based high resolution patterning compositions
CN103559329B (zh) * 2013-09-27 2016-04-20 华中科技大学 光学散射测量中粗糙纳米结构特性参数的测量方法
CN104792282A (zh) * 2015-04-21 2015-07-22 中国科学院光电技术研究所 一种同时确定光学薄膜表面粗糙度、光学常数和厚度的方法
JP6503222B2 (ja) * 2015-05-15 2019-04-17 日新製鋼株式会社 分光エリプソメトリーを用いたステンレス鋼の非破壊耐食性評価方法
CN104880161B (zh) * 2015-06-18 2017-07-28 哈尔滨工业大学 一种利用椭偏参数测量固体材料表面粗糙度的方法
CN105136679B (zh) * 2015-09-02 2017-12-26 北京航玻新材料技术有限公司 一种基于椭偏仪的光学材料表面质量评估方法及其应用
CN106596469B (zh) * 2016-11-30 2019-04-30 西安电子科技大学 一种基于粗糙面反射率谱反演材料复折射率的方法

Also Published As

Publication number Publication date
CN108344698A (zh) 2018-07-31

Similar Documents

Publication Publication Date Title
KR100290086B1 (ko) 백색광주사간섭법을 이용한 투명한 박막층의 3차원 두께 형상 측정 및 굴절률 측정 방법 및 그 기록매체
CN109470154B (zh) 一种适用于光谱椭偏仪的薄膜厚度初值测量方法
CN110244527B (zh) 一种套刻标记形貌和测量条件优化方法
CN112964647B (zh) 一种利用光谱椭偏仪检测超薄金属膜的方法及装置
CN106595501A (zh) 测量光学薄膜厚度或均匀性的方法
US8804129B2 (en) Method and apparatus for performing film thickness measurements using white light scanning interferometry
CN111895923A (zh) 一种拟合测量薄膜厚度的方法
CN111121653B (zh) 一种单层薄膜临界厚度估值计算方法
CN108344698B (zh) 基于电磁第一性原理反演粗糙表面光学常数的椭偏方法
CN112345464A (zh) 一种椭偏仪优化校准方法
CN112067559B (zh) 材料光学常数的确定方法、材料数据库的扩展方法及装置
US11662197B2 (en) Rapid measurement method for ultra-thin film optical constant
CN114264632B (zh) 一种角分辨式散射仪中物镜偏振效应的原位校准方法
CN104880161A (zh) 一种利用椭偏参数测量固体材料表面粗糙度的方法
Barton et al. Ellipsometer analysis in the n–k plane
US20220390356A1 (en) Device and method for measuring a substrate
CN112880574B (zh) 一种薄膜厚度测量方法
Antos et al. Spectroscopic ellipsometry on lamellar gratings
Foo et al. On the modeling of ellipsometry data at large angles of incidence using finite-difference time-domain
TW200804993A (en) Method for designing gratings
CN113609687B (zh) 一种椭偏仪实时测量结果优化方法
CN114322762B (zh) 光学参数测量方法及装置
CN115711856A (zh) 一种椭偏测量光斑尺寸指标计算方法及计算系统
Afraites GLOBAL OPTIMIZATION IN INVERSE ELLIPSOMETRIC PROBLEM FOR THIN FILM CHARACTERIZATION
CN111553064A (zh) 一种适用于光学散射测量的特征选择方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant