CN108336170B - 制造太阳能电池的方法 - Google Patents

制造太阳能电池的方法 Download PDF

Info

Publication number
CN108336170B
CN108336170B CN201810039075.9A CN201810039075A CN108336170B CN 108336170 B CN108336170 B CN 108336170B CN 201810039075 A CN201810039075 A CN 201810039075A CN 108336170 B CN108336170 B CN 108336170B
Authority
CN
China
Prior art keywords
amorphous silicon
intrinsic amorphous
silicon layer
semiconductor substrate
conductive region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810039075.9A
Other languages
English (en)
Other versions
CN108336170A (zh
Inventor
李京洙
黄圣贤
朴相昱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shangrao Xinyuan Yuedong Technology Development Co ltd
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=60953773&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN108336170(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Publication of CN108336170A publication Critical patent/CN108336170A/zh
Application granted granted Critical
Publication of CN108336170B publication Critical patent/CN108336170B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/32055Deposition of semiconductive layers, e.g. poly - or amorphous silicon layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02592Microstructure amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

公开了一种制造太阳能电池的方法。该制造太阳能电池的方法包括以下步骤:在半导体基板的表面上沉积本征非晶硅层;在所述本征非晶硅层上沉积包含杂质的非晶硅层以形成导电区域;以及形成与所述导电区域电连接的电极。沉积本征非晶硅层的步骤包括以0.5nm/秒至2.0nm/秒的沉积速率在所述半导体基板的表面上沉积所述本征非晶硅。

Description

制造太阳能电池的方法
技术领域
本发明的实施方式涉及一种制造太阳能电池的方法。
背景技术
最近,由于诸如石油和煤炭这样的现有能源预计将耗尽,因此对用于替代现有能源的替代能源的关注不断增加。在这些替代能源当中,用于由太阳能生成电能的太阳能电池备受关注。
太阳能电池通常包括分别具有不同导电类型(例如,p型和n型)并因此形成p-n结的半导体部分以及分别连接至不同导电类型的半导体部分的电极。
当光入射到太阳能电池上时,在半导体部分中产生多个电子-空穴对,并且这些电子-空穴对在入射光的作用下分成电子和空穴。电子移动至n型半导体部分,空穴移动至p型半导体部分。然后,电子和空穴被分别与n型半导体部分和p型半导体部分连接的不同电极收集。电极利用电线彼此连接,由此获得电力。
具有上述配置的多个太阳能电池可通过互连件彼此连接以形成模块。
通常,现有技术的太阳能电池被配置为使得导电杂质扩散到半导体基板中,以形成发射极区域或背表面场区域。
另选地,现有技术的太阳能电池被配置为使得在半导体基板的表面上形成包含杂质的非晶硅,以形成发射极区域或背表面场区域,以便进一步提高太阳能电池的输出电压。
然而,当在半导体基板的表面上形成非晶硅时,由于即使在沉积非晶硅层时也具有晶体结构的半导体基板的材料性质,导致非晶硅的一部分沿着半导体基板的表面的晶体取向外延生长并结晶。因此,存在界面特性劣化,使得在非晶硅层的一部分中形成硅晶体的问题。
当如上所述在非晶硅层的一部分中形成硅晶体时,硅晶体充当杂质或缺陷。因此,存在太阳能电池的开路电压Voc降低的问题。
因此,为了解决非晶硅层的一部分结晶的问题,引入了一种在用于沉积非晶硅层的过程中增加非晶硅层的压力的方法。然而,该方法的问题在于,由于需要过高的成本来匹配工艺条件,所以太阳能电池的制造成本过度增加。
发明内容
本发明的实施方式提供了一种制造太阳能电池的方法,该方法能够实现在降低制造成本的同时在其中不形成硅晶体的纯非晶硅层。
在一方面,提供了一种制造太阳能电池的方法,该方法包括以下步骤:在半导体基板的表面上沉积本征非晶硅层;在所述本征非晶硅层上沉积包含杂质的非晶硅层,以形成导电区域;以及形成与所述导电区域电连接的电极,其中,沉积本征非晶硅层的步骤包括:以约0.5nm/秒至约2.0nm/秒的沉积速率在所述半导体基板的表面上沉积所述本征非晶硅。
用于沉积所述本征非晶硅层的沉积装置的功率密度可以是约60mW/cm2至约150mW/cm2
用于沉积所述本征非晶硅层的氢气(H2)的量(sccm)与硅烷(SiH4)气体的量(sccm)的比例可以是约1:1至约1:100。
沉积所述本征非晶硅层时的工艺温度可以是约100℃至约200℃。
所述本征非晶硅层可沉积在所述半导体基板的第一表面和第二表面上。
形成导电区域的步骤可包括以下步骤:在形成在所述半导体基板的所述第一表面上的本征非晶硅层上形成包含杂质的非晶硅层,以形成第一导电区域;以及在形成在所述半导体基板的所述第二表面上的本征非晶硅层上形成包含与所述第一导电区域中所包含的杂质的导电类型相反的导电类型的杂质的非晶硅层,以形成第二导电区域。
该方法还可包括以下步骤:在形成所述导电区域的步骤与形成所述电极的步骤之间,在所述导电区域上形成由透明导电氧化物形成的透明电极层。在形成所述电极时,可使所述电极与所述透明电极层连接。
所述本征非晶硅层可包括形成在所述半导体基板的所述第一表面上的第一本征非晶硅层和形成在所述半导体基板的所述第二表面上的第二本征非晶硅层。所述第一导电区域和所述半导体基板可与插置于其间的所述第一本征非晶硅层形成p-n结。所述第一本征非晶硅层的沉积速率可与所述第二本征非晶硅层的沉积速率不同。
所述第一本征非晶硅层的沉积速率可大于所述第二本征非晶硅层的沉积速率。
根据本发明的实施方式的制造太阳能电池的方法可通过以0.5nm/秒至2.0nm/秒的沉积速率在半导体基板的表面上沉积本征非晶硅层来实现其中不形成硅晶体的纯非晶硅层而无需耗费高成本的高压工艺条件。
附图说明
附图被包括以提供对本发明的进一步理解,并且被并入本说明书中并构成本说明书的一部分,附图例示了本发明的实施方式并且与说明书一起用来解释本发明的原理。在附图中:
图1例示了通过根据本发明的实施方式的制造太阳能电池的方法制造的太阳能电池的示例。
图2是图1中所示的部分K的放大视图。
图3例示了根据本发明的实施方式的制造太阳能电池的方法。
图4例示了用于说明在图3的制造方法中,根据在半导体基板的表面上沉积本征非晶硅时的沉积速率的太阳能电池的能带间隙的实验示例。
图5例示了用于说明在图3的制造方法中,根据在半导体基板的表面上沉积本征非晶硅时的沉积速率的缺陷密度的实验示例。
图6例示了用于说明在图3的制造方法中,当在半导体基板的表面上沉积本征非晶硅时沉积装置的功率密度与沉积速率之间的关系的实验示例。
图7例示了用于说明在图3的制造方法中,当在半导体基板的表面上沉积本征非晶硅时的氢气(H2)的量(sccm)与硅烷(SiH4)气体的量(sccm)的稀释比例和沉积速率之间的关系的实验示例。
图8例示了用于说明通过有差异地设置第一本征非晶硅层和第二本征非晶硅层的沉积速率而获得的效果的现有技术的能带图的示例。
具体实施方式
现在将详细参照本发明的实施方式,在附图中例示了本发明的实施方式的示例。然而,本发明可按照不同的方式来实施并且不应该被理解为受限于本文所阐述的实施方式。在任何可能的情况下,相同的附图标记在整个附图中用于指代相同或相似的部件。应该注意到,如果确定对已知技术的详细描述会模糊本发明的实施方式,则将省略对已知技术的详细描述。
在附图中,为了清晰起见,夸大了层、膜、面板、区域等的厚度。将理解的是,当诸如层、膜、区域或基板这样的元件被称为“在”另一元件“上”时,该元件可直接在另一元件上,或者也可存在中间元件。相比之下,当元件被称为“直接在”另一元件“上”时,不存在中间元件。另外,应该理解,当诸如层、膜、区域或基板这样的元件被称为“整个”在另一元件上时,该元件可在另一元件的整个表面上,并且可不在另一元件的边缘的一部分上。
在以下的描述中,“前表面”可以是半导体基板上的光直接入射到其上的一个表面,“后表面”可以是与半导体基板的所述一个表面相反的、光没有直接入射或者反射光可入射在其上的表面。
图1例示了通过根据本发明的实施方式的制造太阳能电池的方法制造的太阳能电池的示例。图2是图1所示的部分K的放大视图。
如图1所示,根据本发明的实施方式的太阳能电池的示例可包括半导体基板110、半导体基板110的第一表面上的第一本征非晶硅层111、第一导电区域120、第一透明电极层131、多个第一电极140、半导体基板110的第二表面上的第二本征非晶硅层112、第二导电区域170、第二透明电极层132和多个第二电极150。
在本文所公开的实施方式中,根据期望或需要,可省略第一透明电极层131和第二透明电极层132。然而,当设置第一透明电极层131和第二透明电极层132时,可进一步减小第一电极140和第二电极150与第一导电区域120和第二导电区域170之间的接触电阻。因此,使用设置了第一透明电极层131和第二透明电极层132的示例来描述本发明的实施方式。
半导体基板110可由包含第一导电类型或第二导电类型的杂质的单晶硅和多晶硅中的至少一种形成。例如,半导体基板110可由单晶硅晶圆形成。
在本文所公开的实施方式中,半导体基板110的第一导电类型或第二导电类型可以是n型和p型中的一种。
当半导体基板110为p型时,可使用诸如硼(B)、镓(Ga)和铟(In)这样的III族元素的杂质来掺杂半导体基板110。另选地,当半导体基板110为n型时,可使用诸如磷(P)、砷(As)和锑(Sb)这样的V族元素的杂质来掺杂半导体基板110。
在以下的描述中,使用其中半导体基板110中包含的杂质是第二导电类型的杂质并且是n型杂质的示例来描述本发明的实施方式。然而,实施方式不限于此。
如图1所示,半导体基板110的第一表面和第二表面可以是具有多个不平坦部分或具有不平坦特性的不平坦表面。
因此,被半导体基板110的第一表面和第二表面反射的光的量可减少,并且入射到半导体基板110内部的光的量可增加。
在本文所公开的实施方式中,半导体基板110的第一表面和第二表面可分别是前表面和后表面。然而,实施方式不限于此。例如,半导体基板110的第一表面和第二表面可分别是后表面和前表面。
第一本征非晶硅层111和第二本征非晶硅层112可分别整个位于半导体基板110的第一表面和第二表面上,并且可由不含第一导电类型和第二导电类型的杂质的本征非晶硅材料形成。
例如,第一本征非晶硅层111可整个位于半导体基板110的第一表面上,而第二本征非晶硅层112可整个位于半导体基板110的第二表面上。
第一本征非晶硅层111和第二本征非晶硅层112与由单晶硅材料形成的半导体基板110一起形成异质结,因此能够进一步提高太阳能电池的开路电压Voc。
另外,第一本征非晶硅层111和第二本征非晶硅层112包含氢,因此可执行存在于半导体基板110的表面处的缺陷的钝化功能。
第一本征非晶硅层111和第二本征非晶硅层112中的每一层的厚度可以是0.5nm至2.5nm,并且可用作使半导体基板110中产生的载流子穿过的隧道层。
如图1所示,第一导电区域120可整个位于第一本征非晶硅层111上,并且可被形成为包含第一导电类型的杂质的非晶硅层。
当半导体基板110包含第一导电类型的杂质时,第一导电区域120可用作场区域,这是因为第一导电区域120中所包含的第一导电类型的杂质的浓度比半导体基板110中所包含的第一导电类型的杂质的浓度高。另选地,当半导体基板110包含第二导电类型的杂质时,第一导电区域120可与半导体基板110一起形成p-n结,并且可用作发射极区域。
在以下描述中,使用其中第一导电区域120用作发射极区域的示例来描述本发明的实施方式。
因此,第一导电区域120可使半导体基板110中产生的载流子中的空穴容易地移动至第一导电区域120。
第一导电区域120的厚度可大于第一本征非晶硅层111的厚度。
如图1所示,第二导电区域170可整个位于第二本征非晶硅层112上,并且可被形成为包含与第一导电区域120中所包含的杂质的第一导电类型相反的第二导电类型的杂质在内的非晶硅层。
当半导体基板110包含第二导电类型的杂质时,第二导电区域170可用作场区域,这是因为第二导电区域170中所包含的第二导电类型的杂质的浓度比半导体基板110中所包含的第二导电类型的杂质的浓度高。另选地,当半导体基板110包含第一导电类型的杂质时,第二导电区域170可与半导体基板110一起形成p-n结,并且可用作发射极区域。
在以下描述中,使用其中第二导电区域170用作背表面场区域的示例来描述本发明的实施方式。
因此,第二导电区域170可使半导体基板110中产生的载流子中的电子容易地移动至第二导电区域170。
第一透明电极层131和第二透明电极层132可分别位于第一导电区域120和第二导电区域170上。
第一透明电极层131和第二透明电极层132分别与由非晶硅材料形成的第一导电区域120和第二导电区域170一起形成欧姆接触。因此,第一透明电极层131和第二透明电极层132可使第一透明电极层131和第二透明电极层132与第一导电区域120和第二导电区域170之间的接触电阻最小化,并且确保入射到第一透明电极层131和第二透明电极层140上的光的透射率处于预定水平或更高。
第一透明电极层131和第二透明电极层132可由透明导电氧化物(TCO)形成。例如,可使用铟锡氧化物(ITO)、二氧化锡(SnO2)等。
第一电极140可位于第一透明电极层131上,并且通过第一透明电极层131连接至第一导电区域120。第一电极140可收集移动至第一导电区域120的载流子(例如,空穴)。
第二电极150可位于第二透明电极层132上,并且通过第二透明电极层132连接至第二导电区域170。第一电极140可收集移动至第二导电区域170的载流子(例如,电子)。
在具有根据本发明的实施方式的上述结构的太阳能电池中,由第一电极140收集的空穴和由第二电极150收集的电子可通过外部电路装置被用作外部装置的电力。
根据本发明的实施方式的太阳能电池不限于图1。除了本征非晶硅层位于半导体基板110的表面上之外,根据本发明的实施方式的太阳能电池的其它组件可进行各种改变。
在根据本发明的实施方式的上述太阳能电池中,第一本征非晶硅层111和第二本征非晶硅层112位于半导体基板110的表面上,因此能够进一步提高太阳能电池的开路电压。
如图2所示,因为本征非晶硅层位于半导体基板110的表面上并且不包含作为开路电压降低因素的硅晶体,所以本征非晶硅层能够进一步提高太阳能电池的开路电压。
即,根据本发明的实施方式的制造太阳能电池的方法完全抑制了产生硅晶体的外延生长,并且能够防止非晶硅层的特性劣化。
以下,将描述抑制外延生长的根据本发明的实施方式的制造太阳能电池的方法。
图3例示了根据本发明的实施方式的制造太阳能电池的方法。
根据本发明的实施方式的制造太阳能电池的方法可包括本征非晶硅层沉积操作S1、导电区域形成操作S2、透明电极层形成操作S3和电极形成操作S4。
在本文所公开的实施方式中,根据期望或需要,可省略透明电极层形成操作S3。然而,当在电极与导电区域之间形成欧姆接触时,能够提高太阳能电池的效率。因此,使用包括透明电极层形成操作S3的示例来描述本发明的实施方式。
在本征非晶硅层沉积操作S1中,可使用化学气相沉积(CVD)方法在半导体基板110的第一表面和第二表面上沉积本征非晶硅层。
本征非晶硅层可沉积在半导体基板110的前表面和后表面上,以形成如图1所示的第一本征非晶硅层111和第二本征非晶硅层112。
本征非晶硅层沉积操作S1中的工艺温度可以是100℃至200℃。
将在描述了制造太阳能电池的方法的剩余操作之后,详细描述本征非晶硅层沉积操作S1的工艺条件。
在导电区域形成操作S2中,可在第一本征非晶硅层111和第二本征非晶硅层112上沉积包含杂质的非晶硅层,以形成导电区域120和170。
例如,导电区域形成操作S2可包括:第一导电区域形成操作,其在半导体基板110的第一表面上形成的第一本征非晶硅层111上形成包含杂质的非晶硅层120;以及第二导电区域形成操作,其在半导体基板110的第二表面上形成的第二本征非晶硅层112上形成包含与第一导电区域120中所包含的杂质的导电类型相反的导电类型的杂质的非晶硅层170。
例如,导电区域形成操作S2可使用化学气相沉积方法来形成第一导电区域120和第二导电区域170。
因此,可在第一本征非晶硅层111上形成第一导电区域120,并且可在第二本征非晶硅层112上形成第二导电区域170。
接下来,透明电极层形成操作S3可在导电区域120和170上形成透明导电氧化物(TCO)。
因此,可在第一导电区域120上形成第一透明电极层131,并且可在第二导电区域170上形成第二透明电极层132。
第一透明电极层131和第二透明电极层132可由透明导电氧化物形成。例如,可使用ITO、SnO2等。
接下来,在电极形成操作S4中,如图1所示,可对第一电极140和第二电极150进行构图并且将其形成在第一透明电极层131和第二透明电极层132的一部分上。
因此,可制造图1所示的太阳能电池。
根据本发明的实施方式的制造太阳能电池的方法可被配置为使得在本征非晶硅层沉积操作S1中沉积的本征非晶硅层111和112中根本不会形成硅晶体。
为此,本发明的实施方式可将在半导体基板110的表面上沉积本征非晶硅层111和112的沉积速率限制在0.5nm/秒至2.0nm/秒,使得在本征非晶硅层沉积操作S1中在半导体基板110的表面上不执行外延生长,并且本征非晶硅层的缺陷密度等于或小于预定水平。
以下,将对此进行详细描述。
图4例示了用于说明在图3的制造方法中,根据在半导体基板的表面上沉积本征非晶硅时的沉积速率的太阳能电池的能带间隙的实验示例。图5例示了用于说明在图3的制造方法中,根据在半导体基板的表面上沉积本征非晶硅时的沉积速率的缺陷密度的实验示例。
在根据本发明的实施方式的本征非晶硅层沉积操作S1中,本征非晶硅层111和112可按照0.5nm/秒至2.0nm/秒的沉积速率沉积在半导体基板110的表面上。
当沉积速率等于或大于0.5nm/秒时,几乎不执行外延生长。因此,在本征非晶硅层111和112的内部不存在硅晶体。
硅晶体充当本征非晶硅层111和112内部的缺陷,由此增加了本征非晶硅层111和112与晶体半导体基板110之间的界面处的悬空键(dangling bond)。因此,硅晶体是减小作为太阳能电池的开路电压Voc的重要指标的带隙能量Eg的因素。
当如上所述在本征非晶硅层111和112的内部不存在硅晶体时,如图4所示,太阳能电池的带隙能量Eg可增大至1.8eV或更大。
然而,当沉积速率低于0.5nm/秒时,外延生长被执行。因此,在本征非晶硅层111和112的内部可存在硅晶体。
在这种情形下,如图4所示,当沉积速率为例如0.25nm/秒时,产生了外延生长。因此,太阳能电池的带隙能量Eg大幅降低至约1.5eV或更小。
另外,如图4所示,当沉积速率为0.5nm/秒至2.0nm/秒时,带隙能量Eg为大约1.8eV至2.0eV,并且带隙能量Eg的增加速率大幅降低。
如图5所示,当沉积速率增大或减小以致超出0.5nm/秒至2.0nm/秒的范围时,本征非晶硅层111和112内部的缺陷密度增大。
例如,如图5所示,当沉积速率在0.5nm/秒至2.0nm/秒的范围内时,本征非晶硅层111和112内部的缺陷密度为1012或更小。然而,当沉积速率超出0.5nm/秒至2.0nm/秒的范围时,本征非晶硅层111和112内部的缺陷密度大幅增大至1012或更大。
当沉积速率为0.5nm/秒或更小时,本征非晶硅层111和112内部的缺陷密度增大至1012或更大的原因在于:由于外延生长导致本征非晶硅层111和112内部的硅晶体增加。
另外,当沉积速率为2.0nm/秒或更大时本征非晶硅层111和112内部的缺陷密度增大至1012或更大的原因在于:本征非晶硅层111和112中所包含的氢的量不够,使缺陷增加。
结果,本发明的实施方式将本征非晶硅层沉积操作S1中的本征非晶硅层111和112的沉积速率限制在0.5nm/秒至2.0nm/秒。
另外,本征非晶硅层111和112的沉积速率可取决于沉积装置的功率密度和在本征非晶硅层沉积操作S1中提供到沉积装置内部的沉积气体的稀释比例。以下,将对此进行详细描述。
图6例示了用于说明在图3的制造方法中,当在半导体基板的表面上沉积本征非晶硅时沉积装置的功率密度与沉积速率之间的关系的实验示例。
如图6所示,本发明的实施方式可将用于沉积本征非晶硅层111和112的沉积装置的功率密度限制在60mW/cm2至150mW/cm2,使得本征非晶硅层111和112的沉积速率为0.5nm/秒至2.0nm/秒。
更具体地,如图6所示,当用于沉积本征非晶硅层111和112的沉积装置的功率密度是60mW/cm2或更小时,本征非晶硅层111和112的沉积速率可减小至0.5nm/秒或更小。另外,当用于沉积本征非晶硅层111和112的沉积装置的功率密度是150mW/cm2或更大时,本征非晶硅层111和112的沉积速率可增大至2.0nm/秒或更大。
图7例示了用于说明在图3的制造方法中,当在半导体基板的表面上沉积本征非晶硅时的氢气(H2)的量(sccm)与硅烷(SiH4)气体的量(sccm)的稀释比例和沉积速率之间的关系的实验示例。
如图7所示,本发明的实施方式可将用于沉积本征非晶硅层111和112的氢气(H2)的量(sccm)与硅烷(SiH4)气体的量(sccm)的稀释比例(H2/SiH4)减小至1:1至1:100,使得本征非晶硅层111和112的沉积速率为0.5nm/秒至2.0nm/秒。
如图7所示,将氢气(H2)的量(sccm)与硅烷(SiH4)气体的量(sccm)的稀释比例(H2/SiH4)限制为1:100或更小的原因在于:当稀释比例(H2/SiH4)超过1:100时,本征非晶硅层111和112的沉积速率减小至0.5nm/秒或更小。
如上所述,本发明的实施方式可通过适当地控制在半导体基板110的表面上沉积本征非晶硅层111和112的操作的工艺条件来防止本征非晶硅层111和112的外延生长。另外,本发明的实施方式可充分地确保本征非晶硅层111和112中包含的氢的量,并且将本征非晶硅层111和112的缺陷减少至预定水平或更少,由此进一步提高太阳能电池的开路电压Voc。
到目前为止,描述了通过将第一本征非晶硅层111和第二本征非晶硅层112的沉积速率限制在0.5nm/秒至2.0nm/秒而获得的效果。
第一本征非晶硅层111和第二本征非晶硅层112的沉积速率可在以上范围内彼此不同。以下,对此进行详细描述。
图8例示了用于说明通过有差异地设置第一本征非晶硅层和第二本征非晶硅层的沉积速率而获得的效果的现有技术的能带图的示例。
在根据本发明的实施方式的太阳能电池中,第一本征非晶硅层111可以形成在半导体基板110的第一表面上,并且第二本征非晶硅层112可以形成在半导体基板110的第二表面上。
当第一导电区域120和半导体基板110与插置于其间的第一本征非晶硅层111形成pn结时,位于半导体基板110的其上沉积有形成p-n结的第一导电区域120的第一表面上的第一本征非晶硅层111的沉积速率可与第二本征非晶硅层112的沉积速率不同。
更具体地,第一本征非晶硅层111的沉积速率可大于第二本征非晶硅层112的沉积速率。
当如上所述第一本征非晶硅层111的沉积速率大于第二本征非晶硅层112的沉积速率时,在第一本征非晶硅层111与半导体基板110之间形成的带隙尖峰BS的幅值可减小。
更具体地,例如,当在n型晶体硅基板(n型C-Si)上沉积本征非晶硅层和包含杂质的非晶硅层时,可形成图8中所示的能带图。
带隙尖峰BS的幅值可在其上设置有p+型非晶硅层(p+-a-Si:H)的本征非晶硅层(i-a-Si:H)与n型单晶硅基板(n型C-Si)之间的结表面处形成的价带Et处大幅增大。
带隙尖峰BS会干扰载流子(空穴或电子)的流动,并且可成为降低太阳能电池效率的因素。
然而,本发明的实施方式可通过相对地增大位于半导体基板110的其上沉积有形成p-n结的第一导电区域120的第一表面上的第一本征非晶硅层111的沉积速率来减小形成在第一本征非晶硅层111与半导体基板110之间的带隙尖峰BS的幅值,由此进一步提高太阳能电池的效率。
尽管已经参照本公开的多个示例性实施方式描述了实施方式,但是应该理解的是,本领域技术人员能够设计出将落入本公开的原理的范围内的众多其它修改和实施方式。更具体地,可在本公开、附图和所附的权利要求的范围内对主题组合布置的组成部分和/或布置进行各种变型和修改。除了对这些组成部分和/或布置的变型和修改之外,对于本领域技术人员而言,替代使用也将是显而易见的。
相关申请的交叉引用
本申请要求于2017年1月17日提交的韩国专利申请No.10-2017-0008116的优先权和权益,该韩国专利申请的内容通过引用全部合并于此。

Claims (5)

1.一种制造太阳能电池的方法,该方法包括以下步骤:
在具有第一导电类型的半导体基板的第一表面上形成第一本征非晶硅层并且在所述半导体基板的与所述第一表面相反的第二表面上形成第二本征非晶硅层;
通过在所述第一本征非晶硅层上沉积包含第二导电类型杂质的非晶硅层来形成第一导电区域并且通过在所述第二本征非晶硅层上沉积包含第一导电类型杂质的非晶硅层来形成第二导电区域,其中,所述第一导电区域和所述半导体基板形成p-n结且所述第一本征非晶硅层插置在所述第一导电区域和所述半导体基板之间;以及
形成与所述第一导电区域电连接的第一电极和与所述第二导电区域电连接的第二电极,
其中,所述第一本征非晶硅层和所述第二本征非晶硅层是以约0.5nm/秒至约2.0nm/秒的沉积速率进行沉积的,并且
其中,所述第一本征非晶硅层的沉积速率大于所述第二本征非晶硅层的沉积速率。
2.根据权利要求1所述的方法,其中,用于沉积所述第一本征非晶硅层和所述第二本征非晶硅层的沉积装置的功率密度为约60mW/cm2至约150mW/cm2
3.根据权利要求1所述的方法,其中,用于沉积所述第一本征非晶硅层和所述第二本征非晶硅层的氢气(H2)的量(sccm)与硅烷(SiH4)气体的量(sccm)的比例是约1:1至约1:100。
4.根据权利要求1所述的方法,其中,沉积所述第一本征非晶硅层和所述第二本征非晶硅层时的工艺温度为约100℃至约200℃。
5.根据权利要求1所述的方法,该方法还包括以下步骤:在所述第一导电区域上形成由透明导电氧化物形成的第一透明电极层并且在所述第二导电区域上形成由透明导电氧化物形成的第二透明电极层,
其中,在形成所述第一电极和所述第二电极时,所述第一电极与所述第一透明电极层连接并且所述第二电极与所述第二透明电极层连接。
CN201810039075.9A 2017-01-17 2018-01-16 制造太阳能电池的方法 Active CN108336170B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170008116A KR101879363B1 (ko) 2017-01-17 2017-01-17 태양 전지 제조 방법
KR10-2017-0008116 2017-01-17

Publications (2)

Publication Number Publication Date
CN108336170A CN108336170A (zh) 2018-07-27
CN108336170B true CN108336170B (zh) 2021-08-27

Family

ID=60953773

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810039075.9A Active CN108336170B (zh) 2017-01-17 2018-01-16 制造太阳能电池的方法

Country Status (5)

Country Link
US (1) US10593558B2 (zh)
EP (1) EP3349257B1 (zh)
JP (1) JP6567705B2 (zh)
KR (1) KR101879363B1 (zh)
CN (1) CN108336170B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111739986A (zh) * 2020-06-16 2020-10-02 江苏爱康能源研究院有限公司 一种提高高效晶硅异质结太阳能电池短路电流的方法
CN112531052B (zh) * 2020-12-28 2022-03-22 苏州腾晖光伏技术有限公司 异质结电池结构及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101542745A (zh) * 2007-07-24 2009-09-23 应用材料股份有限公司 多接面太阳能电池及其形成方法与设备
CN103915523A (zh) * 2014-04-21 2014-07-09 南开大学 一种含复合发射层硅异质结太阳电池的制备方法
WO2016111339A1 (ja) * 2015-01-07 2016-07-14 株式会社カネカ 太陽電池およびその製造方法、ならびに太陽電池モジュール

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6468885B1 (en) * 1996-09-26 2002-10-22 Midwest Research Institute Deposition of device quality, low hydrogen content, hydrogenated amorphous silicon at high deposition rates
JP3754815B2 (ja) 1997-02-19 2006-03-15 キヤノン株式会社 光起電力素子、光電変換素子、光起電力素子の製造方法及び光電変換素子の製造方法
JP2000307134A (ja) 1999-04-20 2000-11-02 Canon Inc 光起電力素子及びその製造方法
JP2003158078A (ja) * 2001-11-20 2003-05-30 Mitsubishi Heavy Ind Ltd シリコン半導体の形成方法
JP3960792B2 (ja) 2001-12-21 2007-08-15 シャープ株式会社 プラズマcvd装置、非晶質シリコン系薄膜の製造方法
JP2004165394A (ja) 2002-11-13 2004-06-10 Canon Inc 積層型光起電力素子
JP2004247607A (ja) 2003-02-14 2004-09-02 Fuji Electric Holdings Co Ltd 非晶質シリコン薄膜の製造方法
JP4171428B2 (ja) 2003-03-20 2008-10-22 三洋電機株式会社 光起電力装置
JP4780930B2 (ja) 2003-05-13 2011-09-28 京セラ株式会社 光電変換装置の製造方法
JP4222991B2 (ja) 2004-01-13 2009-02-12 三洋電機株式会社 光起電力装置
EP1555695B1 (en) 2004-01-13 2011-05-04 Sanyo Electric Co., Ltd. Photovoltaic device
EP1643564B1 (en) * 2004-09-29 2019-01-16 Panasonic Intellectual Property Management Co., Ltd. Photovoltaic device
US8203071B2 (en) 2007-01-18 2012-06-19 Applied Materials, Inc. Multi-junction solar cells and methods and apparatuses for forming the same
US20090104733A1 (en) 2007-10-22 2009-04-23 Yong Kee Chae Microcrystalline silicon deposition for thin film solar applications
FR2930680B1 (fr) 2008-04-23 2010-08-27 Commissariat Energie Atomique Procede de fabrication d'une cellule photovoltaique a base de silicium en couches minces.
KR20100053050A (ko) 2008-11-12 2010-05-20 주식회사 엔피홀딩스 태양전지 제조방법
JP5706670B2 (ja) * 2009-11-24 2015-04-22 株式会社半導体エネルギー研究所 Soi基板の作製方法
US8691613B2 (en) * 2010-10-01 2014-04-08 Kaneka Corporation Method for manufacturing photoelectric conversion device
DE102011052480A1 (de) 2011-08-08 2013-02-14 Roth & Rau Ag Solarzelle und Verfahren zur Herstellung einer Solarzelle
TW201324818A (zh) 2011-10-21 2013-06-16 Applied Materials Inc 製造矽異質接面太陽能電池之方法與設備
JP5863391B2 (ja) 2011-10-28 2016-02-16 株式会社カネカ 結晶シリコン系太陽電池の製造方法
JP2014103259A (ja) 2012-11-20 2014-06-05 Mitsubishi Electric Corp 太陽電池、太陽電池モジュールおよびその製造方法
US20140217408A1 (en) * 2013-02-06 2014-08-07 International Business Machines Corporaton Buffer layer for high performing and low light degraded solar cells
AU2014239493A1 (en) 2013-03-19 2015-10-29 Choshu Industry Co., Ltd. Photovoltaic element and manufacturing method therefor
CN109599450A (zh) * 2013-04-03 2019-04-09 Lg电子株式会社 太阳能电池
DE112014004980T5 (de) * 2013-11-01 2016-07-21 Panasonic Intellectual Property Management Co., Ltd. Solarzelle
US10333012B2 (en) * 2015-03-24 2019-06-25 Kaneka Corporation Method for manufacturing crystalline silicon substrate for solar cell, method for manufacturing crystalline silicon solar cell, and method for manufacturing crystalline silicon solar cell module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101542745A (zh) * 2007-07-24 2009-09-23 应用材料股份有限公司 多接面太阳能电池及其形成方法与设备
CN103915523A (zh) * 2014-04-21 2014-07-09 南开大学 一种含复合发射层硅异质结太阳电池的制备方法
WO2016111339A1 (ja) * 2015-01-07 2016-07-14 株式会社カネカ 太陽電池およびその製造方法、ならびに太陽電池モジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
The effect of h2 treatment on hetrojunction with intrinsic thin layer(HIT) silar cell performance using 40,68MHz VHF-PECVD system;MAN-CHI HUANG ET AL;《PHOTOVOLTAIC SPECIALISYS CONFERENCE(PVSC)》;20110619;第37卷(第19期);第3001页,附图1 *

Also Published As

Publication number Publication date
JP6567705B2 (ja) 2019-08-28
EP3349257A1 (en) 2018-07-18
US20180204737A1 (en) 2018-07-19
EP3349257B1 (en) 2020-10-07
CN108336170A (zh) 2018-07-27
JP2018117124A (ja) 2018-07-26
US10593558B2 (en) 2020-03-17
KR101879363B1 (ko) 2018-08-16

Similar Documents

Publication Publication Date Title
US10714654B2 (en) Solar cell and method for manufacturing the same
KR100850641B1 (ko) 고효율 결정질 실리콘 태양전지 및 그 제조방법
US20100186802A1 (en) Hit solar cell structure
US20190355860A1 (en) Solar cell
US10141457B2 (en) Solar cell
EP3029739B1 (en) Solar cell and method for manufacturing the same
EP2386124B1 (en) Solar cell
US20190334041A1 (en) Solar cell and method for manufacturing the same
KR101886818B1 (ko) 이종 접합 실리콘 태양 전지의 제조 방법
WO2014050304A1 (ja) 光電変換素子とその製造方法
KR20100098008A (ko) 태양전지
US9887314B2 (en) Method of manufacturing solar cell
JP4169671B2 (ja) 光起電力素子の製造方法
CN108336170B (zh) 制造太阳能电池的方法
KR20200125067A (ko) 이종 접합 태양 전지 제조 방법
CN114361281A (zh) 双面异质结太阳能电池及光伏组件
US20120048370A1 (en) Solar cell
KR101673241B1 (ko) 플라즈마 화학증착법을 통해 형성한 실리콘 박막 터널 접합층을 이용한 박막 실리콘과 벌크형 결정질 실리콘의 적층형 태양전지의 제조 방법 및 이에 따른 태양 전지
US20110272015A1 (en) Thin film solar cell and method for manufacturing the same
EP2834856B1 (en) Thin film solar cell
TWI433336B (zh) 太陽能電池及其製造方法
KR20200085188A (ko) 이종 접합 태양 전지 및 그 제조 방법
US20130056052A1 (en) Thin film solar cell
KR20120030295A (ko) 태양전지의 제조방법
JP2013008750A (ja) 薄膜シリコン系太陽電池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20180727

Assignee: Hanhua thinksin Co.,Ltd.

Assignor: LG ELECTRONICS Inc.

Contract record no.: X2022990000645

Denomination of invention: Method of making solar cells

Granted publication date: 20210827

License type: Common License

Record date: 20220914

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20221025

Address after: No. 3, Yingbin Avenue, Shangrao Economic and Technological Development Zone, Jiangxi Province

Patentee after: Shangrao Jingke Green Energy Technology Development Co.,Ltd.

Address before: Seoul, South Kerean

Patentee before: LG ELECTRONICS Inc.

CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: No. 3, Yingbin Avenue, Shangrao Economic and Technological Development Zone, Jiangxi Province 334100

Patentee after: Shangrao Xinyuan Yuedong Technology Development Co.,Ltd.

Address before: No. 3, Yingbin Avenue, Shangrao Economic and Technological Development Zone, Jiangxi Province 334100

Patentee before: Shangrao Jingke Green Energy Technology Development Co.,Ltd.