CN108329626B - 一种复合微波介质材料及其制造方法 - Google Patents

一种复合微波介质材料及其制造方法 Download PDF

Info

Publication number
CN108329626B
CN108329626B CN201710042377.7A CN201710042377A CN108329626B CN 108329626 B CN108329626 B CN 108329626B CN 201710042377 A CN201710042377 A CN 201710042377A CN 108329626 B CN108329626 B CN 108329626B
Authority
CN
China
Prior art keywords
solid
microwave dielectric
dielectric material
glass fiber
ceramic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710042377.7A
Other languages
English (en)
Other versions
CN108329626A (zh
Inventor
余若冰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Tieno Technology Co ltd
Original Assignee
Jiangxi Tieno Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Tieno Technology Co ltd filed Critical Jiangxi Tieno Technology Co ltd
Priority to CN201710042377.7A priority Critical patent/CN108329626B/zh
Publication of CN108329626A publication Critical patent/CN108329626A/zh
Application granted granted Critical
Publication of CN108329626B publication Critical patent/CN108329626B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/2053Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the additives only being premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2427/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本发明公开了一种复合微波介质材料,所述复合微波介质材料包括以下组分及重量份:氟聚合物30~70重量份;陶瓷粉30~70重量份;玻璃纤维粉0~5重量份。本申请中提供一种复合微波介质材料及其制备方法,其能够获得无开裂裂纹现象出现的板材,成品合格率高;并且复合微波介质材料的损耗因子小于0.002。

Description

一种复合微波介质材料及其制造方法
技术领域
本发明涉及印刷电路板材料领域,具体涉及一种复合微波介质材料及其制造方法。
背景技术
随着现代信息技术的革命,数字电路逐渐步入信息处理高速化、信号传输高频化阶段,为处理不断增加的数据,电子设备的频率变得越来越高。为此,在满足传统设计及制造需求的基础上,对微波介质电路基板材料的性能提出了更新的要求。鉴于应用于印制电路板上的信号必须采用高频,因此,如何减少在电路板上的传输损耗和信号延时,成为高频电路设计和制作的难题。低介电损耗的氟聚合物,如聚四氟乙烯(PTFE)、四氟乙烯-全氟烷氧基乙烯基醚共聚物(PFA)、及全氟乙烯丙烯共聚物(FEP),具有优良的介电性能、耐化学腐蚀性能及热性能,吸水率小,使用范围广,即使在高频率下其介电常数和介电损耗因子变化也很小,因此低介电损耗的氟聚合物成为了高频线路板基板树脂的首选。目前,国内外通用的覆铜板制备方法是树脂浓缩分散液浸渍增强材料,然后在一定的温度下压合制得。由于这些氟聚合物树脂的介电常数很小,为了得到高介电常数的微波介质电路基板材料,往往通过在这类树脂体系中添加陶瓷粉材料来实现。
低介电损耗的氟聚合物与陶瓷粉的混合,目前主要有两种方式,即干法混合与湿法混合。所谓干法混合,就是将低介电损耗的氟聚合物粉末与陶瓷粉直接搅拌混合,然后在压坯烧结。这种方法工艺流程简单,但是由于是两种粉末直接混合,很难做到混合均匀,陶瓷粉的局部团聚现象将使得复合材料的介电损耗因子变大。而湿法混合,就是利用低介电损耗的氟聚合物乳液与陶瓷粉混合制得胶乳,然后再加入破乳剂将固体物沉降絮凝出来,烘干水分后得到粉末材料,再压坯烧结。理论上用湿法混合可以得到混合均匀的效果。由于陶瓷粉的粒度往往很小,达到亚微米甚至纳米级别,因此,在乳液中混合时最好采用球磨或砂磨的方法才能尽可能减少团聚现象。但是,由于低介电损耗的氟聚合物容易纤维化的特性,其乳液在球磨或砂磨加工时,很容易在陶瓷粉还没有分散均匀的情况下过早的树脂纤维化而絮凝破乳,无法继续混合加工。
目前此领域常用的低介电损耗的氟聚合物通常是聚四氟乙烯(PTFE)树脂,PTFE树脂在大量填充陶瓷粉填料后,其可加工性能会降低,尤其是在烧结成型时,很容易产生裂纹缺陷,造成产品合格率很低。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种复合微波介质材料,用于解决现有技术中存在的高频信号传输中高频线路板基板。
为了实现上述目的或者其他目的,本发明是通过以下技术方案实现的。
本发明公开了一种复合微波介质材料,所述复合微波介质材料包括以下组分及重量份:
氟聚合物 30~70重量份
陶瓷粉 30~70重量份
玻璃纤维粉 0~5重量份。
优选地,玻璃纤维粉为 1~5重量份。
优选地,所述陶瓷粉为 30~40重量份。
优选地,所述氟聚合物选自聚四氟乙烯、四氟乙烯-全氟烷氧基乙烯基醚共聚物、全氟乙烯丙烯共聚物中的一种和多种。聚四氟乙烯简写为PTFE。四氟乙烯-全氟烷氧基乙烯基醚共聚物简写为PFA。全氟乙烯丙烯共聚物简写为FEP。
更优选地,所述氟聚合物为聚四氟乙烯与选自四氟乙烯-全氟烷氧基乙烯基醚共聚物和全氟乙烯丙烯共聚物中的一种或两种组合形成的混合物。所述四氟乙烯-全氟烷氧基乙烯基醚共聚物和全氟乙烯丙烯共聚物起到抗开裂的作用,与聚四氟乙烯混合使得氟聚合物具有低介电损耗。更优选地,聚四氟乙烯与选自四氟乙烯-全氟烷氧基乙烯基醚共聚物和全氟乙烯丙烯共聚物中的一种或两种的质量比为(3~12):1。更优选地,聚四氟乙烯与选自四氟乙烯-全氟烷氧基乙烯基醚共聚物和全氟乙烯丙烯共聚物中的一种或两种的质量比为(5~11):1。
陶瓷粉作为填料可以选择现有技术符合要求的陶瓷粉;无机陶瓷粉与有机氟聚合物在混合过程中会存在混合不均匀的问题。优选地,所述陶瓷粉的粒径中度值为0.1~20μm,最大粒径不超过100μm。优选地,所述陶瓷粉选自氧化铝基和硅酸盐基的微波介质陶瓷、钛酸钡基的微波介质陶瓷和氧化钛基的微波介质陶瓷一种或多种。
优选地,所述玻璃纤维粉为无碱玻璃纤维粉,直径为5~20μm,长度不超过100μm。
本发明还公开了一种制备复合微波介质材料的方法,所述方法包括如下步骤:
1)将陶瓷粉、玻璃纤维粉和分散助剂加入水中,利用球磨或砂磨制备悬浮液;
2)将上述悬浮液与氟聚合物乳液混合获得胶液;
3)将胶液加入沉降剂进行破乳,将固体物滤出烘干去除水分及助剂获得固体物;
4)将固体物加入润滑剂浸泡至润滑剂完全浸润到固体物中后,热压制成板材;
5)烧结。
优选地,步骤2)中含氟聚合物乳液中含氟聚合物的含量与步骤1)中陶瓷粉的重量份为(30~70)重量份:(30~70)重量份。
优选地,步骤1)中以所述陶瓷粉、玻璃纤维粉、分散助剂和水的总质量为基准计,所述水的质量百分含量为30~60%。优选地,步骤1)中以所述陶瓷粉、玻璃纤维粉、分散助剂和水的总质量为基准计,所述分散助剂的质量百分含量为1~10%。更优选地,步骤1)中以所述陶瓷粉、玻璃纤维粉、分散助剂和水的总质量为基准计,所述分散助剂的质量百分含量为1~4%。
优选地,所述分散助剂为润湿分散剂。更优选地,所述润湿分散剂的型号为
Figure BDA0001215327020000031
Dispersv755。
优选地,步骤3)中所述沉降剂为易挥发有机溶剂。所述有机溶剂为酮、醚和醇。例如为现有技术中常用的乙醇、丙酮和乙醚。
优选地,所述润滑剂为溶剂油或多元醇。例如一缩二丙二醇、石油醚。
优选地,步骤5)中,以10℃/min升温速率升温到380℃,烧结至少60分钟。
本发明还公开了如上述所述复合微波介质材料在高频电路上微波介质电路基板材料的用途。
本发明的有益效果:
1)配方体系中含有PFA和/或FEP,可以有效的防止PTFE在烧结过程中的开裂现象,提高成品合格率;
2)先将微波介质陶瓷粉末填料分散在水中制备悬浮液再与具有低介电损耗的氟聚合物分散乳液混合均匀,可以有效的消除陶瓷粉的团聚现象,能够降低复合微波介质材料的介质损耗角正切。
3)本发明中采用玻璃纤维粉与氟聚合物和陶瓷粉混合形成的复合微波介质材料在制备过程中更不容易产生裂纹和裂痕,产品合格率高。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
在进一步描述本发明具体实施方式之前,应理解,本发明的保护范围不局限于下述特定的具体实施方案;还应当理解,本发明实施例中使用的术语是为了描述特定的具体实施方案,而不是为了限制本发明的保护范围。下列实施例中未注明具体条件的试验方法,通常按照常规条件,或者按照各制造商所建议的条件。
当实施例给出数值范围时,应理解,除非本发明另有说明,每个数值范围的两个端点以及两个端点之间任何一个数值均可选用。除非另外定义,本发明中使用的所有技术和科学术语与本技术领域技术人员通常理解的意义相同。除实施例中使用的具体方法、设备、材料外,根据本技术领域的技术人员对现有技术的掌握及本发明的记载,还可以使用与本发明实施例中所述的方法、设备、材料相似或等同的现有技术的任何方法、设备和材料来实现本发明。
实施例1
称取微波介质陶瓷粉填料330克(BaO-Sm2O3-TiO2体系,D50粒径2um,介电常数80),加入660ml纯净水中,再加入润湿分散剂(TEGO 755)110克,在砂磨机中快速搅拌30-60分钟,转速为900转/min,直至形成稳定的浆状悬浮液,然后滤出砂磨球留下色浆备用。
称取PFE乳液200克(大金,FEP固含量50%),PTFE乳液1000克(大金D210,PTFE固含量60%),加入上述制得的色浆1000克中,利用搅拌机进行混合1小时,转速1500转,得到混合均匀的胶液。
在上述胶液中加入200ml丙酮进行缓慢搅拌,可以看到有泥状固体物沉降出来。将固体物滤出,放入真空烘箱,于110℃烘烤去除水分及助剂,得到粉末状固体物。
将上述烘干后的固体物中,加入150mll一缩二丙二醇浸泡24小时,经揉压得到面团样固体物,然后利用双辊机压延得到厚度0.26mm的板材。然后放在高温烘箱中,以10℃/min升温速率升温到380℃,保温60分钟,然后以15℃/min速率降温至60℃以下取出。其外观光滑无裂缝,在10GHz测试条件下,损耗因子达到0.002以下。
对比例1中氟聚合物全部为聚四氟乙烯,其他技术特征均同于实施例1,对比文件1中产品制备的微波介质材料板材外观光滑但是存在裂纹。
实施例2
称取微波介质陶瓷粉填料770克(BaO-Sm2O3-TiO2体系,D50粒径2um,介电常数80),加入350ml纯净水中,再加入润湿分散剂(TEGO 755)38.5ml,在砂磨机中快速搅拌30-60分钟,转速为900转/min,直至形成稳定的浆状悬浮液,然后滤出砂磨球留下色浆备用。
称取FEP乳液100克(大金,FEP固含量50%),PTFE乳液417克(大金D210,PTFE固含量60%),加入上述制得的色浆1000克中,利用搅拌机进行混合1小时,转速1500转,得到混合均匀的胶液。
在上述胶液中加入200ml丙酮进行缓慢搅拌,可以看到有泥状固体物沉降出来。将固体物滤出,放入真空烘箱,于110℃烘烤去除水分及助剂,得到粉末状固体物。
将上述烘干后的固体物中,加入150ml一缩二丙二醇浸泡24小时,经揉压得到面团样固体物,然后利用双辊机压延得到厚度0.26mm的板材。然后放在高温烘箱中,以10℃/min升温速率升温到380℃,保温60分钟,然后以15℃/min速率降温至60℃以下取出。其外观光滑无裂缝,在10GHz测试条件下,损耗因子达到0.002以下。
对比例2中氟聚合物全部为聚四氟乙烯,其他技术特征均同于实施例2,对比文件2中产品制备的微波介质材料板材外观光滑但是存在裂纹。
实施例3
称取微波介质陶瓷粉填料591克(BaO-Sm2O3-TiO2体系,D50粒径2um,介电常数80),无碱玻璃纤维粉90克,加入400ml纯净水中,再加入表面活性剂(TEGO 755)10ml,在砂磨机中快速搅拌30-60分钟,转速为900转/min,直至形成稳定的浆状悬浮液,然后滤出砂磨球留下色浆备用。
称取FEP乳液100克(大金,FEP固含量50%),PTFE乳液917克(大金D210,PTFE固含量60%),加入上述制得的色浆580克中,利用搅拌机进行混合1小时,转速1500转,得到混合均匀的胶液。
在上述胶液中加入200ml丙酮进行缓慢搅拌,可以看到有泥状固体物沉降出来。将固体物滤出,放入真空烘箱,于110℃烘烤去除水分及助剂,得到粉末状固体物。
将上述烘干后的固体物中,加入150ml一缩二丙二醇浸泡24小时,经揉压得到面团样固体物,然后利用双辊机压延得到厚度0.26mm的板材。然后放在高温烘箱中,以10℃/min升温速率升温到380℃,保温60分钟,然后以15℃/min速率降温至60℃以下取出。其外观光滑无裂缝,在10GHz测试条件下,损耗因子达到0.002以下。
对比例3中氟聚合物全部为聚四氟乙烯,且没有加入玻璃纤维粉,其他技术特征均同于实施例3,对比文件1中产品制备的微波介质材料板材存在裂痕。
实施例4
称取微波介质陶瓷粉填料800克(BaO-Sm2O3-TiO2体系,D50粒径2um,介电常数80),无碱玻璃纤维粉80克,加入700ml纯净水中,再加入润湿分散剂(TEGO 755)50克,在砂磨机中快速搅拌30~60分钟,转速为900转/min,直至形成稳定的浆状悬浮液,然后滤出砂磨球留下色浆备用。
称取PFE乳液100克(大金,FEP固含量50%),FEP乳液100克(大金,FEP固含量50%)和PTFE乳液1000克(大金D210,PTFE固含量60%),加入上述制得的色浆中,利用搅拌机进行混合1小时,转速1500转,得到混合均匀的胶液。
在上述胶液中加入200ml乙醚进行缓慢搅拌,可以看到有泥状固体物沉降出来。将固体物滤出,放入真空烘箱,于220℃烘烤去除水分及助剂,得到粉末状固体物。
将上述烘干后的固体物中,加入250ml石油醚浸泡24小时,经揉压得到面团样固体物,然后利用双辊机压延得到厚度0.26mm的板材。然后放在高温烘箱中,以10℃/min升温速率升温到380℃,保温60分钟,然后以15℃/min速率降温至60℃以下取出。其外观光滑无裂缝,在10GHz测试条件下,损耗因子达到0.002以下。
对比例4中氟聚合物全部为聚四氟乙烯,且没有加入玻璃纤维粉,其他技术特征均同于实施例4,对比文件1中产品制备的微波介质材料板材存在裂痕。
本发明实施例1~4中所获得的复合微波介质材料可通过上下各压覆一张金属箔进行高温压合,其适于应用于高频电路上。
以上所述,仅为本发明的较佳实施例,并非对本发明任何形式上和实质上的限制,应当指出,对于本技术领域的普通技术人员,在不脱离本发明方法的前提下,还将可以做出若干改进和补充,这些改进和补充也应视为本发明的保护范围。凡熟悉本专业的技术人员,在不脱离本发明的精神和范围的情况下,当可利用以上所揭示的技术内容而做出的些许更动、修饰与演变的等同变化,均为本发明的等效实施例;同时,凡依据本发明的实质技术对上述实施例所作的任何等同变化的更动、修饰与演变,均仍属于本发明的技术方案的范围内。

Claims (9)

1.一种复合微波介质材料,其特征在于,所述复合微波介质材料包括以下组分及重量份:
氟聚合物 30~70重量份
陶瓷粉 30~70重量份
玻璃纤维粉 1~5重量份;
所述氟聚合物为聚四氟乙烯与选自四氟乙烯-全氟烷氧基乙烯基醚共聚物和全氟乙烯丙烯共聚物中的一种或两种组合形成的混合物;
所述的复合微波介质材料采用包括如下的制备方法制备获得:
1)将陶瓷粉、玻璃纤维粉和分散助剂加入水中,利用球磨或砂磨制备悬浮液;
2)将上述悬浮液与氟聚合物乳液混合获得胶液;
3)将胶液加入沉降剂进行破乳,将固体物滤出烘干去除水分及分散助剂获得固体物;
4)将固体物加入润滑剂浸泡至润滑剂完全浸润到固体物中后,热压制成板材;
5)烘干去除润滑剂,然后高温烧结;
所述分散助剂为润湿分散剂。
2.如权利要求1所述复合微波介质材料,其特征在于,所述陶瓷粉的粒径中度值为0.1~20μm,最大粒径不超过100μm。
3.如权利要求1所述复合微波介质材料,其特征在于,所述玻璃纤维粉为无碱玻璃纤维粉,直径为5~20μm,长度不超过100μm。
4.一种制备如权利要求1~3任一项所述复合微波介质材料的方法,所述方法包括如下步骤:
1)将陶瓷粉、玻璃纤维粉和分散助剂加入水中,利用球磨或砂磨制备悬浮液;
2)将上述悬浮液与氟聚合物乳液混合获得胶液;
3)将胶液加入沉降剂进行破乳,将固体物滤出烘干去除水分及分散助剂获得固体物;
4)将固体物加入润滑剂浸泡至润滑剂完全浸润到固体物中后,热压制成板材;
5)烘干去除润滑剂,然后高温烧结。
5.如权利要求4所述方法,其特征在于,步骤1)中以所述陶瓷粉、玻璃纤维粉、分散助剂和水的总质量为基准计,所述水的质量百分含量为30~60%。
6.如权利要求4所述方法,其特征在于,步骤1)中以所述陶瓷粉、玻璃纤维粉、分散助剂和水的总质量为基准计,所述分散助剂的质量百分含量为1~10%。
7.如权利要求4所述方法,其特征在于,步骤3)中所述沉降剂为易挥发有机溶剂。
8.如权利要求4所述方法,其特征在于,所述润滑剂为溶剂油或多元醇。
9.如权利要求1~3任一项所述复合微波介质材料在高频电路上微波介质电路基板材料的用途。
CN201710042377.7A 2017-01-20 2017-01-20 一种复合微波介质材料及其制造方法 Expired - Fee Related CN108329626B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710042377.7A CN108329626B (zh) 2017-01-20 2017-01-20 一种复合微波介质材料及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710042377.7A CN108329626B (zh) 2017-01-20 2017-01-20 一种复合微波介质材料及其制造方法

Publications (2)

Publication Number Publication Date
CN108329626A CN108329626A (zh) 2018-07-27
CN108329626B true CN108329626B (zh) 2020-10-27

Family

ID=62922810

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710042377.7A Expired - Fee Related CN108329626B (zh) 2017-01-20 2017-01-20 一种复合微波介质材料及其制造方法

Country Status (1)

Country Link
CN (1) CN108329626B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110746138A (zh) * 2019-11-01 2020-02-04 中国电子科技集团公司第四十六研究所 一种采用极端顶点法针对均质低介微波基板配方设计方法
CN112143145B (zh) * 2020-09-28 2022-04-26 深圳市德诚旺科技有限公司 一种低介电损耗型聚四氟乙烯微波板材及其制备方法
CN112745608B (zh) * 2020-12-29 2023-07-28 施柏德(厦门)科技有限公司 一种均匀性优异的ptfe复合材料及其制作工艺和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104496268A (zh) * 2014-12-16 2015-04-08 中国电子科技集团公司第四十六研究所 一种高频高介微波复合介质基板的制备方法
CN106113802A (zh) * 2016-08-16 2016-11-16 中国电子科技集团公司第三十八研究所 一种降低z轴热膨胀系数的微波覆铜板的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104496268A (zh) * 2014-12-16 2015-04-08 中国电子科技集团公司第四十六研究所 一种高频高介微波复合介质基板的制备方法
CN106113802A (zh) * 2016-08-16 2016-11-16 中国电子科技集团公司第三十八研究所 一种降低z轴热膨胀系数的微波覆铜板的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陶瓷/PTFE复合介质基板新成型工艺的研究;黄达斐等;《电子元件与材料》;20140325;17-21 *

Also Published As

Publication number Publication date
CN108329626A (zh) 2018-07-27

Similar Documents

Publication Publication Date Title
CN106604536B (zh) 聚四氟乙烯复合微波介质材料及其制备方法
JP7212052B2 (ja) Ltcc基板およびその製造方法
CN108329626B (zh) 一种复合微波介质材料及其制造方法
CN106800733B (zh) 一种复合微波介质材料、用其制作的印刷电路板基材及其制造方法
CN109437663B (zh) 一种具有近零介电常数温度系数的聚四氟乙烯基陶瓷复合材料及其制备方法
CN110790568A (zh) 一种低介ltcc生瓷带及其制备方法和用途
CN110171963B (zh) 一种低温共烧陶瓷微波与毫米波介电粉末
CN111187478A (zh) 一种用于微波电路基板的复合材料、片材和微波电路基板及其制备方法
CN104193340B (zh) 流延成型法制备用于多层布线基板的AlN生瓷片的方法及制得的AlN生瓷片
CN110217998B (zh) 一种无铅可低温烧结的导电银浆及其制备方法与应用
CN104637571A (zh) 一种陶瓷电容器用银浆料及其制备方法
CN107746272B (zh) 微波介质陶瓷、聚四氟乙烯-陶瓷复合基板及制备方法
CN110734614A (zh) 一种用于高频覆铜板的ptfe基板材料及其制备方法
CN115626826B (zh) 一种具有独立微孔的低密耐磨炭石墨材料及其制备方法
CN113087507A (zh) 低介硅酸镁微波介质陶瓷材料及其制备方法
CN106893303A (zh) 一种高介电常数轻质介质基材及其制备方法
CN111470862A (zh) 陶瓷浆料、陶瓷流延薄膜的制备方法和片式多层陶瓷电容器
CN106747420A (zh) 一种x5r型多层陶瓷电容器用薄介质材料及其制备方法
CN111718549A (zh) 一种高频铜箔基板及其制备方法
CN109575482B (zh) 一种用于高频覆铜板的基板材料及其制备方法
CN105777100A (zh) 一种中温烧结高频介质陶瓷电容器材料
CN112812476B (zh) 一种聚四氟乙烯复合材料及其制备方法与应用
CN114736012A (zh) 具有超高q值的低介微波介质陶瓷及其ltcc材料
TWI766494B (zh) 低介電材料與其形成方法
JPS61146753A (ja) 回路基板用グリ−ンシ−トの製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20200831

Address after: No. 6 Helitai Road, Xinfeng County Industrial Park, Ganzhou City, Jiangxi Province, 341600

Applicant after: Jiangxi Tieno Technology Co.,Ltd.

Address before: 201806 Area B, No. 946 Huifu Road, Waigang Town, Jiading District, Shanghai

Applicant before: SHANGHAI ADEL TECHNOLOGY Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201027

CF01 Termination of patent right due to non-payment of annual fee