CN108325512B - 一种用于光催化反应的花苞状水滑石的制备方法 - Google Patents
一种用于光催化反应的花苞状水滑石的制备方法 Download PDFInfo
- Publication number
- CN108325512B CN108325512B CN201810156040.3A CN201810156040A CN108325512B CN 108325512 B CN108325512 B CN 108325512B CN 201810156040 A CN201810156040 A CN 201810156040A CN 108325512 B CN108325512 B CN 108325512B
- Authority
- CN
- China
- Prior art keywords
- salt solution
- mixed salt
- hydrotalcite
- preparation
- ldhs
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 28
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 title claims abstract description 25
- 229960001545 hydrotalcite Drugs 0.000 title claims abstract description 25
- 229910001701 hydrotalcite Inorganic materials 0.000 title claims abstract description 25
- 238000013032 photocatalytic reaction Methods 0.000 title claims abstract description 17
- 239000012266 salt solution Substances 0.000 claims abstract description 37
- 229920001661 Chitosan Polymers 0.000 claims abstract description 22
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000004202 carbamide Substances 0.000 claims abstract description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 18
- 238000001035 drying Methods 0.000 claims abstract description 16
- 150000002500 ions Chemical class 0.000 claims abstract description 13
- 238000010438 heat treatment Methods 0.000 claims abstract description 12
- 238000001914 filtration Methods 0.000 claims abstract description 6
- 238000005406 washing Methods 0.000 claims abstract description 6
- 229910021645 metal ion Inorganic materials 0.000 claims description 20
- 239000000243 solution Substances 0.000 claims description 17
- 229910052782 aluminium Inorganic materials 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 11
- 239000008367 deionised water Substances 0.000 claims description 10
- 229910021641 deionized water Inorganic materials 0.000 claims description 10
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 10
- 238000003756 stirring Methods 0.000 claims description 7
- 238000001291 vacuum drying Methods 0.000 claims description 5
- 229910003074 TiCl4 Inorganic materials 0.000 claims description 2
- 239000012153 distilled water Substances 0.000 claims description 2
- 230000008569 process Effects 0.000 claims description 2
- 230000001699 photocatalysis Effects 0.000 abstract description 18
- 239000000463 material Substances 0.000 abstract description 16
- 239000000047 product Substances 0.000 abstract description 16
- 238000010521 absorption reaction Methods 0.000 abstract description 10
- 239000013078 crystal Substances 0.000 abstract description 10
- 239000003795 chemical substances by application Substances 0.000 abstract description 7
- 230000009467 reduction Effects 0.000 abstract description 6
- 239000007795 chemical reaction product Substances 0.000 abstract description 5
- 238000005054 agglomeration Methods 0.000 abstract description 4
- 230000002776 aggregation Effects 0.000 abstract description 4
- 238000001027 hydrothermal synthesis Methods 0.000 abstract description 3
- 229910001416 lithium ion Inorganic materials 0.000 abstract 1
- 239000010936 titanium Substances 0.000 description 34
- 230000003197 catalytic effect Effects 0.000 description 8
- 238000007792 addition Methods 0.000 description 5
- 238000000975 co-precipitation Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium chloride Substances Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000007146 photocatalysis Methods 0.000 description 3
- 230000035484 reaction time Effects 0.000 description 3
- 238000005303 weighing Methods 0.000 description 3
- 238000000862 absorption spectrum Methods 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012716 precipitator Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000001338 self-assembly Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/02—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
- B01J23/04—Alkali metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/002—Compounds containing, besides titanium, two or more other elements, with the exception of oxygen or hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/50—Agglomerated particles
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/14—Pore volume
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/16—Pore diameter
- C01P2006/17—Pore diameter distribution
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Inorganic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Catalysts (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Cosmetics (AREA)
Abstract
本发明公开了一种用于光催化反应的花苞状水滑石的制备方法,属于无机光催化材料技术领域。该制备方法包括如下步骤:S1、制备Ti、Li、Al三种离子的混合盐溶液;S2、在步骤S1制备的混合盐溶液中加入壳聚糖,水浴加热,加入尿素,恒温加热12~24h,得到产物;S3、步骤S2得到的产物经过离心、洗涤、抽滤,干燥,得到花苞状水滑石。本发明的制备方法以壳聚糖为模板剂进行水热合成制备Ti/Li/Al‑LDHs水滑石,制得的水滑石无团聚现象,从而保证了每个有效晶面都能充分感光,增加了材料的紫外吸收性能以及光催化的效率,Ti/Li/Al‑LDHs进行光催化还原CO2的反应产物仅检测出CO。
Description
技术领域
本发明涉及无机光催化材料技术领域,具体涉及一种用于光催化反应的花苞状水滑石的制备方法。
背景技术
类水滑石(LDHs)因其独特的层状结构、物理化学性质及择形吸附催化性能而被普遍用于气体吸附、光催化等领域。随着社会高速发展,人们对石油、煤等化石能源消费快速增长,CO2的排放量急剧增加,地球的环境日益恶化。其中燃煤电厂烟气中的CO2是最主要的排放源,占全球总排放量的37.5%。CO2的减排以及转化技术成为关系人类命运的大事。
类水滑石是一类同时可以兼顾CO2的吸附剂以及CO2光催化转化催化剂的功能材料。该材料对CO2的吸附性能以及光催化活性与材料的晶型结构、孔隙分布、粒径大小,空间分布的有序性等都有关系。
水滑石的常规制备方法,如共沉淀法制备得到的类水滑石晶体结构一般为层片状结构,光催化效率低,并且采用传统的共沉淀法制备的Ti/Li/Al-LDHs晶体容易团聚结块,结构有序性差的问题。
发明内容
本发明的目的是为了克服现有技术中的问题,依据纳米粒子的空间限域合成理论、模板化学以及界面作用原理,采用以壳聚糖为导向剂,尿素为均匀沉淀剂、以水热合成的方法制备出Ti/Li/Al-LDHs,对晶体的生长和形貌实现了调控。本发明提供的一种用于光催化反应的花苞状水滑石的制备方法,制备出的材料有独特的花苞型自组装结构,具有良好的紫外-可见吸收性能及CO2光催化还原能力,且催化产物产量较高,催化选择性高。
本发明提供了一种用于光催化反应的花苞状水滑石的制备方法,包括以下步骤:S1、制备金属离子比例为1:3:2~4的Ti、Li、Al三种离子的混合盐溶液60~80ml;
S2、在步骤S1制备的混合盐溶液中加入0.08~0.3g壳聚糖,并在75~90℃下水浴加热,直至溶液澄清,然后加入6~12g尿素,置于100ml的压力容弹中,然后将压力容弹放在鼓风干燥箱内,设定鼓风干燥箱为90~100℃,恒温加热12~24h,得到产物;
S3、步骤S2得到的产物经过离心、洗涤、抽滤,在65~85℃真空干燥箱中干燥10~12h,得到所述用于光催化反应的花苞状水滑石。
较佳地,先用移液管吸取TiCl4置于烧杯中,缓慢滴加10-15ml去离子水,搅拌;然后分别称取LiCl和AlCl3加入TiCl4的烧杯中,缓慢加入去离子水50-60ml,搅拌至溶液透明且澄清,将溶液移入容量瓶中定容得到混合盐溶液,然后用移液管取容量瓶中的混合盐溶液60~80ml备用。
较佳地,步骤S3中产物离心分离10min之后,再用150ml蒸馏水充分洗涤,重复此过程三次。
本发明的制备方法针对目前CO2捕集利用率低的现状,制备一种光催化活性的固体类水滑石材料,实现CO2转化制备清洁燃料的目的。
本发明针对共沉淀法制备的类水滑石易团聚,结构有序性差的特点,采用尿素为沉淀剂制备Ti/Li/Al-LDHs,同时加入模板剂,制备出具有特殊形貌的晶体水滑石,并对它的紫外吸收性能进行了检测,优化出紫外吸收性能良好、孔隙分布均匀,具有较好光催化性能材料制备工艺;
壳聚糖分子中含有NH2基团和CH2-OH基团,对过渡金属元素有一定的络合作用。利用这一机理,本发明以壳聚糖为导向剂,通过壳聚糖与Ti4+的络合吸附作用,来控制Ti/Li/Al-LDHs晶体的生长趋势,很好的控制了材料的的形貌,进而对Ti/Li/Al-LDHs的紫外吸收性能进行了调控。
与现有技术中的制备方法相比,本发明的制备方法具有以下优点:
(1)本发明首次采用以壳聚糖为模板剂进行水热合成制备Ti/Li/Al-LDHs水滑石;
(2)本发明制备得到的水滑石,以六方形晶片为花瓣,在此基础上自组装,形成规则的、粒径均一的花苞状粒子,该粒子晶面结构完整,无团聚现象,从而保证了每个有效晶面都能充分感光,增加了材料的紫外吸收性能以及光催化的效率;
(3)共沉淀法制得的Ti/Li/Al-LDHs进行光催化还原CO2的反应产物有CO和CH4,而本发明制备得到的Ti/Li/Al-LDHs进行光催化还原CO2的反应产物仅检测出CO;
(4)本发明制得的花苞状Ti/Li/Al-LDHs光催化剂对CO2光催化转化为CO有较高选择性和催化活性。
附图说明
图1为本发明不同尿素添加量下Ti/Li/Al-LDHs样品的XRD分析图;
图2为本发明金属离子配比对Ti/Li/Al-LDHs孔隙结构及分布的影响图;
图3为不加壳聚糖制备的Ti/Li/Al-LDHs样品的SEM图;
图4为本发明壳聚糖加入量为0.16g时制备的Ti/Li/Al-LDHs样品的SEM图;
图5为本发明壳聚糖加入量为0.24g时制备的Ti/Li/Al-LDHs样品的SEM图;
图6为本发明不同金属离子配比下Ti/Li/Al-LDHs样品的紫外-可见吸收图谱;
图7为本发明制备的Ti/Li/Al-LDHs样品的光催化反应时间与CO生成量之间的关系图。
具体实施方式
下面对本发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
本发明提供的一种用于光催化反应的花苞状水滑石的制备方法,包括以下步骤:S1、制备金属离子比例为1:3:2的Ti、Li、Al三种离子的混合盐溶液80ml;
混合盐溶液的制备方法如下:制备250ml1:3:2Ti、Li、Al三种离子的混合盐溶液:用2ml移液管吸取1.3735mlTiCl4置于烧杯中,缓慢滴加10ml去离子水,搅拌;另外分别称取LiCl 1.5896g和AlCl3 3.3335g加入烧杯中,缓慢加入50ml去离子水,搅拌至溶液透明且澄清,将溶液移入250ml容量瓶中定容,得到金属离子比例为1:3:2的Ti、Li、Al三种离子的混合盐溶液;然后用移液管取容量瓶中的混合盐溶液80ml备用;
S2、在步骤S1制备的混合盐溶液中加入0.16g壳聚糖,并在75℃下水浴加热,直至溶液澄清,然后加入6g尿素,置于100ml的压力容弹中,然后将压力容弹放在鼓风干燥箱内,设定鼓风干燥箱为100℃,恒温加热24h,得到产物;
S3、步骤S2得到的产物经过离心、洗涤、抽滤,在75℃真空干燥箱中干燥12h,得到所述用于光催化反应的花苞状水滑石。
实施例2:
本实施例与实施例1的区别在于尿素的加入量为9g,其他制备条件相同。
实施例3
本实施例与实施例1的区别在于尿素的加入量为12g,其他制备条件相同。
实施例4
本发明提供的一种用于光催化反应的花苞状水滑石的制备方法,包括以下步骤:S1、制备金属离子比例为1:3:4的Ti、Li、Al三种离子的混合盐溶液80ml;
混合盐溶液的制备方法如下:制备250ml1:3:4Ti、Li、Al三种离子的混合盐溶液:用2ml移液管吸取1.3735mlTiCl4置于烧杯中,缓慢滴加10ml去离子水,搅拌;另外分别称取LiCl 1.5896g和AlCl3 6.667g加入烧杯中,缓慢加入50ml去离子水,搅拌至溶液透明且澄清,将溶液移入250ml容量瓶中定容,得到金属离子比例为1:3:2的Ti、Li、Al三种离子的混合盐溶液;然后用移液管取容量瓶中的混合盐溶液80ml备用;
S2、在步骤S1制备的混合盐溶液中加入0.16g壳聚糖,并在75℃下水浴加热,直至溶液澄清,然后加入6g尿素,置于100ml的压力容弹中,然后将压力容弹放在鼓风干燥箱内,设定鼓风干燥箱为100℃,恒温加热24h,得到产物;
S3、步骤S2得到的产物经过离心、洗涤、抽滤,在75℃真空干燥箱中干燥12h,得到所述用于光催化反应的花苞状水滑石。
实施例5:
本发明提供的一种用于光催化反应的花苞状水滑石的制备方法,包括以下步骤:S1、制备金属离子比例为1:3:2的Ti、Li、Al三种离子的混合盐溶液80ml;
混合盐溶液的制备方法如下:制备250ml1:3:2Ti、Li、Al三种离子的混合盐溶液:用2ml移液管吸取1.3735mlTiCl4置于烧杯中,缓慢滴加10ml去离子水,搅拌;另外分别称取LiCl 1.5896g和AlCl3 3.3335g加入烧杯中,缓慢加入50ml去离子水,搅拌至溶液透明且澄清,将溶液移入250ml容量瓶中定容,得到金属离子比例为1:3:2的Ti、Li、Al三种离子的混合盐溶液;然后用移液管取容量瓶中的混合盐溶液80ml备用;
S2、在步骤S1制备的混合盐溶液中加入0.24g壳聚糖,并在75℃下水浴加热,直至溶液澄清,然后加入6g尿素,置于100ml的压力容弹中,然后将压力容弹放在鼓风干燥箱内,设定鼓风干燥箱为100℃,恒温加热24h,得到产物;
S3、步骤S2得到的产物经过离心、洗涤、抽滤,在75℃真空干燥箱中干燥12h,得到所述用于光催化反应的花苞状水滑石。
各影响因素对材料性能的影响:
(1)尿素加入量对材料晶形结构的影响
图1中金属离子比例为1:3:2,从图1可以看出,金属离子比例为1:3:2时,衍射峰的基线低而平稳,图谱峰形很尖锐,且Ti/Li/Al-LDHs的特征衍射峰的强度很强,说明LDHs的结晶程度很高。通过布拉格公式2dsinθ=λ计算出各晶面间距参数,当尿素加入量为6g时结晶度最高。
(2)金属离子配比对Ti/Li/Al-LDHs孔隙结构及分布的影响
由BET测试数据计算出制备的Ti/Li/Al-LDHs孔隙参数如表1和表2所示。从表1可以看出,金属离子比例相同时,尿素加入量为6g时比表面积大,且微孔孔容较小;从表2可以看出,相同尿素加入量条件下,金属离子比例为1:3:2的Ti/Li/Al-LDHs比1:3:4的材料表面积大,微孔孔容更小,空隙主要为中孔,且分布均匀。
表1不同尿素加入量下Ti/Li/Al-LDHs的孔隙参数
表2不同金属离子比例下的Ti/Li/Al-LDHs孔隙参数
(3)以壳聚糖为导向剂制备Ti/Li/Al-LDHs的SEM分析
从图3-图5的样品SEM图中可以看出,制备过程中加壳聚糖前后样品结构有明显的变化,图3不加壳聚糖制备的Ti/Li/Al-LDHs为片状结构,且有严重的团聚现象。图4和图5以壳聚糖为导向剂制备得到的Ti/Li/Al-LDHs呈花苞状,具有完整且清晰的外貌,成功的解决了传统方法制备Ti/Li/Al-LDHs的团聚现象。图4中壳聚糖加入量为0.16g时花苞粒径约为2.5μm,空间结构高度有序;图5中壳聚糖加入量为0.24g时,花苞变得扁平,空间有序度下降,是由于壳聚糖浓度过大,空间位阻效应过强,影响了水滑石在空间上的有序生长。
(4)金属离子配比对Ti/Li/Al-LDHs紫外吸收性能的影响
在尿素加入量为6g不变的情况下,改变金属离子比例分别为1:3:2和1:3:4时,制备的Ti/Li/Al-LDHs UV-vis漫反射吸收光谱如图6所示:
(5)本发明的制备方法制得的Ti/Li/Al-LDHs样品的光催化实验结果:
当尿素加入量为6g、金属离子比例为1:3:2时,制备出的Ti/Li/Al-LDHs紫外吸收曲线的切线分别落在387nm附近,对应的半导体带隙分别为3.21eV。半导体带隙窄,价带顶电子容易跃迁为自由电子,形成空穴,紫外吸收性能较好。因此本实验选择紫外吸收性能最好的该条件下制得的材料做光催化实验。实验结果如图7所示:结果表明,该体系产物只有CO,在反应时间为2h左右反应速率到达最大,反应时间到5h之后,反应就进行的很缓慢了。表明5h之后催化剂活性基本丧失,需要进行再生。
用共沉淀法制得的Ti/Li/Al-LDHs进行光催化还原CO2的反应的反应产物有CO和CH4,而用本发明的制备方法制得的Ti/Li/Al-LDHs进行反应其反应产物只有CO。且催化产物的产量大幅提高,显示出其有更高的催化活性和对CO有较高选择性。较高的催化活性是由于其高度有序的花苞状结构给催化反应提供了更多的活性表面,而较高的催化选择性与活性点均一有关。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。
Claims (2)
1.一种用于光催化反应的花苞状水滑石的制备方法,其特征在于,包括以下步骤:S1、制备金属离子比例为1:3:2~4的Ti、Li、Al三种离子的混合盐溶液60~80ml;
混合盐溶液的制备方法如下:先用移液管吸取TiCl4置于烧杯中,缓慢滴加10-15ml去离子水,搅拌;然后分别称取LiCl和AlCl3加入TiCl4的烧杯中,缓慢加入去离子水50-60ml,搅拌至溶液透明且澄清,将溶液移入容量瓶中定容得到混合盐溶液,然后用移液管取容量瓶中的混合盐溶液60~80ml备用;
S2、在步骤S1制备的混合盐溶液中加入0.08~0.3g壳聚糖,并在75~90℃下水浴加热,直至溶液澄清,然后加入6~12g尿素,置于100ml的压力容弹中,然后将压力容弹放在鼓风干燥箱内,设定鼓风干燥箱为90~100℃,恒温加热12~24h,得到产物;
S3、步骤S2得到的产物经过离心、洗涤、抽滤,在65~85℃真空干燥箱中干燥10~12h,得到所述用于光催化反应的花苞状水滑石。
2.如权利要求1所述的一种用于光催化反应的花苞状水滑石的制备方法,其特征在于,所述步骤S3中产物经离心分离10min之后,再用150ml蒸馏水充分洗涤,重复此过程三次。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810156040.3A CN108325512B (zh) | 2018-02-24 | 2018-02-24 | 一种用于光催化反应的花苞状水滑石的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810156040.3A CN108325512B (zh) | 2018-02-24 | 2018-02-24 | 一种用于光催化反应的花苞状水滑石的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108325512A CN108325512A (zh) | 2018-07-27 |
CN108325512B true CN108325512B (zh) | 2021-02-02 |
Family
ID=62929787
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810156040.3A Expired - Fee Related CN108325512B (zh) | 2018-02-24 | 2018-02-24 | 一种用于光催化反应的花苞状水滑石的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108325512B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109433179A (zh) * | 2018-11-29 | 2019-03-08 | 西安科技大学 | 一种花苞状水滑石-活性炭复合光催化剂的制备方法 |
-
2018
- 2018-02-24 CN CN201810156040.3A patent/CN108325512B/zh not_active Expired - Fee Related
Non-Patent Citations (2)
Title |
---|
以壳聚糖为导向剂的花苞状Ti/Li/Al-LDHs的制备及其紫外吸收性能的研究;赵小玲等;《2017全国光催化材料及创新应用学会研讨会摘要集》;20170923;第54-55页 * |
阴离子型层状材料水滑石的制备与晶体形貌控制研究;李博;《中国博士学位论文全文数据库 工程科技I辑》;20081115(第11期);摘要和正文第45-61页 * |
Also Published As
Publication number | Publication date |
---|---|
CN108325512A (zh) | 2018-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yang et al. | Three-dimensional flower-like phosphorus-doped gC 3 N 4 with a high surface area for visible-light photocatalytic hydrogen evolution | |
Yang et al. | Synthesis and visible-light-driven photocatalytic activity of p–n heterojunction Ag2O/NaTaO3 nanocubes | |
Motahari et al. | NiO nanostructures: synthesis, characterization and photocatalyst application in dye wastewater treatment | |
CN108993550B (zh) | 一种表面氧空位改性的溴氧铋光催化剂及其制备方法 | |
Zhao et al. | Visible light driven photocatalytic hydrogen evolution over CdS incorporated mesoporous silica derived from MCM-48 | |
CN106622318B (zh) | 一种以双金属纳米粒子为异质结的层状复合光催化剂及其制备方法 | |
Liang et al. | Facile synthesis of hematite nanostructures with controlled hollowness and porosity and their comparative photocatalytic activities | |
CN113145134B (zh) | 一种基于矿物复合材料的可见光催化剂及其制备方法 | |
CN111790412A (zh) | 还原二氧化碳产制碳化合物的方法 | |
Jiang et al. | Construction of a hydrangea-like Bi 2 WO 6/BiOCl composite as a high-performance photocatalyst | |
Liu et al. | Modified surficial chemistry micro-circumstance and mid-gap effect on photocatalytic ability of tetracycline by introducing of nitrogen in Fe2 (MoO4) 3 | |
CN105833887A (zh) | 一种BiOCl/β-FeOOH复合纳米材料及其制备方法 | |
CN109382088B (zh) | SnO2/α~Bi2O3/β~Bi2O3复合材料及其制备方法 | |
Sun et al. | Flower-like spherical ZnCdS/Bi2WO6/ZnAl-LDH with dual type II heterostructure as a photocatalyst for efficient photocatalytic degradation and hydrogen production | |
Jiang et al. | Ag 3 VO 4/gC 3 N 4/diatomite ternary compound reduces Cr (vi) ion in aqueous solution effectively under visible light | |
CN108325512B (zh) | 一种用于光催化反应的花苞状水滑石的制备方法 | |
Yu et al. | Efficient removal of tetracycline hydrochloride through novel Fe/BiOBr/Bi2WO6 photocatalyst prepared by dual-strategy under visible-light irradiation | |
CN112850764A (zh) | 一种无模板剂制备形貌可控氧化铝中空微球的方法 | |
CN117563636A (zh) | 一种用于CO2光还原的原子级分散金属(Cu,Ag)-Bi2O2SO4催化剂的制备方法及其应用 | |
Wu et al. | Attachment of ZnO nanoparticles onto layered double hydroxides microspheres for high performance photocatalysis | |
Xue et al. | Construction of Cu 2+-doped CeO 2 nanocrystals hierarchical hollow structure and its enhanced photocatalytic performance | |
CN113479897B (zh) | 利用凹凸棒石制备二维纳米片硅酸盐的方法及其应用 | |
CN112871183B (zh) | 一种铋/钨酸铋/四氧化三铁复合光催化剂的制备方法 | |
Huang et al. | Preparation and characterization of an Ag 3 PO 4/GaOOH composite with enhanced photocatalytic performance toward rhodamine B | |
Liu et al. | A systematic study on polymerization and photocatalytic performance by investigating Ag 2 O· x (MoO 3)(x= 1, 2, 3, 4) photocatalysts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20210202 |