CN105833887A - 一种BiOCl/β-FeOOH复合纳米材料及其制备方法 - Google Patents

一种BiOCl/β-FeOOH复合纳米材料及其制备方法 Download PDF

Info

Publication number
CN105833887A
CN105833887A CN201610207665.9A CN201610207665A CN105833887A CN 105833887 A CN105833887 A CN 105833887A CN 201610207665 A CN201610207665 A CN 201610207665A CN 105833887 A CN105833887 A CN 105833887A
Authority
CN
China
Prior art keywords
biocl
feooh
beta
preparation
composite nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610207665.9A
Other languages
English (en)
Other versions
CN105833887B (zh
Inventor
韩成良
谢畅
张凌云
邓崇海
任亚军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University
Hefei College
Original Assignee
Hefei College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei College filed Critical Hefei College
Priority to CN201610207665.9A priority Critical patent/CN105833887B/zh
Publication of CN105833887A publication Critical patent/CN105833887A/zh
Application granted granted Critical
Publication of CN105833887B publication Critical patent/CN105833887B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/128Halogens; Compounds thereof with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Compounds Of Iron (AREA)

Abstract

一种BiOCl/β‑FeOOH复合纳米材料及其制备方法,涉及复合纳米材料技术领域。先将FeCl3·6H2O溶解于蒸馏水中,再依次加入Bi(NO3)3·5H2O、葡萄糖后混合均匀,调节pH值至3~6,然后经水热合成反应得到BiOCl/β‑FeOOH复合纳米材料。采用低温水热法合成,通过葡萄糖生物大分子来控制β‑FeOOH纳米棒在BiOCl纳米片上的附着生长,在BiOCl/β‑FeOOH纳米复合材料的结构中,呈纺锤形的β‑FeOOH纳米棒分布在呈片状的BiOCl上,这种纳米复合材料具有较高的比表面积、优异的光催化和类芬顿催化活性等优点,可望用作脱除污水中各类有机污染物的有效催化剂。

Description

一种BiOCl/β-FeOOH复合纳米材料及其制备方法
技术领域
本发明涉及复合纳米材料技术领域,具体是涉及一种BiOCl/β-FeOOH复合纳米材料及其制备方法。
背景技术
羟基氧化铁(β-FeOOH)是一种性能优良的功能材料,可用作颜料、催化剂、磁记录介质的前驱体、磁性涂料和气体传感器等。具有成本低廉和较高的比表面积,可用作吸附剂和类芬顿试剂,在催化、医药和生物领域有着重要的应用价值。
氯氧化铋(BiOCl)作为过渡族金属硫化物,纳米BiOCl具有比表面积大,可作为光催化剂来去除有机污染物。然而,纳米BiOCl光催化剂对可见光响应范围狭小的,因而,其可见光催化效应不明显。已研究表明,β-FeOOH和BiOCl都为层状结构,这为两者的复合提供可能的依据。目前,关于利用β-FeOOH来调控BiOCl光催化性能方面的研究报道较少。
发明内容
为了克服现有技术中存在的上述缺陷,本发明的目的在于提供了一种BiOCl/β-FeOOH复合纳米材料及其制备方法,获得的复合材料具有优异的可见光和类芬顿双重催化功能。
为实现该目的,本发明采用了以下技术方案:
一种BiOCl/β-FeOOH复合纳米材料,呈纺锤形的β-FeOOH纳米棒分布在呈片状的BiOCl上。
一种BiOCl/β-FeOOH复合纳米材料的制备方法,先将FeCl3·6H2O溶解于蒸馏水中,再依次加入Bi(NO3)3·5H2O、葡萄糖后混合均匀,调节pH值至3~6,然后经水热合成反应得到BiOCl/β-FeOOH复合纳米材料。
作为上述制备方法的进一步改进,反应体系中FeCl3·6H2O、Bi(NO3)3·5H2O和葡萄糖的质量浓度依次为0.27~1.35g/mL、0.485~7.276g/mL、3.5~8.5g/L。水热合成反应的时间为24~48h,反应温度为80~100℃。水热合成反应产物经固液分离、洗涤、烘干得到复合纳米材料,烘干温度为60~80℃,烘干时间为2~6h。
与现有技术相比,本发明的有益效果表现在:
1、本发明采用低温水热法合成,通过葡萄糖生物大分子来控制β-FeOOH纳米棒在BiOCl纳米片上的附着生长,在BiOCl/β-FeOOH纳米复合材料的结构中,呈纺锤形的β-FeOOH纳米棒分布在呈片状的BiOCl上,这种纳米复合材料具有较高的比表面积、优异的光催化和类芬顿催化活性等优点,可望用作脱除污水中各类有机污染物的有效催化剂。另外,在颜料和磁性元件等方面上也有潜在的应用价值。
2、本发明制备方法工艺简单,整个制备体系容易构建、操作简便、条件易控、成本低廉、产物组成可控、适合于大规模工业生产。采用常规可溶性铁盐作为反应物,在制备过程中产生的副产物少,对环境污染较小,是一种环保型合成工艺。
附图说明
图1是实施例1所得产物的XRD谱图
图2a是实施例1所得产物的扫描电镜图像。
图2b是对单个BiOCl/β-FeOOH复合片的面扫描能谱分析图。
图3a是实施例1所得产物的低倍率TEM投射照片。
图3b是BiOCl和β-FeOOH的电子衍射分析结果。
图4是β-FeOOH、BiOCl和β-FeOOH/BiOCl三者的紫外-可见吸收光谱图。
图5是β-FeOOH、BiOCl和β-FeOOH/BiOCl复合材料光催化降解甲基橙的动力学曲线。
具体实施方式
以下结合实施例以及附图对本发明作进一步详细描述。
实施例1
(1)、将27g的FeCl3·6H2O溶解在100mL蒸馏水中,室温下磁力搅拌2分钟使之充分溶解得到溶液a。
(2)、称取48.5g的Bi(NO3)3·5H2O加入到上述溶液a中,继续磁力搅拌1分钟得到溶液b。
(3)、称0.35g的葡萄糖加入到溶液b中,用HCl溶液调节溶液pH为3,得到溶液c。
(4)、将溶液c装入反应釜中进行水热合成反应,反应时间为24h,反应温度为100℃。
(5)、反应结束后取出产物,经过洗涤、离心和干燥,得到目标产物,烘干温度为70℃,烘干时间为4h。
图1为实施例1所得产物的XRD谱图。将产物的XRD所有衍射峰与标准BiOCl(PDF#34-1266)与β-FeOOH(PDF#06-0249)的XRD谱图进行对比分析,可以看出,所得产物中出现了BiOCl和β-FeOOH的特征衍射峰,可以初步确定所得的产物为BiOCl/β-FeOOH复合物,且两者的结晶度较高。
图2a是实施例1所得产物的扫描电镜图像,从图中可以看出在片状的BiOCl上分布着纺锤形的β-FeOOH纳米棒,片状BiOCl的尺寸约为几个微米。图2b是对单个BiOCl/β-FeOOH复合片进行了面扫描能谱分析图,从分析结果中可以看出,Bi和Cl元素的分布均匀,且形状基本一致,而Fe和O元素分布区域基本一致。结合图1的XRD和图2b的能谱分析结果,可初步认为得到的产物为BiOCl/β-FeOOH复合片。
为了进一步确认复合纳米片中的BiOCl和β-FeOOH两者的结合关系,对产物进行了TEM和HRTEM分析,其结果如图3所示。图3a为产物的低倍投射照片,由图3a可以清晰看出,复合纳米片是由片状的BiOCl和纺锤形的β-FeOOH构成。图3b为两者的电子衍射分析结果,从图3b中标注的结果进一步可以证明,复合纳米片中BiOCl和β-FeOOH位向关系,两者依附生长在一起,结晶程度高。
图4是β-FeOOH、BiOCl和β-FeOOH/BiOCl三者的紫外-可见吸收光谱图。从图4中可以看出,纯的BiOCl和β-FeOOH的吸收峰均在360nm左右,说明两者在可见光范围内(>420nm)内吸收不明显。而BiOCl/β-FeOOH复合纳米片最大吸收峰为480nm左右,说明获得的BiOCl/β-FeOOH复合纳米材料具有良好的可见光吸收性能。
实施例2
(1)、将135g的FeCl3·6H2O溶解在100mL蒸馏水中,室温下磁力搅拌3分钟使之充分溶解得到溶液a。
(2)、称取48.5g的Bi(NO3)3·5H2O加入到上述溶液a中,继续磁力搅拌1分钟得到溶液b。
(3)、称0.55g的葡萄糖加入到溶液b中,用HCl溶液调节溶液pH为4,得到溶液c。
(4)、将溶液c装入反应釜中进行水热合成反应,反应时间为48h,反应温度为80℃。
(5)、反应结束后取出产物,经过洗涤、离心和干燥,得到目标产物,烘干温度为80℃,烘干时间为2h。
实施例3
(1)、将27g的FeCl3·6H2O溶解在100mL蒸馏水中,室温下磁力搅拌1分钟使之充分溶解得到溶液a。
(2)、称取727.6g的Bi(NO3)3·5H2O加入到上述溶液a中,继续磁力搅拌3分钟得到溶液b。
(3)、称0.85g的葡萄糖加入到溶液b中,用HCl溶液调节溶液pH为6,得到溶液c。
(4)、将溶液c装入反应釜中进行水热合成反应,反应时间为36h,反应温度为90℃。
(5)、反应结束后取出产物,经过洗涤、离心和干燥,得到目标产物,烘干温度为60℃,烘干时间为6h。
实施例4(BiOCl/β-FeOOH纳米复合材料光催化降解污染物)
(1)、以甲基橙为目标污染物,在100mL甲基橙初始浓度为20mg/L的溶液中加入0.1g所制备的BiOCl/β-FeOOH复合材料,快速均匀分散后得到混合液a,然后放入光催化装置中进行光催化实验。
(2)、光照t1分钟后,从a溶液中取出10mL进行离心分离,得到上清液b。
(3)、用紫外-可见光谱仪测试溶液b的吸光度A1,测试完毕后,倒回试管并连同剩余的溶液和催化剂摇匀后倒回到溶液a中,继续进行光催化实验。
(4)、光照t2分钟、t3分钟和t4分钟、t5分钟和t6分钟后的取样和测试过程与(2)和(3)两步完全相同,测得的系列吸光度分别标记为A2、A3、A4、A5和A6
(5)、作时间ti和吸光度Ai(i=0,1,2,3,4,5,6)曲线。再依据吸光度A和浓度C关系(朗伯比尔定律)计算得到吸附时间t和浓度Ct的关系曲线。
图5是β-FeOOH、BiOCl和β-FeOOH/BiOCl复合材料光催化降解甲基橙的动力学曲线。对比三者的可见光催化动力学曲线后可以看出,BiOCl和β-FeOOH可见光催化效果不明显,而BiOCl/β-FeOOH复合材料能有效光催化降解甲基橙。

Claims (5)

1.一种BiOCl/β-FeOOH复合纳米材料,其特征在于:呈纺锤形的β-FeOOH纳米棒分布在呈片状的BiOCl上。
2.一种BiOCl/β-FeOOH复合纳米材料的制备方法,其特征在于先将FeCl3·6H2O溶解于蒸馏水中,再依次加入Bi(NO3)3·5H2O、葡萄糖后混合均匀,调节pH值至3~6,然后经水热合成反应得到BiOCl/β-FeOOH复合纳米材料。
3.如权利要求1所述的BiOCl/β-FeOOH复合纳米材料的制备方法,其特征在于反应体系中FeCl3·6H2O、Bi(NO3)3·5H2O和葡萄糖的质量浓度依次为0.27~1.35g/mL、0.485~7.276g/mL、3.5~8.5g/L。
4.如权利要求1所述的BiOCl/β-FeOOH复合纳米材料的制备方法,其特征在于水热合成反应的时间为24~48h,反应温度为80~100℃。
5.如权利要求1所述的BiOCl/β-FeOOH复合纳米材料的制备方法,其特征在于水热合成反应产物经固液分离、洗涤、烘干得到复合纳米材料,烘干温度为60~80℃,烘干时间为2~6h。
CN201610207665.9A 2016-04-01 2016-04-01 一种BiOCl/β‑FeOOH复合纳米材料及其制备方法 Active CN105833887B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610207665.9A CN105833887B (zh) 2016-04-01 2016-04-01 一种BiOCl/β‑FeOOH复合纳米材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610207665.9A CN105833887B (zh) 2016-04-01 2016-04-01 一种BiOCl/β‑FeOOH复合纳米材料及其制备方法

Publications (2)

Publication Number Publication Date
CN105833887A true CN105833887A (zh) 2016-08-10
CN105833887B CN105833887B (zh) 2018-03-23

Family

ID=56597997

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610207665.9A Active CN105833887B (zh) 2016-04-01 2016-04-01 一种BiOCl/β‑FeOOH复合纳米材料及其制备方法

Country Status (1)

Country Link
CN (1) CN105833887B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107961785A (zh) * 2017-12-07 2018-04-27 清华大学 一种高活性铬酸铋纳米光催化剂的制备方法及其应用
CN109225291A (zh) * 2018-09-10 2019-01-18 河海大学 一种Ti3C2-FeOOH复合型过渡金属催化剂及其制备方法和应用
CN109692970A (zh) * 2018-11-26 2019-04-30 合肥学院 一种快速制备Fe/Ag复合纳米粉体的方法
CN110773206A (zh) * 2019-11-27 2020-02-11 中国科学院青岛生物能源与过程研究所 一种具有高催化降解活性的Fe2O3/BiOCl复合光催化剂及其制备方法与应用
CN116651474A (zh) * 2023-06-16 2023-08-29 西北师范大学 一种羟基氧化铁量子点修饰的BiOX光催化材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012066545A2 (en) * 2010-11-16 2012-05-24 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Bismuth oxyhalide compounds useful as photocatalysts
CN103908973A (zh) * 2014-03-21 2014-07-09 合肥工业大学 Bi/BiOCl复合光催化剂、原位还原制备方法及其应用
CN104069876A (zh) * 2014-06-24 2014-10-01 华中师范大学 BiOCl纳米片{001}晶面沉积纳米银制备的Ag-BiOCl复合光催化剂及方法
CN104689838A (zh) * 2015-02-13 2015-06-10 湘潭大学 一种形貌及晶面可控的BiOCl光催化剂的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012066545A2 (en) * 2010-11-16 2012-05-24 Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. Bismuth oxyhalide compounds useful as photocatalysts
CN103908973A (zh) * 2014-03-21 2014-07-09 合肥工业大学 Bi/BiOCl复合光催化剂、原位还原制备方法及其应用
CN104069876A (zh) * 2014-06-24 2014-10-01 华中师范大学 BiOCl纳米片{001}晶面沉积纳米银制备的Ag-BiOCl复合光催化剂及方法
CN104689838A (zh) * 2015-02-13 2015-06-10 湘潭大学 一种形貌及晶面可控的BiOCl光催化剂的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHAO ZHANG ET AL: "Ag-BiOCl nanocomposites prepared by the oxygen vacancy induced photodeposition method with improved visible light photocatalytic activity", 《MATERIALS LETTERS》 *
ZHIHUI XU ET AL: "Visible light-degradation of azo dye methyl orange using TiO2/β-FeOOH as a heterogeneous photo-Fenton-like catalyst", 《WATER SCIENCE & TECHNOLOGY》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107961785A (zh) * 2017-12-07 2018-04-27 清华大学 一种高活性铬酸铋纳米光催化剂的制备方法及其应用
CN107961785B (zh) * 2017-12-07 2020-08-14 清华大学 一种高活性铬酸铋纳米光催化剂的制备方法及其应用
CN109225291A (zh) * 2018-09-10 2019-01-18 河海大学 一种Ti3C2-FeOOH复合型过渡金属催化剂及其制备方法和应用
CN109692970A (zh) * 2018-11-26 2019-04-30 合肥学院 一种快速制备Fe/Ag复合纳米粉体的方法
CN110773206A (zh) * 2019-11-27 2020-02-11 中国科学院青岛生物能源与过程研究所 一种具有高催化降解活性的Fe2O3/BiOCl复合光催化剂及其制备方法与应用
CN116651474A (zh) * 2023-06-16 2023-08-29 西北师范大学 一种羟基氧化铁量子点修饰的BiOX光催化材料的制备方法
CN116651474B (zh) * 2023-06-16 2023-11-10 西北师范大学 一种羟基氧化铁量子点修饰的BiOX光催化材料的制备方法

Also Published As

Publication number Publication date
CN105833887B (zh) 2018-03-23

Similar Documents

Publication Publication Date Title
Guo et al. A novel α-Fe2O3@ g-C3N4 catalyst: synthesis derived from Fe-based MOF and its superior photo-Fenton performance
Lu et al. Hydrothermal synthesis of type II ZnIn2S4/BiPO4 heterojunction photocatalyst with dandelion-like microflower structure for enhanced photocatalytic degradation of tetracycline under simulated solar light
Kumar et al. Noble metal-free metal-organic framework-derived onion slice-type hollow cobalt sulfide nanostructures: Enhanced activity of CdS for improving photocatalytic hydrogen production
Kim et al. Synthesis of magnetically separable core@ shell structured NiFe2O4@ TiO2 nanomaterial and its use for photocatalytic hydrogen production by methanol/water splitting
Liu et al. ZnCr-LDH/N-doped graphitic carbon-incorporated g-C3N4 2D/2D nanosheet heterojunction with enhanced charge transfer for photocatalysis
Liu et al. A facile solvothermal approach of novel Bi2S3/TiO2/RGO composites with excellent visible light degradation activity for methylene blue
Shang et al. Effect of acetic acid on morphology of Bi2WO6 with enhanced photocatalytic activity
CN105833887A (zh) 一种BiOCl/β-FeOOH复合纳米材料及其制备方法
Mu et al. 2D/3D S-scheme heterojunction of carbon nitride/iodine-deficient bismuth oxyiodide for photocatalytic hydrogen production and bisphenol A degradation
Li et al. Enhanced photocatalytic activity in ZnFe2O4–ZnO–Ag3PO4 hollow nanospheres through the cascadal electron transfer with magnetical separation
Gao et al. One-pot synthesis of biomorphic Mg-Al mixed metal oxides with enhanced methyl orange adsorption properties
CN109908915B (zh) 一种处理六价铬废水的磁性可见光催化剂及其制备方法
Shu et al. Nanoporous g-C3N4 nanosheets: facile synthesis and excellent visible-light photocatalytic H2 evolution performance
Lu et al. Highly Efficient visible-light-induced photoactivity of magnetically retrievable Fe3O4@ SiO2@ Bi2WO6@ g-C3N4 hierarchical microspheres for the degradation of organic pollutant and production of hydrogen
Ma et al. Z-scheme g-C3N4/ZnS heterojunction photocatalyst: One-pot synthesis, interfacial structure regulation, and improved photocatalysis activity for bisphenol A
CN111790412A (zh) 还原二氧化碳产制碳化合物的方法
Esania et al. Characterization and assessment of the photocatalytic activity of ZnO-Fe3O4/TiO2 nanocomposite based on MIL-125 (Ti) synthesized by mixed solvo-hydrothermal and sol-gel methods
Zhi et al. Hierarchically porous BiOCl@ NiCo 2 O 4 nanoplates as low-cost and highly efficient catalysts for the discoloration of organic contaminants in aqueous media
Bi et al. In-situ upcycling of cadmium from wastewater into core–shell ZnS@ Zn0. 58Cd0. 42S heterojunction photocatalyst for environmental purification and H2 evolution
CN109336161A (zh) 一种CeO2纳米管的制备方法、CeO2纳米管及应用
CN106517130B (zh) 一种以富磷生物质制备羟基磷酸铁微纳米粉体材料的方法
CN105858733A (zh) 多孔分级结构四氧化三钴纳米花及其制备方法
Li et al. Construction of a Bi 2 WO 6/TiO 2 heterojunction and its photocatalytic degradation performance
Zhang et al. Photo-Fenton degradation of tetracycline hydrochloride with Fe2O3-on-ZrO2 polypods derived from MIL-88B-on-UiO-66-NH2 within full pH range: Kinetics, degradation pathway and mechanism insight
Pan et al. Hydrochar-Supported NiFe2O4Nanosheets with a Tailored Microstructure for Enhanced CO2Photoreduction to Syngas

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant