CN108287470B - Mimo偏格式无模型控制器基于偏导信息的参数自整定方法 - Google Patents

Mimo偏格式无模型控制器基于偏导信息的参数自整定方法 Download PDF

Info

Publication number
CN108287470B
CN108287470B CN201711263354.5A CN201711263354A CN108287470B CN 108287470 B CN108287470 B CN 108287470B CN 201711263354 A CN201711263354 A CN 201711263354A CN 108287470 B CN108287470 B CN 108287470B
Authority
CN
China
Prior art keywords
mimo
information
output
controller
partial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711263354.5A
Other languages
English (en)
Other versions
CN108287470A (zh
Inventor
卢建刚
李雪园
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201711263354.5A priority Critical patent/CN108287470B/zh
Publication of CN108287470A publication Critical patent/CN108287470A/zh
Application granted granted Critical
Publication of CN108287470B publication Critical patent/CN108287470B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了一种MIMO偏格式无模型控制器基于偏导信息的参数自整定方法,利用偏导信息集作为BP神经网络的输入,BP神经网络进行前向计算并通过输出层输出惩罚因子、步长因子等MIMO偏格式无模型控制器待整定参数,采用MIMO偏格式无模型控制器的控制算法计算得到针对被控对象的控制输入向量,以系统误差函数的值最小化为目标,采用梯度下降法,并结合控制输入分别针对各个待整定参数的梯度信息集,进行系统误差反向传播计算,在线实时更新BP神经网络的隐含层权系数、输出层权系数,实现控制器基于偏导信息的参数自整定。本发明提出的MIMO偏格式无模型控制器基于偏导信息的参数自整定方法,能有效克服控制器参数的在线整定难题,对MIMO系统具有良好的控制效果。

Description

MIMO偏格式无模型控制器基于偏导信息的参数自整定方法
技术领域
本发明属于自动化控制领域,尤其是涉及一种MIMO偏格式无模型控制器基于偏导信息的参数自整定方法。
背景技术
MIMO(Multiple Input and Multiple Output,多输入多输出)系统的控制问题,一直以来都是自动化控制领域所面临的重大挑战之一。
MIMO控制器的现有实现方法中包括MIMO偏格式无模型控制器。MIMO偏格式无模型控制器是一种新型的数据驱动控制方法,不依赖被控对象的任何数学模型信息,仅依赖于MIMO被控对象实时测量的输入输出数据进行控制器的分析和设计,并且实现简明、计算负担小及鲁棒性强,对未知非线性时变MIMO系统也能够进行很好的控制,具有良好的应用前景。MIMO偏格式无模型控制器的理论基础,由侯忠生与金尚泰在其合著的《无模型自适应控制—理论与应用》(科学出版社,2013年,第105页)中提出,其控制算法如下:
Figure GDA0001608848050000011
其中,u(k)为k时刻的控制输入向量,u(k)=[u1(k),…,umu(k)]T,mu为控制输入个数,Δu(k)=u(k)-u(k-1);e(k)为k时刻的误差向量,e(k)=[e1(k),…,emy(k)]T,my为输出个数;
Figure GDA0001608848050000012
为k时刻的MIMO系统伪分块雅克比矩阵估计值,
Figure GDA0001608848050000013
Figure GDA0001608848050000014
的第i块(i=1,…,L),
Figure GDA0001608848050000015
为矩阵
Figure GDA0001608848050000016
的2范数;λ为惩罚因子,ρ1,…,ρL为步长因子,L为控制输入线性化长度常数。
然而,MIMO偏格式无模型控制器在实际投用前需要依赖经验知识来事先设定惩罚因子λ和步长因子ρ1,…,ρL等参数的数值,在实际投用过程中也尚未实现惩罚因子λ和步长因子ρ1,…,ρL等参数的在线自整定。参数有效整定手段的缺乏,不仅使MIMO偏格式无模型控制器的使用调试过程费时费力,而且有时还会严重影响MIMO偏格式无模型控制器的控制效果,制约了MIMO偏格式无模型控制器的推广应用。也就是说:MIMO偏格式无模型控制器在实际投用过程中还需要解决在线自整定参数的难题。
为此,为了打破制约MIMO偏格式无模型控制器推广应用的瓶颈,本发明提出了一种MIMO偏格式无模型控制器基于偏导信息的参数自整定方法。
发明内容
为了解决背景技术中存在的问题,本发明的目的在于,提供一种MIMO偏格式无模型控制器基于偏导信息的参数自整定方法。
为此,本发明的上述目的通过以下技术方案来实现,包括以下步骤:
步骤(1):针对具有mu个输入(mu为大于或等于2的整数)与my个输出(my为大于或等于2的整数)的MIMO(Multiple Input and Multiple Output,多输入多输出)系统,采用MIMO偏格式无模型控制器进行控制;确定所述MIMO偏格式无模型控制器的控制输入线性化长度常数L,L为大于1的整数;所述MIMO偏格式无模型控制器参数包含惩罚因子λ和步长因子ρ1,…,ρL;确定MIMO偏格式无模型控制器待整定参数,所述MIMO偏格式无模型控制器待整定参数,为所述MIMO偏格式无模型控制器参数的部分或全部,包含惩罚因子λ和步长因子ρ1,…,ρL的任意之一或任意种组合;确定BP神经网络的输入层节点数、隐含层节点数、输出层节点数,所述输出层节点数不少于所述MIMO偏格式无模型控制器待整定参数个数;初始化所述BP神经网络的隐含层权系数、输出层权系数;初始化集合{偏导信息集}中的偏导信息;
步骤(2):将当前时刻记为k时刻;
步骤(3):基于MIMO系统的第jy个输出期望值与第jy个输出实际值(1≤jy≤my),采用第jy个误差计算函数计算得到k时刻的第jy个误差,记为ejy(k);针对MIMO系统的其他my-1个输出,重复执行本步骤,直至得到由my个误差所构成的误差向量e(k)=[e1(k),…,emy(k)]T,然后进入步骤(4);
步骤(4):将所述集合{偏导信息集}中的偏导信息作为BP神经网络的输入,所述BP神经网络进行前向计算,计算结果通过所述BP神经网络的输出层输出,得到所述MIMO偏格式无模型控制器待整定参数的值;
步骤(5):基于步骤(3)得到的所述误差向量e(k)、步骤(4)得到的所述MIMO偏格式无模型控制器待整定参数的值,采用MIMO偏格式无模型控制器的控制算法,计算得到MIMO偏格式无模型控制器针对被控对象在k时刻的控制输入向量u(k)=[u1(k),…,umu(k)]T
步骤(6):针对步骤(5)得到的所述控制输入向量u(k)中的第ju个控制输入uju(k)(1≤ju≤mu),计算所述第ju个控制输入uju(k)分别针对各个所述MIMO偏格式无模型控制器待整定参数在k时刻的梯度信息,具体计算公式如下:
当所述MIMO偏格式无模型控制器待整定参数中包含惩罚因子λ时,所述第ju个控制输入uju(k)针对所述惩罚因子λ在k时刻的梯度信息为:
Figure GDA0001608848050000031
当所述MIMO偏格式无模型控制器待整定参数中包含步长因子ρ1时,所述第ju个控制输入uju(k)针对所述步长因子ρ1在k时刻的梯度信息为:
Figure GDA0001608848050000041
当所述MIMO偏格式无模型控制器待整定参数中包含步长因子ρi且2≤i≤L时,所述第ju个控制输入uju(k)针对所述步长因子ρi在k时刻的梯度信息为:
Figure GDA0001608848050000042
其中,Δuj(k)=uj(k)-uj(k-1),
Figure GDA0001608848050000043
为k时刻的MIMO系统伪分块雅克比矩阵估计值,
Figure GDA0001608848050000044
Figure GDA0001608848050000045
的第i块(i=1,…,L),
Figure GDA0001608848050000046
为矩阵
Figure GDA0001608848050000047
的第jy行第ju列元素,
Figure GDA0001608848050000048
为矩阵
Figure GDA0001608848050000049
的2范数;
上述全部所述梯度信息的集合记为{梯度信息ju},放入集合{梯度信息集};
将所述{梯度信息ju}集合中的梯度信息依序记为前一时刻的偏导信息,即:当所述MIMO偏格式无模型控制器待整定参数中包含惩罚因子λ时则所述{梯度信息ju}集合中的梯度信息
Figure GDA00016088480500000410
记为前一时刻的偏导信息
Figure GDA00016088480500000411
当所述MIMO偏格式无模型控制器待整定参数中包含步长因子ρi且1≤i≤L时则所述{梯度信息ju}集合中的梯度信息
Figure GDA00016088480500000412
记为前一时刻的偏导信息
Figure GDA00016088480500000413
上述全部所述偏导信息的集合记为{偏导信息ju},放入所述集合{偏导信息集};
针对步骤(5)得到的所述控制输入向量u(k)中的其他mu-1个控制输入,重复执行本步骤,直至所述集合{梯度信息集}包含全部{{梯度信息1},…,{梯度信息mu}}的集合,同时所述集合{偏导信息集}包含全部{{偏导信息1},…,{偏导信息mu}}的集合,然后进入步骤(7);
步骤(7):以系统误差函数的值最小化为目标,采用梯度下降法,结合步骤(6)得到的所述集合{梯度信息集},进行系统误差反向传播计算,更新BP神经网络的隐含层权系数、输出层权系数,作为后一时刻BP神经网络进行前向计算时的隐含层权系数、输出层权系数;
步骤(8):所述控制输入向量u(k)作用于被控对象后,得到被控对象在后一时刻的my个输出实际值,返回到步骤(2),重复步骤(2)到步骤(8)。
在采用上述技术方案的同时,本发明还可以采用或者组合采用以下进一步的技术方案:
所述步骤(3)中的所述第jy个误差计算函数的自变量包含第jy个输出期望值与第jy个输出实际值。
所述步骤(3)中的所述第jy个误差计算函数采用
Figure GDA0001608848050000051
其中
Figure GDA0001608848050000052
为k时刻设定的第jy个输出期望值,yjy(k)为k时刻采样得到的第jy个输出实际值;或者采用
Figure GDA0001608848050000053
其中
Figure GDA0001608848050000054
为k+1时刻的第jy个输出期望值,yjy(k)为k时刻采样得到的第jy个输出实际值。
所述步骤(7)中的所述系统误差函数的自变量包含my个误差、my个输出期望值、my个输出实际值的任意之一或任意种组合。
所述步骤(7)中的所述系统误差函数为
Figure GDA0001608848050000055
其中,ejy(k)为第jy个误差,Δuju(k)=uju(k)-uju(k-1),ajy与bju为大于或等于0的常数,1≤jy≤my,1≤ju≤mu。
本发明提供的MIMO偏格式无模型控制器基于偏导信息的参数自整定方法,能够实现良好的控制效果,并有效克服惩罚因子λ和步长因子ρ1,…,ρL需要费时费力进行整定的难题。
附图说明
图1为本发明的原理框图;
图2为本发明采用的BP神经网络结构示意图;
图3为两输入两输出MIMO系统在惩罚因子λ和步长因子ρ123同时自整定时第1个输出的控制效果图;
图4为两输入两输出MIMO系统在惩罚因子λ和步长因子ρ123同时自整定时第2个输出的控制效果图;
图5为两输入两输出MIMO系统在惩罚因子λ和步长因子ρ123同时自整定时的控制输入图;
图6为两输入两输出MIMO系统在惩罚因子λ和步长因子ρ123同时自整定时的惩罚因子λ变化曲线;
图7为两输入两输出MIMO系统在惩罚因子λ和步长因子ρ123同时自整定时的步长因子ρ123变化曲线;
图8为两输入两输出MIMO系统在惩罚因子λ固定而步长因子ρ123自整定时第1个输出的控制效果图;
图9为两输入两输出MIMO系统在惩罚因子λ固定而步长因子ρ123自整定时第2个输出的控制效果图;
图10为两输入两输出MIMO系统在惩罚因子λ固定而步长因子ρ123自整定时的控制输入图;
图11为两输入两输出MIMO系统在惩罚因子λ固定而步长因子ρ123自整定时的步长因子ρ123变化曲线。
具体实施方式
下面结合附图和具体实施例对本发明进一步说明。
图1给出了本发明的原理框图。针对具有mu个输入(mu为大于或等于2的整数)与my个输出(my为大于或等于2的整数)的MIMO(Multiple Input and Multiple Output,多输入多输出)系统,采用MIMO偏格式无模型控制器进行控制;确定MIMO偏格式无模型控制器的控制输入线性化长度常数L,L为大于1的整数;MIMO偏格式无模型控制器参数包含惩罚因子λ和步长因子ρ1,…,ρL;确定MIMO偏格式无模型控制器待整定参数,其为所述MIMO偏格式无模型控制器参数的部分或全部,包含惩罚因子λ和步长因子ρ1,…,ρL的任意之一或任意种组合;在图1中,MIMO偏格式无模型控制器待整定参数为惩罚因子λ和步长因子ρ1,…,ρL;确定BP神经网络的输入层节点数、隐含层节点数、输出层节点数,其中输出层节点数不少于所述MIMO偏格式无模型控制器待整定参数个数;初始化BP神经网络的隐含层权系数、输出层权系数;初始化集合{偏导信息集}中的偏导信息。
将当前时刻记为k时刻;将第jy个输出期望值
Figure GDA0001608848050000071
与第jy个输出实际值yjy(k)之差作为k时刻的第jy个误差ejy(k);针对MIMO系统的其他my-1个输出,重复执行直至得到由my个误差所构成的误差向量e(k)=[e1(k),…,emy(k)]T;然后,将集合{偏导信息集}中的偏导信息作为BP神经网络的输入,BP神经网络进行前向计算,计算结果通过BP神经网络的输出层输出,得到MIMO偏格式无模型控制器待整定参数的值;基于误差向量e(k)、MIMO偏格式无模型控制器待整定参数的值,采用MIMO偏格式无模型控制器的控制算法,计算得到MIMO偏格式无模型控制器针对被控对象在k时刻的控制输入向量u(k)=[u1(k),…,umu(k)]T;针对控制输入向量u(k)中的第ju个控制输入uju(k),计算所述第ju个控制输入uju(k)分别针对各个所述MIMO偏格式无模型控制器待整定参数在k时刻的梯度信息,并将全部所述梯度信息的集合记为{梯度信息ju},放入集合{梯度信息集},同时将所述{梯度信息ju}集合中的梯度信息依序记为前一时刻的偏导信息,并将上述偏导信息的集合记为{偏导信息ju},放入集合{偏导信息集};针对控制输入向量u(k)中的其他mu-1个控制输入,重复执行直至集合{梯度信息集}包含全部{{梯度信息1},…,{梯度信息mu}}的集合,同时集合{偏导信息集}包含全部{{偏导信息1},…,{偏导信息mu}}的集合;随后,结合所述集合{梯度信息集},以系统误差函数的值最小化为目标,图1中以综合考虑全部my个误差贡献的系统误差函数
Figure GDA0001608848050000081
的值最小化为目标,采用梯度下降法,进行系统误差反向传播计算,更新BP神经网络的隐含层权系数、输出层权系数,作为后一时刻BP神经网络进行前向计算时的隐含层权系数、输出层权系数;控制输入向量u(k)作用于被控对象后,得到被控对象在后一时刻的my个输出实际值,然后重复执行本段落所述的工作,进行后一时刻的MIMO偏格式无模型控制器基于偏导信息的参数自整定过程。
图2给出了本发明采用的BP神经网络结构示意图。BP神经网络可以采用隐含层为单层的结构,也可以采用隐含层为多层的结构。在图2的示意图中,为简明起见,BP神经网络采用了隐含层为单层的结构,即采用由输入层、单层隐含层、输出层组成的三层网络结构,输入层节点数设为my×待整定参数个数(图2中待整定参数个数为L+1个),隐含层节点数10个,输出层节点数设为待整定参数个数(图2中待整定参数个数为L+1个)。输入层节点数分为my组,每组的节点数为待整定参数个数,其中第ju组的节点与{偏导信息ju}集合中的偏导信息
Figure GDA0001608848050000082
分别对应。输出层的节点,与惩罚因子λ和步长因子ρ1,…,ρL分别对应。BP神经网络的隐含层权系数、输出层权系数的更新过程具体为:以系统误差函数的值最小化为目标,图2中以综合考虑全部my个误差贡献的系统误差函数
Figure GDA0001608848050000083
的值最小化为目标,采用梯度下降法,结合所述集合{梯度信息集},进行系统误差反向传播计算,从而更新BP神经网络的隐含层权系数、输出层权系数。
以下是本发明的一个具体实施例。
被控对象为典型非线性的两输入两输出MIMO系统:
Figure GDA0001608848050000084
Figure GDA0001608848050000091
Figure GDA0001608848050000092
Figure GDA0001608848050000093
y1(k)=x11(k)
y2(k)=x21(k)
其中,α(k)=1+0.1sin(2kπ/1500),β(k)=1+0.1cos(2kπ/1500)。
系统输出期望值y*(k)如下:
Figure GDA0001608848050000094
Figure GDA0001608848050000095
在本具体实施例中,mu=my=2。
MIMO偏格式无模型控制器的控制输入线性化长度常数L的数值通常根据被控对象的复杂程度和实际的控制效果进行设定,一般在1到10之间,过小会影响控制效果,过大会导致计算量大,所以一般常取3或5,在本具体实施例中L取为3。
BP神经网络采用由输入层、单层隐含层、输出层组成的三层网络结构,输入层节点数设为2×待整定参数个数,隐含层节点数设为10个,输出层节点数设为待整定参数个数。
针对上述具体实施例,共进行了两组试验验证。
第一组试验验证时,图2中BP神经网络的输入层节点数预设为8个,输出层节点数预设为4个,对惩罚因子λ和步长因子ρ123进行同时自整定,图3为第1个输出的控制效果图,图4为第2个输出的控制效果图,图5为控制输入图,图6为惩罚因子λ变化曲线,图7为步长因子ρ123变化曲线。结果表明,本发明的方法通过对惩罚因子λ和步长因子ρ123进行同时自整定,能够实现良好的控制效果,并且可以有效克服惩罚因子λ和步长因子ρ123需要费时费力进行整定的难题。
第二组试验验证时,图2中BP神经网络的输入层节点数预设为6个,输出层节点数预设为3个,首先将惩罚因子λ固定取值为第一组试验验证时惩罚因子λ的平均值,然后对步长因子ρ123进行自整定,图8为第1个输出的控制效果图,图9为第2个输出的控制效果图,图10为控制输入图,图11为步长因子ρ123变化曲线。结果同样表明,本发明的方法在惩罚因子λ固定时通过对步长因子ρ123进行自整定,能够实现良好的控制效果,并且可以有效克服步长因子ρ123需要费时费力进行整定的难题。
应该特别指出的是,在上述具体实施例中,将第jy个输出期望值
Figure GDA0001608848050000101
与第jy个输出实际值yjy(k)之差作为k时刻的第jy个误差ejy(k),也就是
Figure GDA0001608848050000102
仅为所述第jy个误差计算函数中的一种方法;也可以将k+1时刻第jy个输出期望值
Figure GDA0001608848050000103
与k时刻第jy个输出yjy(k)之差作为第jy个误差ejy(k),也就是
Figure GDA0001608848050000104
所述第jy个误差计算函数还可以采用自变量包含第jy个输出期望值与第jy个输出实际值的其他计算方法,举例来说,
Figure GDA0001608848050000105
对上述具体实施例的被控对象而言,采用上述不同的系统误差计算函数,都能够实现良好的控制效果。
更应该特别指出的是,在上述具体实施例中,在以系统误差函数的值最小化为目标来更新BP神经网络的隐含层权系数、输出层权系数时,所述系统误差函数采用了综合考虑全部my个误差贡献的系统误差函数
Figure GDA0001608848050000106
仅为所述系统误差函数中的一种函数;所述系统误差函数还可以采用自变量包含my个误差、my个输出期望值、my个输出实际值的任意之一或任意种组合的其他函数,举例来说,所述系统误差函数采用
Figure GDA0001608848050000107
Figure GDA0001608848050000111
也就是采用
Figure GDA0001608848050000112
的另一种函数形式;再举例来说,所述系统误差函数采用
Figure GDA0001608848050000113
其中,ejy(k)为第jy个误差,Δuju(k)=uju(k)-uju(k-1),ajy与bju为大于或等于0的常数,1≤jy≤my,1≤ju≤mu;显然,当bju等于0时,所述系统误差函数仅考虑了
Figure GDA0001608848050000114
的贡献,表明最小化的目标是系统误差最小,也就是追求精度高;而当bju大于0时,所述系统误差函数同时考虑
Figure GDA0001608848050000115
的贡献和
Figure GDA0001608848050000116
的贡献,表明最小化的目标在追求系统误差小的同时,还追求控制输入变化小,也就是既追求精度高又追求操纵稳。对上述具体实施例的被控对象而言,采用上述不同的系统误差函数,都能够实现良好的控制效果;与系统误差函数仅考虑
Figure GDA0001608848050000117
贡献时的控制效果相比,在系统误差函数同时考虑
Figure GDA0001608848050000118
的贡献和
Figure GDA0001608848050000119
的贡献时其控制精度略有降低而其操纵平稳性则有提高。
最后应该特别指出的是,所述MIMO偏格式无模型控制器待整定参数,包含惩罚因子λ和步长因子ρ1,…,ρL的任意之一或任意种组合;在上述具体实施例中,第一组试验验证时惩罚因子λ和步长因子ρ123实现了同时自整定,第二组试验验证时惩罚因子λ固定而步长因子ρ123实现了自整定;在实际应用时,还可以根据具体情况,选择待整定参数的任意种组合,举例来说,步长因子ρ12固定而惩罚因子λ、步长因子ρ3实现自整定;此外,MIMO偏格式无模型控制器待整定参数,包括但不限于惩罚因子λ和步长因子ρ1,…,ρL,举例来说,根据具体情况,还可以包括MIMO系统伪分块雅克比矩阵估计值
Figure GDA00016088480500001110
等参数。
上述具体实施方式用来解释说明本发明,仅为本发明的优选实施例,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改、等同替换、改进等,都落入本发明的保护范围。

Claims (3)

1.MIMO偏格式无模型控制器基于偏导信息的参数自整定方法,其特征在于包括以下步骤:
步骤(1):针对具有mu个输入与my个输出的MIMO(Multiple Input and MultipleOutput,多输入多输出)系统,其中mu为大于或等于2的整数,my为大于或等于2的整数,采用MIMO偏格式无模型控制器进行控制;确定所述MIMO偏格式无模型控制器的控制输入线性化长度常数L,L为大于1的整数;所述MIMO偏格式无模型控制器参数包含惩罚因子λ和步长因子ρ1,…,ρL;确定MIMO偏格式无模型控制器待整定参数,所述MIMO偏格式无模型控制器待整定参数,为所述MIMO偏格式无模型控制器参数的部分或全部,包含惩罚因子λ和步长因子ρ1,…,ρL的任意之一或任意种组合;确定BP神经网络的输入层节点数、隐含层节点数、输出层节点数,所述输出层节点数不少于所述MIMO偏格式无模型控制器待整定参数个数;初始化所述BP神经网络的隐含层权系数、输出层权系数;初始化集合{偏导信息集}中的偏导信息;
步骤(2):将当前时刻记为k时刻;
步骤(3):基于MIMO系统的第jy个输出期望值与第jy个输出实际值,其中1≤jy≤my,采用第jy个误差计算函数计算得到k时刻的第jy个误差,记为ejy(k);所述第jy个误差计算函数的自变量包含第jy个输出期望值与第jy个输出实际值;针对MIMO系统的其他my-1个输出,重复执行本步骤,直至得到由my个误差所构成的误差向量e(k)=[e1(k),…,emy(k)]T,然后进入步骤(4);
步骤(4):将所述集合{偏导信息集}中的偏导信息作为BP神经网络的输入,所述BP神经网络进行前向计算,计算结果通过所述BP神经网络的输出层输出,得到所述MIMO偏格式无模型控制器待整定参数的值;
步骤(5):基于步骤(3)得到的所述误差向量e(k)、步骤(4)得到的所述MIMO偏格式无模型控制器待整定参数的值,采用MIMO偏格式无模型控制器的控制算法,计算得到MIMO偏格式无模型控制器针对被控对象在k时刻的控制输入向量u(k)=[u1(k),…,umu(k)]T
步骤(6):针对步骤(5)得到的所述控制输入向量u(k)中的第ju个控制输入uju(k),其中1≤ju≤mu,计算所述第ju个控制输入uju(k)分别针对各个所述MIMO偏格式无模型控制器待整定参数在k时刻的梯度信息,具体计算公式如下:
当所述MIMO偏格式无模型控制器待整定参数中包含惩罚因子λ时,所述第ju个控制输入uju(k)针对所述惩罚因子λ在k时刻的梯度信息为:
Figure FDA0002553115360000021
当所述MIMO偏格式无模型控制器待整定参数中包含步长因子ρ1时,所述第ju个控制输入uju(k)针对所述步长因子ρ1在k时刻的梯度信息为:
Figure FDA0002553115360000022
当所述MIMO偏格式无模型控制器待整定参数中包含步长因子ρi且2≤i≤L时,所述第ju个控制输入uju(k)针对所述步长因子ρi在k时刻的梯度信息为:
Figure FDA0002553115360000023
其中,Δuj(k)=uj(k)-uj(k-1),
Figure FDA0002553115360000024
为k时刻的MIMO系统伪分块雅克比矩阵估计值,
Figure FDA0002553115360000025
Figure FDA0002553115360000026
的第i块,其中i=(1,…,L),
Figure FDA0002553115360000027
为矩阵
Figure FDA0002553115360000028
的第jy行第ju列元素,
Figure FDA0002553115360000029
为矩阵
Figure FDA00025531153600000210
的2范数;
上述全部所述梯度信息的集合记为{梯度信息ju},放入集合{梯度信息集};
将所述{梯度信息ju}集合中的梯度信息依序记为前一时刻的偏导信息,即:当所述MIMO偏格式无模型控制器待整定参数中包含惩罚因子λ时则所述{梯度信息ju}集合中的梯度信息
Figure FDA0002553115360000031
记为前一时刻的偏导信息
Figure FDA0002553115360000032
当所述MIMO偏格式无模型控制器待整定参数中包含步长因子ρi且1≤i≤L时则所述{梯度信息ju}集合中的梯度信息
Figure FDA0002553115360000033
记为前一时刻的偏导信息
Figure FDA0002553115360000034
上述全部所述偏导信息的集合记为{偏导信息ju},放入所述集合{偏导信息集};
针对步骤(5)得到的所述控制输入向量u(k)中的其他mu-1个控制输入,重复执行本步骤,直至所述集合{梯度信息集}包含全部{{梯度信息1},…,{梯度信息mu}}的集合,同时所述集合{偏导信息集}包含全部{{偏导信息1},…,{偏导信息mu}}的集合,然后进入步骤(7);
步骤(7):以系统误差函数的值最小化为目标,采用梯度下降法,结合步骤(6)得到的所述集合{梯度信息集},进行系统误差反向传播计算,更新BP神经网络的隐含层权系数、输出层权系数,作为后一时刻BP神经网络进行前向计算时的隐含层权系数、输出层权系数;所述系统误差函数的自变量包含my个误差、my个输出期望值、my个输出实际值的任意之一或任意种组合;
步骤(8):所述控制输入向量u(k)作用于被控对象后,得到被控对象在后一时刻的my个输出实际值,返回到步骤(2),重复步骤(2)到步骤(8)。
2.根据权利要求1所述的MIMO偏格式无模型控制器基于偏导信息的参数自整定方法,其特征在于,所述步骤(3)中的所述第jy个误差计算函数采用
Figure FDA0002553115360000035
其中
Figure FDA0002553115360000036
为k时刻设定的第jy个输出期望值,yjy(k)为k时刻采样得到的第jy个输出实际值;或者采用
Figure FDA0002553115360000041
其中
Figure FDA0002553115360000042
为k+1时刻的第jy个输出期望值,yjy(k)为k时刻采样得到的第jy个输出实际值。
3.根据权利要求1所述的MIMO偏格式无模型控制器基于偏导信息的参数自整定方法,其特征在于,所述步骤(7)中的所述系统误差函数为
Figure FDA0002553115360000043
其中,ejy(k)为第jy个误差,Δuju(k)=uju(k)-uju(k-1),ajy与bju为大于或等于0的常数,1≤jy≤my,1≤ju≤mu。
CN201711263354.5A 2017-12-04 2017-12-04 Mimo偏格式无模型控制器基于偏导信息的参数自整定方法 Active CN108287470B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711263354.5A CN108287470B (zh) 2017-12-04 2017-12-04 Mimo偏格式无模型控制器基于偏导信息的参数自整定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711263354.5A CN108287470B (zh) 2017-12-04 2017-12-04 Mimo偏格式无模型控制器基于偏导信息的参数自整定方法

Publications (2)

Publication Number Publication Date
CN108287470A CN108287470A (zh) 2018-07-17
CN108287470B true CN108287470B (zh) 2020-10-09

Family

ID=62831740

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711263354.5A Active CN108287470B (zh) 2017-12-04 2017-12-04 Mimo偏格式无模型控制器基于偏导信息的参数自整定方法

Country Status (1)

Country Link
CN (1) CN108287470B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109581864A (zh) * 2019-02-01 2019-04-05 浙江大学 参数自整定的mimo异因子偏格式无模型控制方法
CN109634109A (zh) * 2019-02-01 2019-04-16 浙江大学 Mimo异因子偏格式无模型控制方法
CN114690628A (zh) * 2020-12-31 2022-07-01 浙江大学 伪雅克比矩阵参数自整定的mimo紧格式无模型控制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5513098A (en) * 1993-06-04 1996-04-30 The Johns Hopkins University Method for model-free control of general discrete-time systems
CN1274435A (zh) * 1997-10-06 2000-11-22 美国通控集团公司 无模型自适应过程控制
CN101957598A (zh) * 2010-09-26 2011-01-26 上海电力学院 一种大时滞系统的灰色无模型控制方法
CN102033492A (zh) * 2010-12-29 2011-04-27 国核电力规划设计研究院 无源系统的线性神经元在线学习自适应控制方法及控制器
CN103064292A (zh) * 2013-01-15 2013-04-24 镇江市江大科技有限责任公司 基于神经网络逆的生物发酵自适应控制系统及控制方法
CN103399487A (zh) * 2013-07-30 2013-11-20 东北石油大学 一种基于非线性多入多出mimo系统的解耦控制方法及其装置
CN105676632A (zh) * 2016-01-26 2016-06-15 沈阳化工大学 一种基于无模型自适应的pvc聚合过程优化控制方法
CN107023825A (zh) * 2016-08-31 2017-08-08 西安艾贝尔科技发展有限公司 流化床锅炉控制与燃烧优化系统
CN107065572A (zh) * 2017-06-07 2017-08-18 海南大学 一种双输入双输出ndcs未知时延的混杂控制方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5513098A (en) * 1993-06-04 1996-04-30 The Johns Hopkins University Method for model-free control of general discrete-time systems
CN1274435A (zh) * 1997-10-06 2000-11-22 美国通控集团公司 无模型自适应过程控制
CN101957598A (zh) * 2010-09-26 2011-01-26 上海电力学院 一种大时滞系统的灰色无模型控制方法
CN102033492A (zh) * 2010-12-29 2011-04-27 国核电力规划设计研究院 无源系统的线性神经元在线学习自适应控制方法及控制器
CN103064292A (zh) * 2013-01-15 2013-04-24 镇江市江大科技有限责任公司 基于神经网络逆的生物发酵自适应控制系统及控制方法
CN103399487A (zh) * 2013-07-30 2013-11-20 东北石油大学 一种基于非线性多入多出mimo系统的解耦控制方法及其装置
CN105676632A (zh) * 2016-01-26 2016-06-15 沈阳化工大学 一种基于无模型自适应的pvc聚合过程优化控制方法
CN107023825A (zh) * 2016-08-31 2017-08-08 西安艾贝尔科技发展有限公司 流化床锅炉控制与燃烧优化系统
CN107065572A (zh) * 2017-06-07 2017-08-18 海南大学 一种双输入双输出ndcs未知时延的混杂控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
无模型自适应控制参数整定方法研究;郭代银;《中国优秀硕士学位论文全文数据库信息科技辑》;20150215(第2期);全文 *

Also Published As

Publication number Publication date
CN108287470A (zh) 2018-07-17

Similar Documents

Publication Publication Date Title
CN108287471B (zh) Mimo偏格式无模型控制器基于系统误差的参数自整定方法
CN108170029B (zh) Mimo全格式无模型控制器基于偏导信息的参数自整定方法
CN108345213B (zh) Mimo紧格式无模型控制器基于系统误差的参数自整定方法
CN108153151B (zh) Mimo全格式无模型控制器基于系统误差的参数自整定方法
CN109472418B (zh) 基于卡尔曼滤波的机动目标状态预测优化方法
CN108287470B (zh) Mimo偏格式无模型控制器基于偏导信息的参数自整定方法
Xiao et al. Online optimal control of unknown discrete-time nonlinear systems by using time-based adaptive dynamic programming
CN108132600B (zh) Mimo紧格式无模型控制器基于偏导信息的参数自整定方法
JP2004280792A (ja) リアルタイムモデル予測制御における二次のプログラミングに対する加速されたアクティブセット探索のシステムおよび方法
CN108181809B (zh) Miso紧格式无模型控制器基于系统误差的参数自整定方法
CN113934142B (zh) 非线性离散系统无模型自适应滑模约束事件触发控制方法
CN108121204A (zh) 一种组合体航天器姿态无模型的自适应控制方法和系统
CN113534679B (zh) 系统监测模型生成方法、处理器芯片以及工业系统
US20240220204A1 (en) Method for correcting dot product error of variable resistor array
CN108154231B (zh) Miso全格式无模型控制器基于系统误差的参数自整定方法
CN108052006B (zh) Mimo基于siso全格式无模型控制器与偏导信息的解耦控制方法
CN107942655B (zh) Siso紧格式无模型控制器基于系统误差的参数自整定方法
CN108062021B (zh) Siso全格式无模型控制器基于偏导信息的参数自整定方法
CN107942654B (zh) Siso偏格式无模型控制器基于偏导信息的参数自整定方法
CN108073072B (zh) Siso紧格式无模型控制器基于偏导信息的参数自整定方法
CN108107715B (zh) Miso全格式无模型控制器基于偏导信息的参数自整定方法
CN108008634B (zh) Miso偏格式无模型控制器基于偏导信息的参数自整定方法
CN108181808B (zh) Miso偏格式无模型控制器基于系统误差的参数自整定方法
CN108107722B (zh) Mimo基于siso偏格式无模型控制器与系统误差的解耦控制方法
CN107991866B (zh) Mimo基于siso紧格式无模型控制器与偏导信息的解耦控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant