CN108281493A - 二硒化钨和金属垂直型肖特基结自驱动光电探测器及制备 - Google Patents

二硒化钨和金属垂直型肖特基结自驱动光电探测器及制备 Download PDF

Info

Publication number
CN108281493A
CN108281493A CN201810011780.8A CN201810011780A CN108281493A CN 108281493 A CN108281493 A CN 108281493A CN 201810011780 A CN201810011780 A CN 201810011780A CN 108281493 A CN108281493 A CN 108281493A
Authority
CN
China
Prior art keywords
tungsten
photodetector
schottky junction
driving
tunnel layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810011780.8A
Other languages
English (en)
Other versions
CN108281493B (zh
Inventor
张跃
杜君莉
张铮
柳柏杉
张先坤
王可汗
于慧慧
高丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN201810011780.8A priority Critical patent/CN108281493B/zh
Publication of CN108281493A publication Critical patent/CN108281493A/zh
Application granted granted Critical
Publication of CN108281493B publication Critical patent/CN108281493B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开一种二硒化钨和金属垂直型肖特基结自驱动光电探测器及制备,属于材料应用技术领域。本发明包括绝缘衬底、隧穿层、金属电极、二硒化钨纳米片。本发明利用光照下二硒化钨和金属形成的肖特基结所产生的光伏效应,实现器件自驱动探测,垂直结构扩大结区受光面积,控制二硒化钨层数实现探测波长范围可调,隧穿层抑制反向电流的增加,提高了探测器的灵敏度和响应时间。

Description

二硒化钨和金属垂直型肖特基结自驱动光电探测器及制备
技术领域
本发明属于材料应用技术领域,特别是涉及一种二硒化钨和金属垂直型肖特基结自驱动光电探测器及制备。
背景技术
2011年,B.Radisavl jevic等人发现以单层二硫化钼为代表的过渡金属硫族化合物,不同于石墨烯的零带隙,这类层状材料具有非常优越的光、电、磁等物理化学性能,在电子学、光电子学领域受到了广泛的关注,被认为是发展下一代纳米光电器件的候选者。二硒化钨作为典型的双极型二维半导体,层与层之间通过范德华键作用连接;带隙可由多层的间接带隙(1.3 电子伏特)变化到单层的直接带隙(1.67电子伏特)。其高载流子迁移率(空穴迁移率250平方厘米每伏每秒),电子迁移率160平方厘米每伏每秒),超快响应时间(1皮秒),可作为电子器件、光电探测器等技术领域的优异候选者。
目前基于二硒化钨的光电探测器主要有二硒化钨光晶体管和PN结型光电探测器。虽然二硒化钨光晶体管可以实现高的光响应度,但响应时间长,且需要外加电源。虽然结型探测器可以解决响应时间长、外加电源的问题,但同质PN结型光电探测器需要复杂的掺杂工艺,异质PN结需要多种材料复合,增加器件成本。
发明内容
为了解决上述问题,本发明提出了一种二硒化钨和金属垂直型肖特基结自驱动光电探测器。该探测器利用二硒化钨纳米片与金属形成的肖特基结来有效分离光生电子空穴对,利用光照下肖特基结所产生的光伏效应,实现器件自驱动探测,垂直结构扩大了结区有效光照面积,隧穿层抑制反向光电流的增加,提高了探测器的灵敏度和响应时间。
本发明的技术方案是:一种二硒化钨和金属垂直型肖特基结自驱动光电探测器,该探测器利用二硒化钨纳米片与金属形成的肖特基结来有效分离光生电子空穴对,在光照下二硒化钨和金属肖特基结所产生的光伏效应,实现器件自驱动探测,垂直结构扩大结区受光面积,控制二硒化钨层数实现探测波长范围可调,隧穿层抑制反向电流的增加,提高了探测器的灵敏度和响应时间。
进一步,该自驱动光电探测器包括源极,隧穿层,二硒化钨层,漏极,绝缘衬底;
其中,所述源极设置在所述绝缘衬底一侧的上端,所述隧穿层覆盖在所述源极和所述绝缘衬底的另一侧,所述二硒化钨层覆盖在所述隧穿层上,所述漏极设置在所述绝缘衬底的另一侧的所述二硒化钨层上端。
进一步,所述隧穿层厚度为0.2-2纳米。
进一步,所述二硒化钨层为通过气相沉积法或者机械剥离获得二硒化钨纳米片,所述二硒化钨纳米片厚度为0.7-100纳米。
进一步,所述源极为铝、钛、铬或银电极,厚度为20-100纳米。
进一步,所述隧穿层为三氧化二铝、二氧化铪或二氧化硅,
进一步,所述的漏极包括钯、铂、金、石墨烯、有机电极,厚度为0.7-100纳米。
进一步,所述的绝缘衬底为二氧化硅衬底、蓝宝石衬底或氮化铝衬底。
本发明的另一目的是提供上述自驱动光电探测器的制备方法,该方法具体包括以下步骤:
步骤1. 将绝缘衬底依次放入丙酮、乙醇、去离子水三种溶液中超声清洗15分钟,取出,吹干;
步骤2. 利用热蒸镀或电子束蒸镀在绝缘衬底上蒸镀源极;
步骤3. 采用原子层沉积技术在源极上沉积隧穿层;
步骤4. 将二硒化钨转移至源极上;
步骤5. 在二硒化钨上制备漏极,即得到所述二硒化钨和金属垂直肖特基结自驱动光电探测器。
进一步,所述二硒化钨和金属垂直肖特基结自驱动光电探测器的对633纳米光的响应时间上升沿0.05秒,下降沿0.08秒,暗电流达到10-15安,光电流为10-8安。
本发明的有益效果是,由于采用上述技术方案,本发明的二硒化钨和金属垂直型肖特基结自驱动光电探测器,利用二硒化钨纳米片与金属形成的肖特基结有效分离光生电子空穴对,在光照下利用肖特基结所产生的光伏效应,实现自驱动器件探测,垂直结构扩大了结区有效光照面积,隧穿层抑制反向光电流的增加,提高了探测器的灵敏度和响应时间。
附图说明
图1为一种二硒化钨和金属垂直肖特基结自驱动光电探测器的器件示意图;
图2为实例一中肖特基型自驱动光电探测器的时间-电流曲线;
图中:
1.源极、2.隧穿层、3.二硒化钨纳米片、4.漏极、5.绝缘衬底。
具体实施方式
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
下面结合实例对本发明的技术方案进行详细说明,显然,所描述的实例仅仅是本发明中很小的一部分,而不是全部的实例。基于本发明中的实例,本领域人员在没有做出创造性劳动前提下所获得的所有其他实例,都属于本发明保护的范围。
如图1所示,本发明一种二硒化钨和金属垂直型肖特基结自驱动光电探测器,该探测器利用二硒化钨纳米片与金属形成的肖特基结来有效分离光生电子空穴对,在光照下二硒化钨和金属肖特基结所产生的光伏效应,实现器件自驱动探测,垂直结构扩大结区受光面积,控制二硒化钨层数实现探测波长范围可调,隧穿层抑制反向电流的增加,提高了探测器的灵敏度和响应时间。
该自驱动光电探测器包括源极1,隧穿层2,二硒化钨层3,漏极4,绝缘衬底5;
其中,所述源极1设置在所述绝缘衬底5一侧的上端,所述隧穿层2覆盖在所述源极1和所述绝缘衬底5的另一侧,所述二硒化钨层3覆盖在所述隧穿层2上,所述漏极4设置在所述绝缘衬底5的另一侧的所述二硒化钨层3上端。
所述隧穿层2厚度为0.2-2纳米。
所述二硒化钨层3为通过气相沉积法或者机械剥离获得二硒化钨纳米片,所述二硒化钨纳米片厚度为0.7-100纳米。
所述源极1为铝、钛、铬或银电极,厚度为20-100纳米。
所述隧穿层2为三氧化二铝、二氧化铪或二氧化硅,
所述的漏极4为钯、铂、金、石墨烯或有机电极,厚度为0.7-100纳米。
所述的绝缘衬底2为二氧化硅衬底、蓝宝石衬底或氮化铝衬底。
本发明一种制备上述的自驱动光电探测器的方法,该方法具体包括以下步骤:
步骤1. 将绝缘衬底依次放入丙酮、乙醇、去离子水三种溶液中超声清洗15分钟,取出,吹干;
步骤2. 利用热蒸镀或电子束蒸镀在绝缘衬底上蒸镀源极;
步骤3. 采用原子层沉积技术在源极上沉积隧穿层;
步骤4. 将二硒化钨转移至源极上;
步骤5. 在二硒化钨上制备漏极,即得到所述二硒化钨和金属垂直肖特基结自驱动光电探测器。
所述二硒化钨和金属垂直肖特基结自驱动光电探测器的对633纳米光的响应时间上升沿0.05秒,下降沿0.08秒,暗电流达到10-15安,光电流为10-8安。
实施例1
二硒化钨和金属垂直肖特基结自驱动光电探测器,包括源极铝电极,隧穿层三氧化二铝,机械剥离的3纳米厚二硒化钨,漏极钯电极,绝缘衬底二氧化硅。铝电极厚度为20纳米;三氧化二铝厚度为0.5纳米;钯电极厚度为30纳米。光电探测器具体制备步骤为:首先,将绝缘衬底二氧化硅依次放入丙酮、乙醇、去离子水三种溶液中超声清洗15分钟,取出,氮气吹干;接着,利用热蒸镀或电子束蒸镀在二氧化硅上蒸镀铝电极;然后,采用原子层沉积技术在铝电极上沉积隧穿层三氧化二铝;再次,将二硒化钨转移至隧穿层上;最后,在二硒化钨上制备钯电极,即得到所述二硒化钨和金属垂直肖特基结自驱动光电探测器。光电探测器的对633纳米光的响应时间上升沿0.05秒,下降沿0.08秒,暗电流达到10-15安,光电流为10-8安。
实施例2
二硒化钨和金属垂直肖特基结自驱动光电探测器,包括源极铝电极,隧穿层三氧化二铝,机械剥离的1纳米厚二硒化钨,漏极钯电极,绝缘衬底二氧化硅。钛电极厚度为20纳米;三氧化二铝厚度为0.3纳米;钯电极厚度为50纳米。光电探测器具体制备步骤为:首先,将绝缘衬底二氧化硅依次放入丙酮、乙醇、去离子水三种溶液中超声清洗15分钟,取出,氮气吹干;接着,利用热蒸镀或电子束蒸镀在二氧化硅上蒸镀钛电极;然后,采用原子层沉积技术在钛电极上沉积隧穿层三氧化二铝;再次,将二硒化钨转移至隧穿层上;最后,在二硒化钨上制备钯电极,即得到所述二硒化钨和金属垂直肖特基结自驱动光电探测器。光电探测器的对白光的响应时间上升沿0.01秒,下降沿0.03秒,暗电流达到10-15安,光电流为10-8安。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (9)

1.一种二硒化钨和金属垂直型肖特基结自驱动光电探测器,其特征在于,该探测器利用二硒化钨纳米片与金属形成的肖特基结来有效分离光生电子空穴对,在光照下二硒化钨和金属肖特基结所产生的光伏效应,实现器件自驱动探测,垂直结构扩大结区受光面积,控制二硒化钨层数实现探测波长范围可调,隧穿层抑制反向电流的增加,提高了探测器的灵敏度和响应时间。
2.根据权利要求1所述的自驱动光电探测器,其特征在于,该自驱动光电探测器包括源极,隧穿层,二硒化钨层,漏极,绝缘衬底;
其中,所述源极设置在所述绝缘衬底一侧的上端,所述隧穿层覆盖在所述源极和所述绝缘衬底的另一侧,所述二硒化钨层覆盖在所述隧穿层上,所述漏极设置在所述绝缘衬底的另一侧的所述二硒化钨层上端。
3.根据权利要求2所述的自驱动光电探测器,其特征在于,所述隧穿层厚度为0.2-2纳米。
4.根据权利要求2所述的自驱动光电探测器,其特征在于,所述二硒化钨层为通过气相沉积法或者机械剥离获得二硒化钨纳米片,所述二硒化钨纳米片厚度为0.7-100纳米。
5.根据权利要求2所述的自驱动光电探测器,其特征在于,所述源极为铝、钛、铬或银电极,厚度为20-100纳米。
6.根据权利要求2所述的自驱动光电探测器,其特征在于,所述隧穿层为三氧化二铝、二氧化铪或二氧化硅。
7.根据权利要求2所述的自驱动光电探测器,其特征在于,所述的漏极包括钯、铂、金、石墨烯、有机电极,厚度为0.7-100纳米。
8.根据权利要求2所述的自驱动光电探测器,其特征在于,所述的绝缘衬底为二氧化硅衬底、蓝宝石衬底或氮化铝衬底。
9.一种制备如权利要求1-8任意一项所述的自驱动光电探测器的方法,其特征在于,该方法具体包括以下步骤:
步骤1. 将绝缘衬底依次放入丙酮、乙醇、去离子水三种溶液中超声清洗15分钟,取出,吹干;
步骤2. 利用热蒸镀或电子束蒸镀在绝缘衬底上蒸镀源极;
步骤3. 采用原子层沉积技术在源极上沉积隧穿层;
步骤4. 将二硒化钨转移至源极上;
步骤5. 在二硒化钨上制备漏极,即得到所述二硒化钨和金属垂直肖特基结自驱动光电探测器。
CN201810011780.8A 2018-01-05 2018-01-05 二硒化钨和金属垂直型肖特基结自驱动光电探测器及制备 Active CN108281493B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810011780.8A CN108281493B (zh) 2018-01-05 2018-01-05 二硒化钨和金属垂直型肖特基结自驱动光电探测器及制备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810011780.8A CN108281493B (zh) 2018-01-05 2018-01-05 二硒化钨和金属垂直型肖特基结自驱动光电探测器及制备

Publications (2)

Publication Number Publication Date
CN108281493A true CN108281493A (zh) 2018-07-13
CN108281493B CN108281493B (zh) 2019-11-12

Family

ID=62803339

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810011780.8A Active CN108281493B (zh) 2018-01-05 2018-01-05 二硒化钨和金属垂直型肖特基结自驱动光电探测器及制备

Country Status (1)

Country Link
CN (1) CN108281493B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111245416A (zh) * 2020-01-17 2020-06-05 北京科技大学 一种二维水平同质结、自驱动逻辑光电开关及其制备方法
CN111509076A (zh) * 2020-04-30 2020-08-07 华南理工大学 一种具有低暗电流的自驱动型光电探测器及其制备方法
CN114927587A (zh) * 2022-03-15 2022-08-19 中国民用航空飞行学院 一种基于三元材料平面隧穿效应的光电探测器及制备方法
CN115000230A (zh) * 2022-06-13 2022-09-02 太原理工大学 一种垂直结构TiN增强型4H-SiC基宽谱光电探测器及制备方法
JP2023081818A (ja) * 2021-12-01 2023-06-13 レイナジー テック インコーポレイション 光電子半導体構造

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013063399A1 (en) * 2011-10-28 2013-05-02 Georgetown University Method and system for generating a photo-response from mos2 schottky junctions
CN104393093A (zh) * 2014-11-13 2015-03-04 北京工业大学 应用石墨烯的高探测率氮化镓基肖特基型紫外探测器
CN107221575A (zh) * 2017-07-12 2017-09-29 中国科学院上海技术物理研究所 基于二维材料垂直肖特基结近红外探测器及制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013063399A1 (en) * 2011-10-28 2013-05-02 Georgetown University Method and system for generating a photo-response from mos2 schottky junctions
CN104393093A (zh) * 2014-11-13 2015-03-04 北京工业大学 应用石墨烯的高探测率氮化镓基肖特基型紫外探测器
CN107221575A (zh) * 2017-07-12 2017-09-29 中国科学院上海技术物理研究所 基于二维材料垂直肖特基结近红外探测器及制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHAO XIE: ""Photodetectors Based on Two-Dimensional Layered Materials Beyond Graphene"", 《ADV. FUNCT. MATER.》 *
FAN GONG: ""Visible to near-infrared photodetectors based on MoS2 vertical Schottky junctions"", 《NANOTECHNOLOGY》 *
NIHAR R. PRADHAN: ""High Photoresponsivity and Short Photoresponse Times in Few-Layered WSe2 Transistors"", 《ACS APPL. MATER. INTERFACES》 *
SEON NAMGUNG: ""Multimodal Photodiode and Phototransistor Device Based on Two-Dimensional Materials"", 《ACS NANO》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111245416A (zh) * 2020-01-17 2020-06-05 北京科技大学 一种二维水平同质结、自驱动逻辑光电开关及其制备方法
CN111245416B (zh) * 2020-01-17 2022-04-05 北京科技大学 一种二维水平同质结、自驱动逻辑光电开关及其制备方法
CN111509076A (zh) * 2020-04-30 2020-08-07 华南理工大学 一种具有低暗电流的自驱动型光电探测器及其制备方法
CN111509076B (zh) * 2020-04-30 2021-07-20 华南理工大学 一种具有低暗电流的自驱动型光电探测器及其制备方法
JP2023081818A (ja) * 2021-12-01 2023-06-13 レイナジー テック インコーポレイション 光電子半導体構造
CN114927587A (zh) * 2022-03-15 2022-08-19 中国民用航空飞行学院 一种基于三元材料平面隧穿效应的光电探测器及制备方法
CN114927587B (zh) * 2022-03-15 2024-03-22 中国民用航空飞行学院 一种基于三元材料平面隧穿效应的光电探测器及制备方法
CN115000230A (zh) * 2022-06-13 2022-09-02 太原理工大学 一种垂直结构TiN增强型4H-SiC基宽谱光电探测器及制备方法
CN115000230B (zh) * 2022-06-13 2024-03-22 太原理工大学 一种垂直结构TiN增强型4H-SiC基宽谱光电探测器及制备方法

Also Published As

Publication number Publication date
CN108281493B (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
CN108281493B (zh) 二硒化钨和金属垂直型肖特基结自驱动光电探测器及制备
Ahmadi et al. A review on organic–inorganic halide perovskite photodetectors: device engineering and fundamental physics
Du et al. Piezotronic effect on interfacial charge modulation in mixed-dimensional van der Waals heterostructure for ultrasensitive flexible photodetectors
CN105762281A (zh) 一种铁电局域场增强型二维半导体光电探测器及制备方法
JP5937006B2 (ja) 単一またはいくつかの層のグラフェン・ベースの光検出デバイスおよびその形成方法
KR101558801B1 (ko) 그래핀-실리콘 양자점 하이브리드 구조를 이용한 포토 다이오드 및 그 제조방법
JP2022519403A (ja) MXene改質ハイブリッド光変換器
Pradel et al. Optoelectronic properties of solution grown ZnO np or pn core–shell nanowire arrays
CN107221575B (zh) 基于二维材料垂直肖特基结近红外探测器及制备方法
CN108198897B (zh) 一种石墨烯场效应晶体管量子点光电探测器及其制备方法
CA2943028A1 (en) Hole blocking, electron transporting and window layer for optimized cuin(1-x)ga(x)se2 solar cells
Kim et al. High-performing ITO/CuO/n-Si photodetector with ultrafast photoresponse
Tang et al. Fast response CdS-CdSxTe1− x-CdTe core-shell nanobelt photodetector
Itkis et al. Enhanced photosensitivity of electro-oxidized epitaxial graphene
TW201802907A (zh) 奈米異質結構
Nguyen et al. Self-powered transparent photodetectors for broadband applications
CN114023844A (zh) 一种自驱动光电探测器及其制备方法
TW201802951A (zh) 奈米異質結構及奈米電晶體的製備方法
Wang et al. New approach to low-power-consumption, high-performance photodetectors enabled by nanowire source-gated transistors
CN111211186A (zh) 一种提高光电探测性能的MoS2光电晶体管及其制备方法
CN107706260B (zh) 一种二硒化钨薄片/氧化铟纳米线复合结构近红外光电探测器及其制备方法
CN106098804B (zh) 石墨烯/氧化锌单晶基片肖特基结紫外光电探测器及其制备方法
KR102221178B1 (ko) 광대역 포토디텍터 및 그 제조 방법
Odeh et al. Metal oxides in electronics
Pandey et al. Enhanced sub-band gap photosensitivity by an asymmetric source–drain electrode low operating voltage oxide transistor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant