CN108264092A - 一种高循环性能锂离子电池负极材料Fe2O3纳米针叶的制备方法 - Google Patents

一种高循环性能锂离子电池负极材料Fe2O3纳米针叶的制备方法 Download PDF

Info

Publication number
CN108264092A
CN108264092A CN201810133652.0A CN201810133652A CN108264092A CN 108264092 A CN108264092 A CN 108264092A CN 201810133652 A CN201810133652 A CN 201810133652A CN 108264092 A CN108264092 A CN 108264092A
Authority
CN
China
Prior art keywords
lithium ion
ion battery
solution
negative material
battery negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810133652.0A
Other languages
English (en)
Other versions
CN108264092B (zh
Inventor
陈泽华
张波
邢宝林
陈兴颖
张火利
曹建亮
孙广
孟哈日巴拉
张传祥
张战营
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Technology
Original Assignee
Henan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Technology filed Critical Henan University of Technology
Priority to CN201810133652.0A priority Critical patent/CN108264092B/zh
Publication of CN108264092A publication Critical patent/CN108264092A/zh
Application granted granted Critical
Publication of CN108264092B publication Critical patent/CN108264092B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种高循环性能锂离子电池负极材料Fe2O3纳米针叶的制备方法,具体步骤如下:(1)取硝酸亚铁溶液,加入十二烷基苯磺酸钠调节硝酸亚铁溶液的pH=1.5~3.5,然后加入氢氧化钾溶液,继续搅拌10 h~13h;(2)将步骤(1)搅拌好的溶液转入水热反应釜中,加入十二烷基硫酸钠调节溶液pH=8~10,进行水热反应;(3)反应结束后,抽滤,干燥得到样品,将样品煅烧后得高循环性能锂离子电池负极材料Fe2O3纳米针叶。本发明制备的针状的Fe2O3在用于锂离子电池负极材料时,其独特的结构对于在充放电过程中,缩短了离子的传输路径,对于电池的循环性能有着极大的好处。

Description

一种高循环性能锂离子电池负极材料Fe2O3纳米针叶的制备 方法
技术领域
本发明属于新能源材料制备技术领域,具体涉及一种高循环性能锂离子电池负极材料Fe2O3纳米针叶的制备方法。
背景技术
氧化铁(Fe2O3),一种n型半导体材料,其禁带宽度较窄(2.2eV左右),具有良好耐候性、耐光性、无毒性和对紫外线具有良好的吸收和屏蔽作用,可广泛应用于涂料、油墨、吸附、催化、气敏和湿敏材料、电化学、生物医学工程等领域。由于纳米氧化铁具有诸多的优点和广泛的应用前景,近年来国内外研究者对其投入了大量的研究,包括应用于锂离子电池领域。通常认为扩散电阻、电导率、电荷传递电阻对LIB负极的电化学性能具有重要影响,使用纳米尺寸的负极材料不仅可以降低锂离子在电极体内的扩散长度,而且可以大大地增加表面反应活化位,因而,使用纳米尺寸Fe2O3作为LIB的电极活性材料,将极大地降低负极反应的过电位,提高其倍率性能。我们所采用的就是减小氧化铁的粒度,进而提高其电化学性能。通过以上方案制备的纳米针叶状的Fe2O3,直径极小,能够有效减短粒子传输路径,增大粒子的传输速度,进而改善其比容量性能。
发明内容
针对现有技术中存在的问题,本发明提供一种高循环性能锂离子电池负极材料Fe2O3纳米针叶的制备方法,这种材料具有极好的比容量性能,同其他同类材料相比,性能更加优越。
为解决上述技术问题,本发明采用以下技术方案:
一种高循环性能锂离子电池负极材料Fe2O3纳米针叶的制备方法,具体步骤如下:
(1)取硝酸亚铁溶液,加入十二烷基苯磺酸钠调节硝酸亚铁溶液的pH=1.5 ~ 3.5,然后加入氢氧化钾溶液,继续搅拌10 h ~13h;
(2)将步骤(1)搅拌好的溶液转入水热反应釜中,加入十二烷基硫酸钠调节溶液pH=8~10,进行水热反应;
(3)反应结束后,抽滤,干燥得到样品,将样品煅烧后得高循环性能锂离子电池负极材料Fe2O3纳米针叶。
所述步骤(1)中硝酸亚铁溶液的浓度为(3.5-4.6) mol/L,氢氧化钾溶液的浓度为(4.2-5.7)mol/L,硝酸亚铁溶液与氢氧化钾溶液的体积比1:1-3。
所述步骤(2)中水热反应的温度为110℃~150℃,水热反应的时间为3 h-5h;
所述步骤(3)中的煅烧温度为300℃-400℃,煅烧时间为2h~6h。
本发明的有益效果:1、本发明制备的针状的Fe2O3在用于锂离子电池负极材料时,其独特的结构对于在充放电过程中,缩短了离子的传输路径,对于电池的循环性能有着极大的好处;2、该制备工艺下,十二烷基苯磺酸钠调节表面活性剂的加入不仅对产物的晶型、结晶度等产生了影响,同样对合成样品的相貌也有不同的影响;3、十二烷基硫酸钠表面活性剂的加入,对溶液体系的离子强度和溶液的粘度都有一定程度的改变,从而对反应离子的移动性和晶核的形成速度产生了影响,为了促进生成α-FeOOH,最终形成的产物具有相同的尺寸和形貌;4、α-FeOOH会在反应过程中形成的胶体表面进行吸附,从而改变形核与结晶长大的动力学过程,同时离子的选择性吸附还会引起各向异性生长;纳米粒胶体表面会发生吸附,由于带有同性的电荷,相互排斥作用使得纳米粒子不易团聚,具有更好的分散性,晶粒会沿着特定的取向进行排列,随着结晶的进一步长大,形成的纳米粒子会定向排列为针叶状α-FeOOH,通过煅烧反应形成针状结构的 α-Fe2O3。此外,该方法制备的样品晶型完好,并且几乎没有杂质,成本较低,适合大范围推广。
附图说明
图1为本发明实施例1所制备的纳米针叶状Fe2O3的XRD图。
图2为本发明实施例1所制备的纳米针叶状Fe2O3的SEM图。
图3为本发明实施例1所制备的纳米针叶状Fe2O3在0.2 C条件下的循环性能图。
具体实施方式
下面结合具体实施例,对本发明做进一步说明。应理解,以下实施例仅用于说明本发明而非用于限制本发明的范围,该领域的技术熟练人员可以根据上述发明的内容作出一些非本质的改进和调整。
实施例1
本实施例的高循环性能锂离子电池负极材料Fe2O3纳米针叶的制备方法,步骤如下:
(1)取浓度为4.2 mol/L的硝酸亚铁溶液,采用十二烷基苯磺酸钠调节至pH=3,然后加入浓度为5.3 mol/L氢氧化钾溶液,继续搅拌10h,硝酸亚铁溶液和氢氧化钾溶液的体积比为1:1.5;
(2)将上述搅拌好的溶液转入150mL的水热反应釜中,然后采用十二烷基硫酸钠将溶液pH调节至9,在温度为150℃条件下,水热反应3 h;
(3)将上述所得产品抽滤,干燥之后将样品在350℃煅烧4h后得到针叶状结构纳米氧化铁。
图1为实施例1所制备的针叶状纳米氧化铁的XRD图,对比后发现制备的产品晶型优异,纯度较高,结晶度较好。
图2为实施例1所制备的针叶状纳米氧化铁的SEM图,图中的产物都为纳米针叶状,纳米针叶状直径为50nm,表面光滑。
图3为实施例1所制备的针叶状纳米氧化铁电化学循环性能图,在0.2 C下,电压窗口在0 ~ 3.0V之间,经过100次的循环性能图,在0.2 C倍率下,初始容量为998.6 mAh/g,经过100次循环后,电化学容量为990.9 mAh/g,容量保持率为99.2%。
实施例2
本实施例的高循环性能锂离子电池负极材料Fe2O3纳米针叶的制备方法,步骤如下:
(1)取浓度为3.5 mol/L的硝酸亚铁溶液,采用十二烷基苯磺酸钠调节至pH=3.5,然后加入浓度为4.2 mol/L氢氧化钾溶液,继续搅拌12h,硝酸亚铁溶液和氢氧化钾溶液的体积比为1:3;
(2)将上述搅拌好的溶液转入150mL的水热反应釜中,然后采用十二烷基硫酸钠将溶液pH调节至10,在温度为110℃条件下,水热反应5h;
(3)将上述所得产品抽滤,干燥之后将样品在300℃煅烧6h后得到针叶状结构纳米氧化铁。
实施例3
本实施例的高循环性能锂离子电池负极材料Fe2O3纳米针叶的制备方法,步骤如下:
(1)取浓度为4.6 mol/L的硝酸亚铁溶液,采用十二烷基苯磺酸钠调节至pH=1.5,然后加入浓度为5.7 mol/L氢氧化钾溶液,继续搅拌13h,硝酸亚铁溶液和氢氧化钾溶液的体积比为1:3;
(2)将上述搅拌好的溶液转入150mL的水热反应釜中,然后采用十二烷基硫酸钠将溶液pH调节至8,在温度为130℃条件下,水热反应4h;
(3)将上述所得产品抽滤,干燥之后将样品在400℃煅烧2h后得到针叶状结构纳米氧化铁。
以上显示和描述了本发明的基本原理和主要特征以及本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (4)

1.一种高循环性能锂离子电池负极材料Fe2O3纳米针叶的制备方法,其特征在于步骤如下:
(1)取硝酸亚铁溶液,加入十二烷基苯磺酸钠调节硝酸亚铁溶液的pH=1.5 ~ 3.5,然后加入氢氧化钾溶液,继续搅拌10 h ~13h;
(2)将步骤(1)搅拌好的溶液转入水热反应釜中,加入十二烷基硫酸钠调节溶液pH=8~10,进行水热反应;
(3)反应结束后,抽滤,干燥得到样品,将样品煅烧后得高循环性能锂离子电池负极材料Fe2O3纳米针叶。
2.根据权利要求1所述的高循环性能锂离子电池负极材料Fe2O3纳米针叶的制备方法,其特征在于:所述步骤(1)中硝酸亚铁溶液的浓度为(3.5-4.6) mol/L,氢氧化钾溶液的浓度为(4.2-5.7)mol/L,硝酸亚铁溶液与氢氧化钾溶液的体积比1:1-3。
3.根据权利要求1所述的高循环性能锂离子电池负极材料Fe2O3纳米针叶的制备方法,其特征在于:所述步骤(2)中水热反应的温度为110℃~150℃,水热反应的时间为3 h-5h。
4.根据权利要求1所述的高循环性能锂离子电池负极材料Fe2O3纳米针叶的制备方法,其特征在于:所述步骤(3)中的煅烧温度为300℃-400℃,煅烧时间为2h~6h。
CN201810133652.0A 2018-02-09 2018-02-09 一种高循环性能锂离子电池负极材料Fe2O3纳米针叶的制备方法 Expired - Fee Related CN108264092B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810133652.0A CN108264092B (zh) 2018-02-09 2018-02-09 一种高循环性能锂离子电池负极材料Fe2O3纳米针叶的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810133652.0A CN108264092B (zh) 2018-02-09 2018-02-09 一种高循环性能锂离子电池负极材料Fe2O3纳米针叶的制备方法

Publications (2)

Publication Number Publication Date
CN108264092A true CN108264092A (zh) 2018-07-10
CN108264092B CN108264092B (zh) 2019-12-27

Family

ID=62774064

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810133652.0A Expired - Fee Related CN108264092B (zh) 2018-02-09 2018-02-09 一种高循环性能锂离子电池负极材料Fe2O3纳米针叶的制备方法

Country Status (1)

Country Link
CN (1) CN108264092B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820733A (ja) * 1981-07-29 1983-02-07 Kanto Denka Kogyo Kk 極微小な非針状鉄酸化物の製造方法
CN103204550A (zh) * 2013-04-12 2013-07-17 陕西科技大学 一种微米级Fe2O3 的可控制备方法
CN106328930A (zh) * 2016-10-13 2017-01-11 河南理工大学 高容量锂离子电池负极材料α‑Fe2O3的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5820733A (ja) * 1981-07-29 1983-02-07 Kanto Denka Kogyo Kk 極微小な非針状鉄酸化物の製造方法
CN103204550A (zh) * 2013-04-12 2013-07-17 陕西科技大学 一种微米级Fe2O3 的可控制备方法
CN106328930A (zh) * 2016-10-13 2017-01-11 河南理工大学 高容量锂离子电池负极材料α‑Fe2O3的制备方法

Also Published As

Publication number Publication date
CN108264092B (zh) 2019-12-27

Similar Documents

Publication Publication Date Title
CN104201359B (zh) 一种碳包覆纳米锑复合材料、其制备方法和应用
CN105958029B (zh) 一种锂离子电池负极复合材料钒酸锂/碳纳米管/碳的制备方法
CN109994321B (zh) 一种碳布基钴酸铁/二硫化钼分级结构电极材料的制备方法
CN109065847A (zh) 一种普鲁士白复合材料及其制备方法和应用
Liu et al. One-step microwave-controlled synthesis of CoV2O6• 2H2O nanosheet for super long cycle-life battery-type supercapacitor
CN105140494B (zh) 一种Fe3O4/Fe/C纳米复合电池电极材料的仿生合成方法
CN106711432B (zh) 一种三维网状结构MoO2纳米材料及其制备和应用
CN109437328A (zh) 一种纳米级短棒状多孔四氧化三钴电极材料的制备方法
CN108172770A (zh) 具有单分散结构特征的碳包覆NiPx纳米复合电极材料及其制备方法
CN108520827A (zh) 碳纤维/NiCo2O4/石墨烯复合材料的制备方法
CN107317011A (zh) 一种氮掺杂的有序多孔碳包覆硅纳米复合材料的制备方法
Wang et al. Advances of electrospun Mo-based nanocomposite fibers as anode materials for supercapacitors
CN108878174A (zh) 一种三氧化二铁纳米片/石墨烯电极材料的制备方法
CN107394178A (zh) 一种钠离子电池负极用碳酸钴/石墨烯复合材料及其制备方法与应用
CN104658771A (zh) 一种海胆状钒基纳米电极材料的制备方法及应用
CN107176590A (zh) 组分含量高度可控的三元异质结构材料及其制备方法
Yan et al. Flexible mixed metal oxide hollow spheres/RGO hybrid lamellar films for high performance supercapacitors
Chen et al. Manganese oxide/nitrogen-doped carbon aerogels from cellulose nanofibrils for high-performance supercapacitor electrodes
Chen et al. Sn doped ZnMn2O4 microspheres with excellent electrochemical performance and high cycle stability
Pan et al. Application of transition metal (Ni, Co and Zn) oxides based electrode materials for ion-batteries and supercapacitors
CN109659142A (zh) 一种石墨碳/金属氮化物复合纳米管阵列及其制备方法和应用
Fu et al. Co-doped nickel sulfide (NiS2) derived from bimetallic MOF for high-performance asymmetric supercapacitors
CN106129383B (zh) 一种具有纳米级两相梯度分布结构的球形锂离子电池正极材料及其合成方法
CN114573033A (zh) 一种团簇MnO2的制法、二次锌锰电池正极材料及二次锌锰电池
CN105098152B (zh) 一种磷酸铁锂电池正极材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191227

Termination date: 20210209