CN108262007A - 一种纳米铁氧化石墨烯复合材料及其应用 - Google Patents

一种纳米铁氧化石墨烯复合材料及其应用 Download PDF

Info

Publication number
CN108262007A
CN108262007A CN201611232580.2A CN201611232580A CN108262007A CN 108262007 A CN108262007 A CN 108262007A CN 201611232580 A CN201611232580 A CN 201611232580A CN 108262007 A CN108262007 A CN 108262007A
Authority
CN
China
Prior art keywords
graphene oxide
composite material
nanoscale iron
oxide composite
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611232580.2A
Other languages
English (en)
Inventor
谢越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Haimen Beauty Art Graphic Design Co Ltd
Original Assignee
Haimen Beauty Art Graphic Design Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haimen Beauty Art Graphic Design Co Ltd filed Critical Haimen Beauty Art Graphic Design Co Ltd
Priority to CN201611232580.2A priority Critical patent/CN108262007A/zh
Publication of CN108262007A publication Critical patent/CN108262007A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种纳米铁氧化石墨烯复合材料及其应用,纳米铁氧化石墨烯复合材料由如下方法制备:取氧化石墨烯粉末分散在去离子水中,超声分散均匀;将溶液放置于三口烧瓶中,并加入无水乙醇和聚乙二醇,再将一定量的硫酸亚铁加入到溶液中,搅拌溶解,然后滴加三乙胺,滴加完毕后继续搅拌反应,然后用无水乙醇真空抽滤洗涤三次,真空条件下烘干即得。本发明提供的纳米铁氧化石墨烯复合材料可以用于吸附水中环丙沙星。

Description

一种纳米铁氧化石墨烯复合材料及其应用
技术领域
本发明属于材料领域,具体涉及一种纳米铁氧化石墨烯复合材料及其应用。
背景技术
抗生素的生产及使用过程中,大量富含抗生素废水被排放到环境中。环丙沙星是一种在传染性疾病治疗方面最常用的抗生素,在环境中不易降解,易引发人类的口腔炎症、白细胞减少症以及呕吐等疾病。此外,水环境中环丙沙星的含量过高会导致抗药性细菌的增加,对水质产生不利的影响。因此,富含环丙沙星水体的排放受到严格的限制。
目前,去除废水中的环丙沙星的处理方法包括膜分离法、臭氧氧化法、光催化降解法和吸附法等。其中吸附法因设备简单、操作简便以及成本低廉,被认为是去除废水中环丙沙星的一种最有前景的方法。
用于水中环丙沙星去除的传统吸附剂有活性炭、粉煤灰、壳聚糖金属微粒、高岭土、粘土矿物、无定型氧化铁、活性炭负载锌、溶解性有机碳、碳纳米管以及土壤等。活性炭颗粒尺寸小、难以回收以及再生温度高,限制了其在水处理中的应用;粘土矿物具有较强的亲水性,但其细微颗粒在吸附污染物过程中难于分离沉降;膨润土最大吸附量39.76mg·g-1,但在碱性条件下吸附量急剧下降;碳纳米管最大吸附量不超过100mg·g-1;氧化石墨烯负载藻酸钙最大吸附量仅11.8mg·g-1,吸附效率也长达24h。这些材料都存在一些缺点,促使科研人员寻求新型的吸附材料。
发明内容
本发明的目的是提供一种纳米铁氧化石墨烯复合材料及其应用。
上述目的是通过如下技术方案实现的:
一种纳米铁氧化石墨烯复合材料,由如下方法制备:取氧化石墨烯粉末分散在去离子水中,超声分散均匀;将溶液放置于三口烧瓶中,并加入无水乙醇和聚乙二醇,再将一定量的硫酸亚铁加入到溶液中,搅拌溶解,然后滴加三乙胺,滴加完毕后继续搅拌反应,然后用无水乙醇真空抽滤洗涤三次,真空条件下烘干即得。
优选地,100ml去离子水中分散所述氧化石墨烯35-55g。
优选地,所述无水乙醇的体积为去离子水体积的3-7%。
优选地,所述聚乙二醇的体积为去离子水体积的1-5%。
优选地,所述硫酸亚铁的质量为氧化石墨烯质量的25-45%。
优选地,所述三乙胺的体积为去离子水体积的0.6-1.0%。
优选地,真空条件下烘干的温度为65-85℃。
本发明的有益效果:
本发明提供的纳米铁氧化石墨烯复合材料可以用于吸附水中环丙沙星。
具体实施方式
下面拟通过具体实施例具体介绍本发明创造的技术方案。
实施例1:
一种纳米铁氧化石墨烯复合材料,由如下方法制备:取氧化石墨烯粉末分散在去离子水中,超声分散均匀;将溶液放置于三口烧瓶中,并加入无水乙醇和聚乙二醇,再将一定量的硫酸亚铁加入到溶液中,搅拌溶解,然后滴加三乙胺,滴加完毕后继续搅拌反应,然后用无水乙醇真空抽滤洗涤三次,真空条件下烘干即得。
其中,100ml去离子水中分散所述氧化石墨烯45g。
其中,所述无水乙醇的体积为去离子水体积的5%;所述聚乙二醇的体积为去离子水体积的3%;所述硫酸亚铁的质量为氧化石墨烯质量的35%;所述三乙胺的体积为去离子水体积的0.8%。
其中,真空条件下烘干的温度为75℃。
实施例2:
一种纳米铁氧化石墨烯复合材料,由如下方法制备:取氧化石墨烯粉末分散在去离子水中,超声分散均匀;将溶液放置于三口烧瓶中,并加入无水乙醇和聚乙二醇,再将一定量的硫酸亚铁加入到溶液中,搅拌溶解,然后滴加三乙胺,滴加完毕后继续搅拌反应,然后用无水乙醇真空抽滤洗涤三次,真空条件下烘干即得。
其中,100ml去离子水中分散所述氧化石墨烯35g。
其中,所述无水乙醇的体积为去离子水体积的3%;所述聚乙二醇的体积为去离子水体积的1%;所述硫酸亚铁的质量为氧化石墨烯质量的25%;所述三乙胺的体积为去离子水体积的0.6%。
其中,真空条件下烘干的温度为65℃。
实施例3:
一种纳米铁氧化石墨烯复合材料,由如下方法制备:取氧化石墨烯粉末分散在去离子水中,超声分散均匀;将溶液放置于三口烧瓶中,并加入无水乙醇和聚乙二醇,再将一定量的硫酸亚铁加入到溶液中,搅拌溶解,然后滴加三乙胺,滴加完毕后继续搅拌反应,然后用无水乙醇真空抽滤洗涤三次,真空条件下烘干即得。
其中,100ml去离子水中分散所述氧化石墨烯55g。
其中,所述无水乙醇的体积为去离子水体积的7%;所述聚乙二醇的体积为去离子水体积的5%;所述硫酸亚铁的质量为氧化石墨烯质量的45%;所述三乙胺的体积为去离子水体积的1.0%。
其中,真空条件下烘干的温度为85℃。
实施例4:
一种纳米铁氧化石墨烯复合材料,由如下方法制备:取氧化石墨烯粉末分散在去离子水中,超声分散均匀;将溶液放置于三口烧瓶中,并加入无水乙醇和聚乙二醇,再将一定量的硫酸亚铁加入到溶液中,搅拌溶解,然后滴加三乙胺,滴加完毕后继续搅拌反应,然后用无水乙醇真空抽滤洗涤三次,真空条件下烘干即得。
其中,100ml去离子水中分散所述氧化石墨烯40g。
其中,所述无水乙醇的体积为去离子水体积的5%;所述聚乙二醇的体积为去离子水体积的3%;所述硫酸亚铁的质量为氧化石墨烯质量的35%;所述三乙胺的体积为去离子水体积的0.8%。
其中,真空条件下烘干的温度为75℃。
实施例5:
一种纳米铁氧化石墨烯复合材料,由如下方法制备:取氧化石墨烯粉末分散在去离子水中,超声分散均匀;将溶液放置于三口烧瓶中,并加入无水乙醇和聚乙二醇,再将一定量的硫酸亚铁加入到溶液中,搅拌溶解,然后滴加三乙胺,滴加完毕后继续搅拌反应,然后用无水乙醇真空抽滤洗涤三次,真空条件下烘干即得。
其中,100ml去离子水中分散所述氧化石墨烯50g。
其中,所述无水乙醇的体积为去离子水体积的5%;所述聚乙二醇的体积为去离子水体积的3%;所述硫酸亚铁的质量为氧化石墨烯质量的35%;所述三乙胺的体积为去离子水体积的0.8%。
其中,真空条件下烘干的温度为75℃。
实施例6:
一种纳米铁氧化石墨烯复合材料,由如下方法制备:取氧化石墨烯粉末分散在去离子水中,超声分散均匀;将溶液放置于三口烧瓶中,并加入无水乙醇和聚乙二醇,再将一定量的硫酸亚铁加入到溶液中,搅拌溶解,然后滴加三乙胺,滴加完毕后继续搅拌反应,然后用无水乙醇真空抽滤洗涤三次,真空条件下烘干即得。
其中,100ml去离子水中分散所述氧化石墨烯45g。
其中,所述无水乙醇的体积为去离子水体积的4%;所述聚乙二醇的体积为去离子水体积的3%;所述硫酸亚铁的质量为氧化石墨烯质量的35%;所述三乙胺的体积为去离子水体积的0.8%。
其中,真空条件下烘干的温度为75℃。
实施例7:
一种纳米铁氧化石墨烯复合材料,由如下方法制备:取氧化石墨烯粉末分散在去离子水中,超声分散均匀;将溶液放置于三口烧瓶中,并加入无水乙醇和聚乙二醇,再将一定量的硫酸亚铁加入到溶液中,搅拌溶解,然后滴加三乙胺,滴加完毕后继续搅拌反应,然后用无水乙醇真空抽滤洗涤三次,真空条件下烘干即得。
其中,100ml去离子水中分散所述氧化石墨烯45g。
其中,所述无水乙醇的体积为去离子水体积的6%;所述聚乙二醇的体积为去离子水体积的3%;所述硫酸亚铁的质量为氧化石墨烯质量的35%;所述三乙胺的体积为去离子水体积的0.8%。
其中,真空条件下烘干的温度为75℃。
本发明提供的纳米铁氧化石墨烯复合材料可以用于吸附水中环丙沙星。
上述具体实施例的作用在于说明本发明创造的实质性内容,但并不以此限定本发明创造的保护范围。对本发明创造的技术方案进行简单修改或等同替换,并不会脱离本发明创造技术方案的实质,因而必然落入本发明创造的保护范围。

Claims (7)

1.一种纳米铁氧化石墨烯复合材料,其特征在于,由如下方法制备:取氧化石墨烯粉末分散在去离子水中,超声分散均匀;将溶液放置于三口烧瓶中,并加入无水乙醇和聚乙二醇,再将一定量的硫酸亚铁加入到溶液中,搅拌溶解,然后滴加三乙胺,滴加完毕后继续搅拌反应,然后用无水乙醇真空抽滤洗涤三次,真空条件下烘干即得。
2.根据权利要求1所述的纳米铁氧化石墨烯复合材料,其特征在于:100ml去离子水中分散所述氧化石墨烯35-55g。
3.根据权利要求1所述的纳米铁氧化石墨烯复合材料,其特征在于:所述无水乙醇的体积为去离子水体积的3-7%。
4.根据权利要求1所述的纳米铁氧化石墨烯复合材料,其特征在于:所述聚乙二醇的体积为去离子水体积的1-5%。
5.根据权利要求1所述的纳米铁氧化石墨烯复合材料,其特征在于:所述硫酸亚铁的质量为氧化石墨烯质量的25-45%。
6.根据权利要求1所述的纳米铁氧化石墨烯复合材料,其特征在于:所述三乙胺的体积为去离子水体积的0.6-1.0%。
7.根据权利要求1所述的纳米铁氧化石墨烯复合材料,其特征在于:真空条件下烘干的温度为65-85℃。
CN201611232580.2A 2016-12-30 2016-12-30 一种纳米铁氧化石墨烯复合材料及其应用 Pending CN108262007A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611232580.2A CN108262007A (zh) 2016-12-30 2016-12-30 一种纳米铁氧化石墨烯复合材料及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611232580.2A CN108262007A (zh) 2016-12-30 2016-12-30 一种纳米铁氧化石墨烯复合材料及其应用

Publications (1)

Publication Number Publication Date
CN108262007A true CN108262007A (zh) 2018-07-10

Family

ID=62753587

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611232580.2A Pending CN108262007A (zh) 2016-12-30 2016-12-30 一种纳米铁氧化石墨烯复合材料及其应用

Country Status (1)

Country Link
CN (1) CN108262007A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111905697A (zh) * 2019-05-09 2020-11-10 安阳师范学院 一种石墨烯复合材料及其制备方法和应用
CN113267604A (zh) * 2021-05-17 2021-08-17 山东省海洋化工科学研究院 一种食品中金属汞的检测方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104096536A (zh) * 2013-04-01 2014-10-15 同济大学 一种磁性还原氧化石墨烯复合材料的制备及其用于去除水中喹诺酮类抗生素的方法
CN105561963A (zh) * 2015-12-17 2016-05-11 华南理工大学 一种纳米二氧化钛/氧化石墨烯复合材料及其制备方法与应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104096536A (zh) * 2013-04-01 2014-10-15 同济大学 一种磁性还原氧化石墨烯复合材料的制备及其用于去除水中喹诺酮类抗生素的方法
CN105561963A (zh) * 2015-12-17 2016-05-11 华南理工大学 一种纳米二氧化钛/氧化石墨烯复合材料及其制备方法与应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
姜鹏等: "氧化石墨烯负载零价纳米铁吸附水中环丙沙星的研究", 《环境科学学报》 *
许智华等: "纳米铁/活性炭新型材料的制备及其对铜离子的吸附性能研究", 《水资源与水工程学报》 *
陈华等: "改性纳米零价铁的制备及其去除水中的四环素", 《环境工程学报》 *
陈华等: "水合氢氧化铁的制备及其去除水中四环素的研究", 《安徽农业科学》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111905697A (zh) * 2019-05-09 2020-11-10 安阳师范学院 一种石墨烯复合材料及其制备方法和应用
CN113267604A (zh) * 2021-05-17 2021-08-17 山东省海洋化工科学研究院 一种食品中金属汞的检测方法

Similar Documents

Publication Publication Date Title
Li et al. Removal of phosphate from aqueous solution by dolomite-modified biochar derived from urban dewatered sewage sludge
Gopal et al. A review on tetracycline removal from aqueous systems by advanced treatment techniques
Li et al. Enhanced tetracycline adsorption onto hydroxyapatite by Fe (III) incorporation
Xiang et al. Carbon-based materials as adsorbent for antibiotics removal: mechanisms and influencing factors
Yang et al. Adsorption and reduction of Cr (VI) by a novel nanoscale FeS/chitosan/biochar composite from aqueous solution
Li et al. Graphene and graphene-based nanocomposites used for antibiotics removal in water treatment: A review
Cai et al. Highly active MgO nanoparticles for simultaneous bacterial inactivation and heavy metal removal from aqueous solution
Khan et al. CuO embedded chitosan spheres as antibacterial adsorbent for dyes
Wang et al. Highly efficient and rapid lead (II) scavenging by the natural artemia cyst shell with unique three-dimensional porous structure and strong sorption affinity
Yu et al. Benzene carboxylic acid derivatized graphene oxide nanosheets on natural zeolites as effective adsorbents for cationic dye removal
Bhatia et al. Application of nanoadsorbents for removal of lead from water
Hadi et al. Adsorption of 4-chlorophenol by magnetized activated carbon from pomegranate husk using dual stage chemical activation
Gao et al. Removal of tetracycline from wastewater using magnetic biochar: A comparative study of performance based on the preparation method
CN102774847A (zh) 一种新型磁性分子筛吸附剂材料的制备及使用方法
Ma et al. Honeycomb tubular biochar from fargesia leaves as an effective adsorbent for tetracyclines pollutants
Xu et al. Development of a novel mixed titanium, silver oxide polyacrylonitrile nanofiber as a superior adsorbent and its application for MB removal in wastewater treatment
CN109179554A (zh) 利用二氧化锰负载生物炭材料去除水体中强力霉素的方法
Bushra et al. Synthesis of polyaniline based composite material and its analytical applications for the removal of highly toxic Hg 2+ metal ion: Antibacterial activity against E. coli
Lu et al. Effective removal of tetracycline antibiotics from wastewater using practically applicable iron (III)-loaded cellulose nanofibres
Jin et al. Synthesis of nanocrystalline cellulose/hydroxyapatite nanocomposites for the efficient removal of chlortetracycline hydrochloride in aqueous medium
Wu et al. The removal of tetracycline, oxytetracycline, and chlortetracycline by manganese oxide–doped copper oxide: the behaviors and insights of Cu-Mn combination for enhancing antibiotics removal
Wernke et al. Ag and CuO nanoparticles decorated on graphene oxide/activated carbon as a novel adsorbent for the removal of cephalexin from water
Naghipoura et al. Removal of Cefixime from aqueous solutions by the biosorbent prepared from Pine Cones: kinetic and isotherm studies
Li et al. Enhanced adsorption for fluoroquinolones by MnOx-modified palygorskite composites: preparation, properties and mechanism
KR101679563B1 (ko) 다층막으로 된 하이드로젤 캡슐 및 이의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180710