CN108251423A - CRISPR-Cas9系统特异性靶向人RSPO2基因的sgRNA及激活方法和应用 - Google Patents

CRISPR-Cas9系统特异性靶向人RSPO2基因的sgRNA及激活方法和应用 Download PDF

Info

Publication number
CN108251423A
CN108251423A CN201711286245.5A CN201711286245A CN108251423A CN 108251423 A CN108251423 A CN 108251423A CN 201711286245 A CN201711286245 A CN 201711286245A CN 108251423 A CN108251423 A CN 108251423A
Authority
CN
China
Prior art keywords
sgrna
crispr
rspo2
cas9
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711286245.5A
Other languages
English (en)
Other versions
CN108251423B (zh
Inventor
虞玲华
姚明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
First Hospital of Jiaxing
Original Assignee
First Hospital of Jiaxing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by First Hospital of Jiaxing filed Critical First Hospital of Jiaxing
Priority to CN201711286245.5A priority Critical patent/CN108251423B/zh
Priority to US15/964,024 priority patent/US11015193B2/en
Publication of CN108251423A publication Critical patent/CN108251423A/zh
Application granted granted Critical
Publication of CN108251423B publication Critical patent/CN108251423B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1138Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against receptors or cell surface proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases [RNase]; Deoxyribonucleases [DNase]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2330/00Production
    • C12N2330/50Biochemical production, i.e. in a transformed host cell
    • C12N2330/51Specially adapted vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15041Use of virus, viral particle or viral elements as a vector
    • C12N2740/15043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2810/00Vectors comprising a targeting moiety
    • C12N2810/10Vectors comprising a non-peptidic targeting moiety

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • Mycology (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明公开了一种CRISPR‑Cas9系统特异性靶向人RSPO2基因的sgRNA及激活方法和应用,属于生物技术领域。该CRISPR‑Cas9系统能特异性激活人RSPO2基因的表达,导入人肝星状细胞能活化Wnt信号通路的活性,使肝纤维化的标志物α‑SMA和Collagen I的表达显著上调。表明本发明设计的针对RSPO2基因靶点的CRISPR‑Cas9系统能有效激活肝星状细胞,从而为肝纤维化研究提供一种有效途径。

Description

CRISPR-Cas9系统特异性靶向人RSPO2基因的sgRNA及激活方 法和应用
技术领域
本发明属于生物技术领域,具体地说,涉及CRISPR-Cas9系统中特异性靶向人RSPO2基因的sgRNA及激活方法和应用。
背景技术
规律成簇间隔短回文重复系统(CRISPR-Cas9)广泛存在于细菌和古细菌中,是由RNA介导、可遗传的获得性免疫系统。CRISPR(Clustered Regularly Interspaced ShortPalindromic Repeats)由高度保守的重复序列(repeats)和多个不同的间隔序列(spacer)顺序排列组成,重复序列长度通常21~48bp,重复序列之间被26~72bp的间隔序列隔开。Cas9(CRISPR associated)是一种双链DNA核酸酶,拥有两个结构域:①HNH-like结构域切割与crRNA(CRISPR RNA)互补的DNA链,②RuvC-like结构域切割非互补链。CRISPR-Cas9的基本机制为:①CRISPR序列转录并加工成crRNA,②tracrRNA(trans-activating crRNA)招募Cas9蛋白,③crRNA的间隔序列与与目标序列的PAM(Protospacer Adjacent Motif)邻近靶序列配对,指导Cas9蛋白切割目标序列。
CRISPR特异性编辑靶序列是通过crRNA和tracrRNA和靶序列互补识别实现的。现已将tracrRNA与crRNA表达为一条嵌合的向导RNA(single guide RNA,sgRNA),将CRISPR-Cas9系统简化为Cas9蛋白和sgRNA两个组分,使得CRISPR-Cas9系统具有构建简单、效率高、成本低廉等优点,是基因组编辑技术最合适的选择。为防止脱靶和错误靶向,设计精准靶向目标序列的sgRNA是CRISPR-Cas9系统的关键技术。
通过对Cas9蛋白改造,使Cas9的两个结构域失活(dCas9),形成的dCas9只具有结合基因组和sgRNA的能力而不具备切割DNA的能力。并将dCas9与转录调控蛋白(VP64、P65、HSF1)融合,可以特异性激活(CRISPR activation,CRISPRa)靶基因的表达。
肝纤维化是肝脏对各种原因所致慢性肝损伤的创伤愈合反应,导致肝小叶内和汇管区大量纤维组织增生和沉淀,病理学特点是以胶原蛋白为主的细胞外基质各种成分合成增多,降解相对不足,但并未形成小叶内间隔,如进一步发展则进入肝硬化。肝纤维化是可逆的过程,对肝纤维化的预防和早期干预是稳定病情、阻止肝纤维化向肝硬化和肝癌发展的最佳措施。
肝星状细胞是肝脏合成细胞外基质的主要细胞,其激活发生肌成纤维细胞的表型转换是肝纤维化发生的中心环节。肝星状细胞的激活受众多信号通路的调控,现有研究结果证实Wnt信号通路影响肝星状细胞的活化,阻断Wnt信号通路可抑制肝星状细胞的增殖及诱导其凋亡。但Wnt信号通路参与了多种生物学过程,包括细胞形态与功能的分化及维持、免疫、细胞癌变与凋亡,直接阻断该信号通路可能具有广泛的不良生物学效应。R-脊椎蛋白2(RSPO2)是新发现的Wnt信号通路的重要调控因子,RSPO2可以激活并增强Wnt/β-catenin信号通路,在生物体的组织分化、器官形成以及疾病发生过程中发挥重要作用。
在肝纤维化治疗的研究中,如何不直接阻断Wnt等重要信号通路而达到调控的肝星状细胞活化的目的,是一个亟待解决的重要问题。
发明内容
本发明的目的应用CRISPR-Cas9系统特异性激活人RSPO2基因,增强Wnt/β-catenin信号通路并活化肝星状细胞,为肝纤维化机制研究提供新的途径。本发明设计、合成了一组在CRISPR-Cas9特异性激活人RSPO2基因中特异性靶向RSPO2基因的sgRNA,将该sgRNA连接至慢病毒载体,并包装成慢病毒。
为解决上述技术问题,本发明的技术方案如下:
第一方面,本发明提供了一种CRISPR-Cas9系统中特异性靶向人RSPO2基因的sgRNA,所述sgRNA对应的DNA序列如SEQ ID NO:1、3、5中任意一条的第1~20位所示。
进一步的,SEQ ID NO:1、3、5中任意一条的第21~23位为该靶序列对应的PAM序列。
根据上述DNA序列,该CRISPR-Cas9系统中特异性靶向人RSPO2基因的sgRNA序列即如SEQ ID NO:2、4、6中任意一条所示。
第二方面,本发明提供了一种含有第一方面的各方案中中任一sgRNA对应的DNA序列的载体,所述的载体为病毒表达载体或非病毒表达载体,所述的DNA序列与载体相连。
进一步的,第二方面中所述的载体可以为CRISPR-Cas9重组慢病毒载体,其制备方法如下:首先合成寡核苷酸序列,寡核苷酸序列中:正义链:5`-CACC-G-(20N)-3`,反义链:5`-AAAC-(20N的互补序列)-C-3`,其中所述的20N为第一方面的各方案中中任一sgRNA对应的DNA序列;将所述正义链和反义链磷酸化和退火,形成带有BsmBI粘性末端的片段,然后将其连接至经过BmsBI酶切线性化的载体lenti sgRNA(MS2)_zeo backbone上,得到CRISPR-Cas9重组慢病毒载体。
第三方面,本发明提供了一种由第二方面所述的载体或者其优选的慢病毒载体包装的特异性激活RSPO2基因的CRISPR-Cas9系统。
第四方面,本发明提供了一种利用第三方面所述CRISPR-Cas9系统特异性激活人RSPO2基因的方法,其做法为:将所述的CRISPR-Cas9系统感染人肝星状细胞,特异性激活人RSPO2基因。该方法可以用于非诊断或治疗目的,例如为科学研究提供商业化服务、制备试剂盒、药物等方面,也可以用于通过激活人肝星状细胞治疗与RSPO2基因相关的疾病。
第五方面,本发明提供了如第四方面所述CRISPR-Cas9系统在制备激活肝星状细胞的药物或者试剂盒中的应用。
本发明的有益效果在于:本发明公开了一种应用CRISPR-Cas9特异性激活人RSPO2基因的方法及其在肝纤维化研究中的应用,该CRISPR-Cas9系统能特异性激活人RSPO2基因的表达,导入人肝星状细胞能活化Wnt信号通路的活性,使肝纤维化的标志物α-SMA和Collagen I的表达显著上调。表明本发明设计的针对RSPO2基因靶点的CRISPR-Cas9系统能有效激活肝星状细胞,从而为肝纤维化研究提供一种有效途径。
附图说明
图1为本发明中CRISPR-Cas9特异性激活人RSPO2基因的原理图
图2为特异性靶向RSPO2基因的CRISPR-Cas9质粒转化大肠杆菌DH5a(PX458_RSPO2_1、PX458_RSPO2_2和PX458_RSPO2_3)的测序结果
图3为293FT细胞转染含有RSPO2特异靶序列的CRISPR-Cas9质粒,48小时后收集细胞,PCR扩增RSPO2基因,产物经T7EI酶切电泳检测结果图
图4为针对RSPO2基因设计的1、2、3靶点的慢病毒载体测序结果图
图5为QPCR验证CRISPR-Cas9特异性激活人肝星状细胞中的RSPO2基因,上调了RSPO2的mRNA水平
图6为Western Blot验证CRISPR-Cas9体系激活人肝星状细胞中的RSPO2基因,上调了RSPO2蛋白水平
图7为免疫荧光验证CRISPR-Cas9体系激活人肝星状细胞中的RSPO2基因的靶点1,促进肝星状细胞纤维化
图8为MTT增殖检测验证CRISPR-Cas9体系激活人肝星状细胞中的RSPO2基因的靶点1,促进肝细胞细胞的增殖
具体实施方式
以下通过具体实施例对本发明作进一步说明,但其仅用于说明本发明,而不用于限定本发明的范围。
首先,构建CRISPR-Cas9特异性激活人RSPO2基因的方法包括以下步骤:
一、设计特异性靶向人RSPO2基因的sgRNA
1.靶向人RSPO2基因的sgRNA设计,sgRNA应满足以下条件:
(1)sgRNA长度为20个碱基序列;
(2)sgRNA在RSPO2基因上的靶点位于启动子区域。
(3)目前尚未有明确研究表明sgRNA靶点相对于转录起始位点(TSS)的位置对转录本转录激活的效率的影响,根据我们的前期工作和经验,选择在转录起始位点上游-120~-75处设计靶点。
(4)在RSPO启动子区域,选择PAM为5'-NGG。
(5)为使U6启动子有效,确保sgRNA靶序列起始为G为佳
(6)sgRNA靶序列格式为:
5`-G-(19N)-NGG-3`(sgRNA靶序列起始为G)
或5`-(20N)-NGG-3`(sgRNA靶序列起始不为G)
上述靶序列格式中,19N或20N表示靶位点的19或20个碱基序列
2.靶向人RSPO2基因的sgRNA选择
在NCBI数据库中用BLAST,确定sgRNA的靶序列唯一且不会与人RSPO2基因之外的其他基因序列同源。sgRNA还应该满足以下条件:
(1)sgRNA靶点位于DNA酶I超敏感位点(DNase I hypersensitive sites,DHSs)
(2)sgRNA靶点位于转录起始位点(TSS)上游-120~-75
(3)脱靶(Off-Target)率低
本发明中最终筛选得到3条针对不同位点的靶向人RSPO2基因的sgRNA序列,其对应的靶序列如表1所示。
表1、针对不同位点的靶向人RSPO2基因的sgRNA靶序列
二、构建特异性激活RSPO2基因的CRISPR-Cas9重组慢病毒载体
1.sgRNA的寡核苷酸构建
(1)根据选择的sgRNA,在对应的DNA序列的5`端加上CACC(BsmBI酶切位点粘性末端的互补序列)和G(确保U6启动子有效),得到正向寡核苷酸(Forward oligo)
(2)根据选择的sgRNA,获得其对应DNA的互补链,并在其5`端加上AAAC(BsmBI酶切位点粘性末端的互补序列),在3`端加上C,得到反向寡核苷酸(Reverse oligo)
(3)得到的寡核苷酸序列格式为:
正义链:5`-CACC-G-(20N)-3`
反义链:5`-AAAC-(20N)-C-3`
(4)分别合成上述正向寡核苷酸和反向寡核苷酸,如表2所示。
表2、包含特异性激活人RSPO2基因的sgRNA靶序列的寡核苷酸序列
寡核苷酸 寡核苷酸序列
正义链(1) 5`-CACCGCAACGTTCTTTAGGACCTCA-3`
反义链(1) 5`-AAACTGAGGTCCTAAAGAACGTTGC-3`
正义链(2) 5`-CAACGTTTAGGACCTCAGGGAAACC-3`
反义链(2) 5`-AAACGGTTTCCCTGAGGTCCTAAAC-3`
正义链(3) 5`-CACCGTTTAGGACCCAGGAACTCCG-3`
反义链(3) 5`-AAACCGGAGTTCCTGGGTCCTAAAC-3`
2.sgRNA靶点内源活性验证
将上述合成的寡核苷酸单链片段退火并连接至PX458载体质粒(Feng zhang,Nature Protocol 2013),PX458含Cas9和sgRNA backbone,该载体将在细胞内转录出特异性靶向RSPO2基因的sgRNA及剪切靶点的Cas9蛋白。退火及连接过程如下:
(1)寡核苷酸磷酸化;
(2)寡核苷酸退火并连接至载体;
(3)质粒转化大肠杆菌DH5a;
(4)筛选阳性克隆并测序鉴定
1)挑选菌落PCR初步鉴定阳性克隆;
2)筛选的阳性克隆进一步做测序分析;
(5)转染293FT细胞,PCR扩增RSPO2基因,T7EI酶切鉴定。
3.载体线性化及回收
慢病毒载体选用lenti sgRNA(MS2)_zeo backbone(Feng Zhang,Nature,2014),该载体含有BsmBI酶切位点来插入sgRNA,并含有一个U6启动子来控制sgRNA的表达。
采用BmsBI酶切载体lenti sgRNA(MS2)_zeo backbone,并采用DNA纯化产物试剂盒纯化回收酶切产物。
4.寡聚核苷酸磷酸化、退火、连接至载体lenti sgRNA(MS2)_zeo backbone
(1)将正义链、反义链磷酸化产物退火,形成带有BsmBI粘性末端的片段
(2)将以上片段分别连接酶切后的载体lenti sgRNA(MS2)_zeo backbone,形成CRISPR-Cas9重组慢病毒载体。
5.转化及测序
转化大肠杆菌DH5a,筛选阳性克隆并测序鉴定。
三、特异性激活人RSPO2基因的CRISPR-Cas9系统的有效性验证
将上述构建的特异性激活RSPO2基因的CRISPR-Cas9重组慢病毒载体、表达dCas9-VP64的质粒dCAS9-VP64_GFP(Feng Zhang,Nature 2014)、表达MS2-P65-HSF1的质粒lentiMS2-P65-HSF1_Hygro(Feng Zhang,Nature2014)共转染293FT细胞,回收细胞,通过对比GFP荧光表达验证RSPO2基因的表达情况。
四、慢病毒包装特异性激活RSPO2基因的CRISPR-Cas9系统
慢病毒包膜质粒pMD2.G(Addgene plasmid#12259)、慢病毒包装质粒psPAX2(Addgene plasmid#12260)含有病毒包装所必须的元件。将上述构建的慢病毒载体、dCAS9-VP64_GFP、lenti MS2-P65-HSF1_Hygro和慢病毒包装系统(PG-P1-VSVG、PG-P2-REV、PG-P3-RRE)转染293FT细胞,收集转染后的细胞,离心浓缩并过滤,慢病毒滴度试剂盒检测慢病毒滴度。
五、含特异性激活人RSPO2基因的CRISRP/Cas9系统的慢病毒的有效性验证
上述构建的特异性激活RSPO2基因的CRISPR-Cas9慢病毒感染人肝星状细胞。收集细胞进行QPCR检测,结果表明验证RSPO2基因的表达显著上调。同时应用Western Blot检测RSPO2蛋白水平,结果表明RSPO2蛋白水平显著上调。免疫荧光和MTT检测表明本发明所设计的CRISPR-Cas9系统上调了RSPO2靶基因的表达,从而促进了肝星状细胞的纤维化发展。
需要说明的是,本发明提供的各个sgRNA可以联合使用,可以是任意两种或多种sgRNA的联合使用,通过联合使用,CRISPR-Cas9系统可以靶向多个位点,从而能够更有效地激活人RSPO2基因。
以下将通过实施例对本发明进行详细描述,需要注意的是,下述实施例间并非独立进行的,而是依次连续的实施过程。以下实施例中所涉及的技术,包括细胞培养、载体构建、细胞转染、克隆、基因测序、Western blot检测、PCR扩增与检测、免疫荧光等分子生物学技术,除非特别说明,均为本领域内的技术人员已知的常规技术;所使用的仪器设备、试剂、质粒、细胞株等,除非特别注明,均为一般本领域的技术人员可以通过公共途径获得。
实施例1sgRNA序列设计
目前尚未有明确的sgRNA设计原则,以确保高效、特异性激活靶基因(CRISPRa)的表达。根据我们的前期工作和经验,本发明对sgRNA序列的设计方案如下:(1)sgRNA长度为20个碱基序列;(2)特异性激活人RSPO2基因的sgRNA在RSPO2基因上的靶点位于启动子区域;(3)选择在RSPO2基因转录起始位点上游-120~-75处设计靶点;(4)在RSPO启动子区域,选择PAM为5'-NGG;(5)为使载体的U6启动子有效,确保sgRNA靶序列起始为G;(6)sgRNA靶序列格式为:
5`-G-(19N)-NGG-3`(sgRNA靶序列起始为G)
或5`-(20N)-NGG-3`(sgRNA靶序列起始不为G)
上述靶序列格式中,19N或20N表示靶位点的19或20个碱基序列。
根据上述方法设计靶向人RSPO2基因的sgRNA序列,本发明实施例中选择其中10条sgRNA序列作为示例说明本发明的具体实现,10条sgRNA序列如序列表SEQ ID NO.2、4、6、8、10、12、14、16、18、20所示,其对应的DNA靶序列如序列表中单数序数SEQ ID NO.1、3、5、7、9、11、13、15、17、19所示(其中1~20位为靶序列,最后三位为PAM序列)。
实施例2sgRNA序列选择
使用Blast(www.ncbi.nlm.nig.gov/Blast)将候选sgRNA序列和基因组数据库进行同源分析,保证设计的sgRNA的靶序列唯一且不会与人RSPO2基因之外的其他基因序列同源。同时,根据以下原则筛选sgRNA,以得到高效、特异性激活人RSPO2基因的sgRNA序列:(1)sgRNA靶点位于DNA酶超敏感位点;(2)sgRNA靶点位于RSPO2基因转录起始位点上游-120~-75;(3)脱靶(Off-Target)率低
根据以上方法,在10条靶向人RSPO2基因的sgRNA中,仅筛选得到3条满足要求的针对不同位点的靶向人RSPO2基因的sgRNA序列(对应序列表中的SEQ ID NO.2、4、6),sgRNA的靶序列和对应的PAM序列如表1(对应序列表中的SEQ ID NO.1、3、5)。
实施例3sgRNA的寡核苷酸的合成
对上述靶向人RSPO2基因的sgRNA序列,两端分别加上BsmBI酶切位点和PAM序列:(1)根据选择的sgRNA,在靶序列的5`端加上CACC(BsmBI酶切位点粘性末端的互补序列)和G(确保U6启动子有效),得到正向寡核苷酸;(2)根据选择的sgRNA,获得其靶序列对应DNA的互补链,在其5`端加上AAAC(BsmBI酶切位点粘性末端的互补序列),在3`端加上C,得到反向寡核苷酸
应用化学合成法分别合成上述正向寡核苷酸和反向寡核苷酸,得到的寡聚核苷酸序列如表2。
实施例4sgRNA靶点内源活性验证
将上述合成的三对寡核苷酸单链片段(表2)退火并分别连接至PX458载体质粒(Feng zhang,Nature Protocol 2013),PX458含Cas9和sgRNA backbone,该载体将在细胞内转录出特异性靶向RSPO2基因的sgRNA及剪切靶点的Cas9蛋白。退火及连接过程如下:
1.寡核苷酸磷酸化
采用T4多聚磷酸酶(Takara)将合成的寡核苷酸磷酸化。
2.寡核苷酸退火
1)在无菌离心管中建立以下退火反应体系(室温):
2)95℃温育4分钟,70℃温育10分钟;
3)取出离心管,室温放置5-10分钟,冷却至室温;
4)短暂离心,混匀。
4.连接至载体
1)PX458质粒经BbsI酶切线性化,并采用DNA纯化产物试剂盒纯化回收酶切产物。
2)将退火产物连接至载体PX458,连接体系如下:
3)16℃温育1小时,最终得到载体PX458_RSPO2_1、PX458_RSPO2_2和PX458_RSPO2_3。
5.质粒转化大肠杆菌DH5a
1)DH5a感受态细菌4℃冰浴5分钟;
2)加入构建的质粒(PX458_RSPO2_1、PX458_RSPO2_2和PX458_RSPO2_3)各10μl,吹匀,4℃冰浴30分钟;
3)放入42℃水浴90s,迅速置于冰浴中3min;
4)加入LB细菌培养液(NaCl 1g,蛋白胨1g,酵母提取物0.5g,溶于100ml H2O,高压湿热灭菌)30μl,混匀,37℃水平震荡(180rpm)1小时;
5)取菌液100ul均匀涂布于LB固体培养基(含1/1000氨苄青霉素),37℃孵育过夜;
6)挑选5-10个克隆菌落,在含氨苄青霉素的LB琼脂培养基中摇菌。
6.筛选阳性克隆并测序鉴定
1)挑选菌落PCR初步鉴定阳性克隆
引物序列为:
上游引物:5`-GAGGGCCTATTTCCCATGATTCC-3`
扩增条件:94℃10分钟,1个循环;94℃30秒,55℃30秒,72℃30秒,30个循环;72℃6分钟,1个循环。
2)筛选的阳性克隆进一步做测序分析。测序结果(参见图2)表明载体构建成功。
7.转染293FT细胞,PCR扩增RSPO2基因,T7EI酶切鉴定
1)上述构建的载体质粒转染293FT细胞
2)流式分选转染阳性细胞
3)提取分选细胞的DNA,PCR扩增RSPO2基因
引物序列为:
上游引物:5`-GTTTCCTCAGGGCATTGCTT-3`,如序列表SEQ ID NO:21所示;
下游引物:5`-TGCATTATTTCCCTGGCTGA-3`,如序列表SEQ ID NO:22所示;
扩增条件:95℃3分钟,1个循环;94℃30秒,55℃30秒,30个循环;72℃6分钟,1个循环。
4)T7EI酶切鉴定
回收的PCR产物经T7Endonuclease I酶切鉴定,酶切体系:
37℃水浴45分钟,随后取10μl酶切产物采用琼脂糖凝胶电泳检测。结果表明(参
见图3):针对RSPO2基因的各个靶位点均有不同程度的突变。
实施例5慢病毒载体构建
将上述合成的三对寡核苷酸单链片段(表2)退火并分别连接至慢病毒载体,该载体将在细胞内转录出特异性靶向RSPO2基因的sgRNA。退火及连接过程如下:
1.载体线性化及回收
慢病毒载体选用lenti sgRNA(MS2)_zeo backbone(Feng Zhang,Nature,2014),该载体含有BsmBI酶切位点来插入sgRNA,并含有一个U6启动子来控制sgRNA的表达。
1)lenti sgRNA(MS2)_zeo backbone质粒用BmsBI酶切,酶切体系为:
2)37℃孵育3~4小时
3)采用DNA纯化产物试剂盒纯化回收酶切产物。
2.寡核苷酸磷酸化
采用T4多聚磷酸酶(Takara)将合成的寡核苷酸磷酸化。
3.寡核苷酸退火
1)在无菌离心管中建立以下退火反应体系(室温):
2)95℃温育4分钟,70℃温育10分钟;
3)取出离心管,室温放置5-10分钟,冷却至室温;
4)短暂离心,混匀。
4.连接至载体
1)将退火产物连接着载体lenti sgRNA(MS2)_zeo backbone,连接体系如下:
2)16℃温育1小时,最终得到慢病毒载体质粒:lenti_sgRNA_RSPO2_1、lenti_sgRNA_RSPO2_2和lenti_sgRNA_RSPO2_3。
5.转化大肠杆菌DH5a
1)取连接产物(lenti_sgRNA_RSPO2_1、lenti_sgRNA_RSPO2_2和lenti_sgRNA_RSPO2_3)各10ul,加入100ul DH5a感受态细胞中吹匀,放置冰中静置20min,再放入42℃水浴90s,迅速置于冰浴中3min,加入500ul LB液体培养基,放置摇床180rpm37℃1小时;
2)取菌液100ul均匀涂布于LB固体培养基(含1/1000氨苄青霉素),37℃培养过夜;
6.筛选阳性克隆并测序鉴定
1)挑选菌落PCR初步鉴定阳性克隆
引物序列为:
上游引物:5`-GAGGGCCTATTCCCATGATTCCTTCATAT-3`
下游引物:5`-CCTAGAAGGTCCATTAGCTGCAAAGATTCC-3`
扩增条件:94℃10分钟,1个循环;94℃30秒,55℃30秒,72℃30秒,30个循环;72℃6分钟,1个循环。
2)筛选的阳性克隆进一步做测序分析。结果表明(参见图4):慢病毒载体构建成功。
实施例6慢病毒载体有效性验证
1.293FT细胞以2×104细胞/孔接种于96孔板中,加入含10%胎牛血清的高糖DMEM培养基,37℃5%CO2培养箱培养;
2.感染前2h,将细胞培养基更换为无血清培养基;
3.待细胞融合度达70%时,转染慢病毒载体,共分四组:①阴性对照组、②lenti_sgRNA_RSPO2_1、③lenti_sgRNA_RSPO2_2、④lenti_sgRNA_RSPO2_3,各组均同时加入质粒dCAS9-VP64_GFP和lenti MS2-P65-HSF1_Hygro,反应体系:
4.转染48小时,回收细胞;
5.酶标仪在在激发光为485nm,发射光为533nm条件下检测样品的荧光强度;
6.计算荧光强度:
荧光强度=(转染组荧光强度-非转染组荧光强度)/非转染组荧光强度
结果显示含特异性激活RSPO2的CRISPR-Cas9系统的慢病毒载体(lenti_sgRNA_RSPO2_1、lenti_sgRNA_RSPO2_2和lenti_sgRNA_RSPO2_3)能有效地激活RSPO2基因表达。
实施例7慢病毒包装
质粒dCAS9-VP64_GFP(Feng Zhang,Nature 2014)表达dCAS9和VP64蛋白、质粒lenti MS2-P65-HSF1_Hygro(Feng Zhang,Nature 2014)表达MS2-P65-HSF1融合蛋白。慢病毒病毒包装系统为四质粒系统(上海吉玛基因),包括穿梭载体,PG-p1-VSVG,PG-P2-REV,PG-P3-RRE。其中穿梭载体能表达目的基因;PG-p1-VSVG、PG-P2-REV、PG-P3-RRE含有病毒包装所必须的元件。
1.细胞株
用0.25%胰酶消化生长状态良好的293T细胞,并于感染前一天接种到10cm培养皿(每个培养皿接种细胞约为2-2.5×106),37℃,CO2培养箱内培养;
2.慢病毒包装
dCAS9-VP64_GFP、lenti MS2-P65-HSF1_Hygro、构建的慢病毒载体(lenti_sgRNA_RSPO2_1、lenti_sgRNA_RSPO2_2和lenti_sgRNA_RSPO2_3)按以下方法准备:
1)该慢病毒包装系统的反应体系如下:
调整总体积为2.5ml,室温下温育5分钟;
2)取100μl Lipofectamine2000试剂在另一管中与2.4ml Opti-MEM混合,在室温下温育5分钟。把稀释后的DNA与稀释后的Lipofectamine2000进行混合,轻轻颠倒混匀5分钟。室温下温育20分钟;
3)将DNA与Lipofectamine2000混合液转移至细胞密度达70%-80%的293T细胞培养液中,混匀,培养4-6小时后更换DMEM(+10%FBS)培养基,于37℃,CO2培养箱继续培养48小时;
3.病毒收集与浓缩
1)收集转染后48-72小时(转染即可为0小时计起)293FT细胞上清液;
2)于4℃,4000g离心10min,除去细胞碎片;
3)以0.45um滤器上过滤上清液于40ml超速离心管中;
4)把病毒粗提液样品加入到过滤杯中(最多19ml),将过滤杯插到滤过液收集管中;
5)在4000×g离心,至需要的病毒浓缩体积。通常时间为10-15分钟;
6)离心结束后,取出装置,将过滤杯和下面的液收集分开;
7)离心力不超过1000g,时间为2分钟;
8)样品收集杯中的即为病毒浓缩液,获得病毒LV_dCAS9-VP64、LV_MS2-P65-HSF1、LV_RSPO2_1、LV_RSPO2_2和LV-RSPO2_3;
9)将病毒浓缩液移出,分装后保存在病毒管中,-80℃长期保存。
3.病毒滴度测定
采用quickTiter慢病毒滴度试剂盒检测慢病毒滴度
1)使用前按照试剂盒说明书准备好所有试剂并混合均匀;
2)每个慢病毒样品,标准病毒液,空白和对照培养基准备两个复孔;
3)添加100ul灭活的慢病毒样品、p24抗原标准品到p24抗体包被板;
4)用封闭膜将96孔板密封,置37℃孵育4小时;
5)去除封闭膜,弃去96孔板内液体,加入250ul 1x洗涤液洗涤,去除洗涤液,重复洗版3次,控干板子;
6)每空加入100ul稀释后的FITC标记的抗p24的单克隆抗体;
7)用板膜将96孔板密封,放置到摇床上,室温孵育1小时;
8)去除封板膜,弃去96孔板内液体,洗板3次;
9)每孔加入100ul稀释后的HRP标记的抗FITC的单克隆抗体。用封板膜将96孔板密封,放置摇床上,室温孵育1小时;
10)去除封板膜,弃去孔板内液体,洗涤3次,立即进行下一步;
11)将底物液平衡到室温,每孔加入100ul底物液,包括空白板。放置摇床上,室温孵育20-3分钟;
12)每孔加入100ul终止液终止反应,迅速读板。用酶标仪在450nm波长处,检测各孔吸光度值;
计算出慢病毒p24蛋白的量,一个慢病毒颗粒(LP)中大概有2000个p24分子根据公式1ng p24=1.25x107LP得到慢病毒滴度
表3.各慢病毒滴度
慢病毒 滴度
LV_dCAS9-VP64 2.47×106LP
LV_MS2-P65-HSF1 2.65×106LP
LV_RSPO2_1 4.13×106LP
LV_RSPO2_2 3.78×106LP
LV_RSPO2_3 3.93×106LP
实施例8转染人肝星状细胞株
1)培养人肝星状细胞,将细胞悬液接种于12孔板中,37℃5%CO2培养箱培养;
2)待细胞融合度达30%至40%时,将细胞分组:①阴性对照组:阴性对照慢病毒颗粒感染细胞;②RSPO2_1实验组:使用上述构建的LV_RSPO2_1、LV_dCAS9-VP64、LV_MS2-P65-HSF1慢病毒载体感染细胞;③RSPO2_2实验组:使用上述构建的LV_RSPO2_2、LV_dCAS9-VP64、LV_MS2-P65-HSF1慢病毒载体感染细胞;④RSPO2_3实验组:使用上述构建的LV_RSPO2_3、LV_dCAS9-VP64、LV_MS2-P65-HSF1慢病毒载体感染细胞;
3)取出4℃保存的病毒,使用台式离心机离心20秒;将按照MOI为0.2的慢病毒稀释到培养基中,并尽可总能保证所获得的含有慢病毒的培养基的体积为最小体积,以期获得最佳的感染效率;
4)细胞融合度为70%时,进行病毒感染:
a.使用移液器吸取准确体积的病毒液加入准备好的培养基
b.吸去原细胞培养器皿中的培养基(如果细胞生长良好,密度适宜,则不用换液)
c.在目的细胞和对照细胞中分别加入计算好的病毒液
d.混匀后放于二氧化碳培养箱(37℃、5%CO2)孵育过夜
5)12小时后观察细胞状态,未出现明显细胞毒性作用,继续培养48小时后更换培养基;若有明显细胞毒性,立即更换培养基;
6)感染4至5天后观察慢病毒报告基因GFP表达情况,感染效率低于50%者,重新进行感染;感染效率大于50%者继续培养,然后收集细胞作进一步检测。
实施例9QPCR检测
如实施例7所述,将构建的慢病毒转染人肝星状细胞,QPCR检测人肝星状细胞中RSPO2和肝纤维化标志物α-SMA、Collagen-I的mRNA水平。
1)PCR引物如下所示上游引物:
2)Trizol法提取总RNA,-80℃保存;
3)紫外分光光度计测定260nm和280nm波长处的吸光度值,计算提取的总RNA浓度;4)用逆转录试剂盒逆转录合成cDNA,反应体系如下:
25℃10分钟,42℃50分钟,85℃5分钟;-20℃保存;
5)PCR反应体系为:
在ABI 7500PCR仪上进行反应;
6)PCR条件:94℃4分钟,1个循环;94℃20秒,60℃30秒,72℃30秒,共35个循环;72℃延伸5分钟;
7)用SDS软件进行数据分析,用比较Ct值的方法分析结果,目的基因的表达量由β-actin进行标准化。
QPCR检测显示,与对照组相比,LV_RSPO2_1/LV_RSPO2_2/LV_RSPO2_3显著上调人肝星状细胞中的RSPO2和肝纤维化标志物α-SMA、Collagen-I(参见图5)的mRNA水平。表明本发明所设计的CRISPR-Cas9系统激活了RSPO2靶基因的表达,从而促进了肝星状细胞的激活。
实施例10Western blot检测
以LV_RSPO2_1为例,如实施例7所述,将构建的慢病毒转染人肝星状细胞,Westernblot法检测人肝星状细胞中RSPO2蛋白和肝纤维化标志物α-SMA、Collagen-I蛋白的表达。
1)RIPA裂解液提取人肝星状细胞的总蛋白;
2)用酶标仪测定562nm波长处各孔的吸光度,最后根据标准曲线计算蛋白浓度;
3)聚丙烯酰胺凝胶电泳分离、转膜、5%脱脂奶粉封闭后,分别加入RSPO2抗体(1:1000)、α-SMA抗体(1:300)和Collagen I抗体(1:1000),4℃孵育过夜;
4)洗膜后加入二抗(1:2000),室温孵育2小时后电化学发光试剂检测;
5)β-actin蛋白为内参照,凝胶扫描成像系统(美国Bio-Rad公司)对各条带的灰度值进行分析。
Western blot法检测显示,与对照组相比,LV_RSPO2_1显著上调人肝星状细胞中的RSPO2蛋白和肝纤维化标志物α-SMA蛋白、Collagen-I蛋白(参见图6)的表达。表明本发明所设计的CRISPR-Cas9系统上调了RSPO2靶基因的表达,从而促进了肝星状细胞的激活。
实施例11免疫荧光检测
以LV_RSPO2_1为例,如实施例7所述,将构建的慢病毒转染人肝星状细胞,免疫荧光法检测人肝星状细胞中RSPO2蛋白和肝纤维化标志物α-SMA的表达。
1)对慢病毒LV_RSPO2_1转染的人肝星状细胞,弃去培养基,用温育的PBS冲洗细胞2次,每次10分钟,然后用4%多聚甲醛在室温条件下固定细胞15分钟;
2)PBS冲洗细胞2次,每次10分钟,然后在4℃条件下,用0.1%Triton X-100透膜15分钟;
3)PBS冲洗细胞2次,每次10分钟,然后在室温条件下,用4%BSA封闭细胞30分钟;
4)按1:100的比例分别稀释各一抗(RSPO2和α-SMA),然后将其放在4℃冰箱中孵育过夜;
5)PBS冲洗细胞3次,每次10分钟,按1:100的比例稀释相应二抗,37℃条件下放置1小时;
6)用PBS冲洗3次,每次10分钟,最后DAPI染细胞核并用荧光显微镜拍照。
免疫荧光显示(参见图7),与对照组相比,LV_RSPO2_1显著上调了人肝星状细胞中RSPO2蛋白和α-SMA蛋白的表达。表明本发明所设计的CRISPR-Cas9系统上调了RSPO2靶基因的表达,从而促进了肝星状细胞的肝纤维化发展。
实施例12MTT增殖检测
以LV_RSPO2_1为例,如实施例7所述,将构建的慢病毒转染人肝星状细胞,MTT法检测人肝星状细胞的增殖情况。
1)人肝星状细胞接种于96孔培养板,每孔细胞密度为4×103
2)如实施例4所述,转染LV_RSPO2_1对照组慢病毒载体;
3)在转染后24小时、48小时和72小时,每孔加入10μL MTT液体;
4)37℃孵育4小时,每孔加入100μL DMSO,充分摇匀;
5)用酶标仪,以570nm的波长进行吸光度检测,计算细胞存活率。
MTT法检测显示(参见图8),与对照组相比,LV_RSPO2_1明显上调了人肝星状细胞的增殖。表明本发明所设计的CRISPR-Cas9系统上调了RSPO2靶基因的表达,从而促进了肝星状细胞的增殖。
序列表
<110> 嘉兴市第一医院
<120> CRISPR-Cas9系统特异性靶向人RSPO2基因的sgRNA及激活方法和应用
<160> 22
<170> SIPOSequenceListing 1.0
<210> 1
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
caacgttctt taggacctca ggg 23
<210> 2
<211> 20
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 2
caacguucuu uaggaccuca 20
<210> 3
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
tttaggacct cagggaaacc ggg 23
<210> 4
<211> 20
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 4
uuuaggaccu cagggaaacc 20
<210> 5
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
tttaggaccc aggaactccg agg 23
<210> 6
<211> 20
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 6
uuuaggaccc aggaacuccg 20
<210> 7
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
ctccaagtta ggcgcgctgt tgg 23
<210> 8
<211> 20
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 8
cuccaaguua ggcgcgcugu 20
<210> 9
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
gtccctttgg ccctgcaaag agg 23
<210> 10
<211> 20
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 10
gucccuuugg cccugcaaag 20
<210> 11
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
ggatgaatat cttcgtaggg tgg 23
<210> 12
<211> 20
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 12
ggaugaauau cuucguaggg 20
<210> 13
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 13
gtcgtggtgg atgaatatct tgg 23
<210> 14
<211> 20
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 14
gucguggugg augaauaucu 20
<210> 15
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 15
tctgaatcta cggaacctgg agg 23
<210> 16
<211> 20
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 16
ucugaaucua cggaaccugg 20
<210> 17
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 17
tccgtcggat ctgaatctac cgg 23
<210> 18
<211> 20
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 18
uccgucggau cugaaucuac 20
<210> 19
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 19
tcaacgttct ttaggacctc agg 23
<210> 20
<211> 20
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 20
ucaacguucu uuaggaccuc 20
<210> 21
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 21
gtttcctcag ggcattgctt 20
<210> 22
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 22
tgcattattt ccctggctga 20

Claims (8)

1.一种CRISPR-Cas9系统特异性靶向人RSPO2基因的sgRNA,其特征在于,所述sgRNA对应的DNA序列如SEQ ID NO:1、3、5中任意一条的第1~20位所示。
2.如权利要求1所述的CRISPR-Cas9系统特异性靶向人RSPO2基因的sgRNA,其特征在于,SEQ ID NO:1、3、5中任意一条的第21~23位为该靶序列对应的PAM序列。
3.一种CRISPR-Cas9系统特异性靶向人RSPO2基因的sgRNA,其特征在于,所述的sgRNA序列如SEQ ID NO:2、4、6中任意一条所示。
4.一种含有如权利要求1~3任一所述sgRNA对应的DNA序列的载体,所述的载体为病毒表达载体或非病毒表达载体,所述的DNA序列与载体相连。
5.如权利要求4所述的载体,其特征在于,为CRISPR-Cas9重组慢病毒载体,其制备方法如下:首先合成寡核苷酸序列,寡核苷酸序列中:正义链:5`-CACC-G-(20N)-3`,反义链:5`-AAAC-(20N的互补序列)-C-3`,其中所述的20N为权利要求1~3任一所述sgRNA对应的DNA序列;将所述正义链和反义链磷酸化和退火,形成带有BsmBI粘性末端的片段,然后将其连接至经过BmsBI酶切线性化的载体lenti sgRNA(MS2)_zeo backbone上,得到CRISPR-Cas9重组慢病毒载体。
6.一种由权利要求4或5所述载体包装的特异性激活RSPO2基因的CRISPR-Cas9系统。
7.一种利用如权利要求6所述CRISPR-Cas9系统特异性激活人RSPO2基因的方法,其特征在于,将所述的CRISPR-Cas9系统感染人肝星状细胞,特异性激活人RSPO2基因。
8.如权利要求6所述CRISPR-Cas9系统在制备激活肝星状细胞的药物或者试剂盒中的应用。
CN201711286245.5A 2017-12-07 2017-12-07 CRISPR-Cas9系统特异性靶向人RSPO2基因的sgRNA及激活方法和应用 Active CN108251423B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201711286245.5A CN108251423B (zh) 2017-12-07 2017-12-07 CRISPR-Cas9系统特异性靶向人RSPO2基因的sgRNA及激活方法和应用
US15/964,024 US11015193B2 (en) 2017-12-07 2018-04-26 sgRNA and method for specifically activating human RSPO2 gene with CRISPR-Cas9 and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711286245.5A CN108251423B (zh) 2017-12-07 2017-12-07 CRISPR-Cas9系统特异性靶向人RSPO2基因的sgRNA及激活方法和应用

Publications (2)

Publication Number Publication Date
CN108251423A true CN108251423A (zh) 2018-07-06
CN108251423B CN108251423B (zh) 2020-11-06

Family

ID=62721445

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711286245.5A Active CN108251423B (zh) 2017-12-07 2017-12-07 CRISPR-Cas9系统特异性靶向人RSPO2基因的sgRNA及激活方法和应用

Country Status (2)

Country Link
US (1) US11015193B2 (zh)
CN (1) CN108251423B (zh)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
CN110305902A (zh) * 2019-07-12 2019-10-08 和元生物技术(上海)股份有限公司 一种在工具细胞中激活hSyn启动子的方法及其应用
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
CN113388698A (zh) * 2021-05-24 2021-09-14 嘉兴市第一医院 一种可诊断带状疱疹的血液tsRNA标志物、制备及应用
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US12157760B2 (en) 2018-05-23 2024-12-03 The Broad Institute, Inc. Base editors and uses thereof
US12281338B2 (en) 2018-10-29 2025-04-22 The Broad Institute, Inc. Nucleobase editors comprising GeoCas9 and uses thereof
US12351837B2 (en) 2019-01-23 2025-07-08 The Broad Institute, Inc. Supernegatively charged proteins and uses thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109853046A (zh) * 2018-11-13 2019-06-07 云南中烟工业有限责任公司 一种快速构建CRISPR/Cas9基因编辑载体库的方法
CN110938659B (zh) * 2019-11-22 2022-05-10 广东省微生物研究所(广东省微生物分析检测中心) 一种提高纤维堆囊菌埃博霉素产量的dCas9载体及其构建方法
CN116064676B (zh) * 2022-08-24 2024-12-13 深圳市沃英达生命科学有限公司 CRISPRa介导的间充质干细胞制备胰岛素分泌细胞的方法
CN116064370B (zh) * 2022-08-24 2024-12-10 深圳市沃英达生命科学有限公司 利用基因编辑UC-MSC改善胰岛β细胞功能的方法
WO2024233985A1 (en) 2023-05-11 2024-11-14 N1 Life, Inc. Biodegradable oligomers and polymers for oligonucleotide and gene delivery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013666A3 (en) * 2005-07-26 2007-06-21 Kirin Brewery Anti-tumor agents comprising r-spondins
CN103237888A (zh) * 2010-07-29 2013-08-07 荷兰皇家科学院 肝脏的类器官、其用途以及获得它们的培养方法
CN105624162A (zh) * 2016-03-19 2016-06-01 嘉兴市第一医院 针对哺乳动物R-Spondin2基因靶点的小干扰RNA、短发卡RNA及载体和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013666A3 (en) * 2005-07-26 2007-06-21 Kirin Brewery Anti-tumor agents comprising r-spondins
CN103237888A (zh) * 2010-07-29 2013-08-07 荷兰皇家科学院 肝脏的类器官、其用途以及获得它们的培养方法
CN105624162A (zh) * 2016-03-19 2016-06-01 嘉兴市第一医院 针对哺乳动物R-Spondin2基因靶点的小干扰RNA、短发卡RNA及载体和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
余元勋等: "《中国分子骨质疏松症学》", 30 April 2016, 安徽科学技术出版社 *
吴梧桐等: "《生物制药工艺学》", 31 August 2015, 中国医药科技出版社 *

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US12006520B2 (en) 2011-07-22 2024-06-11 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10954548B2 (en) 2013-08-09 2021-03-23 President And Fellows Of Harvard College Nuclease profiling system
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US11299755B2 (en) 2013-09-06 2022-04-12 President And Fellows Of Harvard College Switchable CAS9 nucleases and uses thereof
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US10912833B2 (en) 2013-09-06 2021-02-09 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US12215365B2 (en) 2013-12-12 2025-02-04 President And Fellows Of Harvard College Cas variants for gene editing
US11124782B2 (en) 2013-12-12 2021-09-21 President And Fellows Of Harvard College Cas variants for gene editing
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US12043852B2 (en) 2015-10-23 2024-07-23 President And Fellows Of Harvard College Evolved Cas9 proteins for gene editing
US12344869B2 (en) 2015-10-23 2025-07-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11702651B2 (en) 2016-08-03 2023-07-18 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11999947B2 (en) 2016-08-03 2024-06-04 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US12084663B2 (en) 2016-08-24 2024-09-10 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US12359218B2 (en) 2017-07-28 2025-07-15 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US12157760B2 (en) 2018-05-23 2024-12-03 The Broad Institute, Inc. Base editors and uses thereof
US12281338B2 (en) 2018-10-29 2025-04-22 The Broad Institute, Inc. Nucleobase editors comprising GeoCas9 and uses thereof
US12351837B2 (en) 2019-01-23 2025-07-08 The Broad Institute, Inc. Supernegatively charged proteins and uses thereof
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US12281303B2 (en) 2019-03-19 2025-04-22 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
CN110305902B (zh) * 2019-07-12 2020-08-21 和元生物技术(上海)股份有限公司 一种在工具细胞中激活hSyn启动子的方法及其应用
CN110305902A (zh) * 2019-07-12 2019-10-08 和元生物技术(上海)股份有限公司 一种在工具细胞中激活hSyn启动子的方法及其应用
US12031126B2 (en) 2020-05-08 2024-07-09 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
CN113388698A (zh) * 2021-05-24 2021-09-14 嘉兴市第一医院 一种可诊断带状疱疹的血液tsRNA标志物、制备及应用

Also Published As

Publication number Publication date
US11015193B2 (en) 2021-05-25
CN108251423B (zh) 2020-11-06
US20180273939A1 (en) 2018-09-27

Similar Documents

Publication Publication Date Title
CN108251423B (zh) CRISPR-Cas9系统特异性靶向人RSPO2基因的sgRNA及激活方法和应用
CN108315330A (zh) CRISPR-Cas9系统特异性靶向人RSPO2基因的sgRNA及敲除方法和应用
WO2016197355A1 (zh) CRISPR-Cas9特异性敲除猪SALL1基因的方法及用于特异性靶向SALL1基因的sgRNA
WO2016197358A1 (zh) CRISPR-Cas9特异性敲除猪FGL2基因的方法及用于特异性靶向FGL2基因的sgRNA
WO2016197360A1 (zh) CRISPR-Cas9特异性敲除猪GFRA1基因的方法及用于特异性靶向GFRA1基因的sgRNA
WO2016197362A1 (zh) CRISPR-Cas9特异性敲除猪vWF基因的方法及用于特异性靶向vWF基因的sgRNA
CN107502608A (zh) 用于敲除人ALDH2基因的sgRNA、ALDH2基因缺失细胞株的构建方法及应用
CN107586777A (zh) 人PDCD1基因sgRNA的用途及其相关药物
WO2019206341A1 (zh) 一种用于诊断和/或治疗骨肉瘤的RAB22A-NoeFs融合基因系及其应用
CN106754917A (zh) 胶质母细胞瘤中同时敲除EGFRwt和EGFRvIII的方法
CN106867968A (zh) Ybx1稳定表达的smcc-7721细胞系及构建方法
CN114540309A (zh) 一种用于高效扩增rna病毒的重组细胞及其扩增方法和应用
CN103194425B (zh) 一种促进表皮细胞增殖的方法及其应用
CN105624162B (zh) 针对哺乳动物R-Spondin2基因靶点的小干扰RNA、短发卡RNA及载体和应用
CN114807235B (zh) 一种永生化间充质干细胞的构建方法及制备外泌体的方法
CN105920592B (zh) Carher1-nkt细胞在制备用于治疗进展期her1阳性肺癌的制剂中的应用
CN104630221B (zh) 抑制肿瘤细胞生长的shRNA及其重组载体与应用
CN111228292B (zh) 人tpt1/tctp基因在制备抗肿瘤药物中的应用
CN111560374A (zh) 特异抑制c-fos基因表达的慢病毒和重组载体构建及其应用
CN102229928B (zh) 人rbbp6基因的小干扰rna及其应用
CN104745635A (zh) 一种沉默df-1细胞系中oasl基因的方法
CN105925576B (zh) 针对哺乳动物R‑Spondin3基因靶点的小干扰RNA、短发卡RNA及载体和应用
CN110964727A (zh) 特异抑制c-myc基因表达的shRNA慢病毒表达载体构建方法与应用
CN114457081B (zh) 环状RNA hsa_circ_0000745的新应用
CN102250904A (zh) 一种预防和/或治疗黑色素瘤的药物

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant