CN108248454B - 车身稳定控制系统、方法及汽车 - Google Patents

车身稳定控制系统、方法及汽车 Download PDF

Info

Publication number
CN108248454B
CN108248454B CN201611236728.XA CN201611236728A CN108248454B CN 108248454 B CN108248454 B CN 108248454B CN 201611236728 A CN201611236728 A CN 201611236728A CN 108248454 B CN108248454 B CN 108248454B
Authority
CN
China
Prior art keywords
wheel
automobile
vehicle
yaw
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611236728.XA
Other languages
English (en)
Other versions
CN108248454A (zh
Inventor
凌和平
熊焱飞
孟繁亮
王宁
陈伟强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BYD Co Ltd
Original Assignee
BYD Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BYD Co Ltd filed Critical BYD Co Ltd
Priority to CN201611236728.XA priority Critical patent/CN108248454B/zh
Publication of CN108248454A publication Critical patent/CN108248454A/zh
Application granted granted Critical
Publication of CN108248454B publication Critical patent/CN108248454B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/28Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed without contact making and breaking, e.g. using a transductor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/32Control or regulation of multiple-unit electrically-propelled vehicles
    • B60L15/38Control or regulation of multiple-unit electrically-propelled vehicles with automatic control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/58Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration responsive to speed and another condition or to plural speed conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

本发明公开的车身稳定控制系统包括信号采集传感器及整车控制器。信号采集传感器用于采集车况信息参数,整车控制器用于根据车况信息参数计算控制横摆力矩,控制横摆力矩用于消除预估横摆力矩与实际横摆力矩的差值,整车控制器用于根据车况信息参数确定汽车的偏移方向和侧倾程度,整车控制器还用于在爆胎时根据车况信息参数判断汽车处于稳定区或是非稳定区,并根据车身稳定情况、偏移方向和侧倾程度将控制横摆力矩分配到四个车轮以实现车身稳定控制。本发明还公开一种车身稳定控制方法及汽车。

Description

车身稳定控制系统、方法及汽车
技术领域
本发明涉及汽车领域,特别涉及一种车身稳定控制系统、方法及汽车。
背景技术
已有的一种汽车爆胎安全稳定控制系统根据爆胎信号、转向盘转角信号等控制转向相关制动调节器向部分车轮输出不平衡制动力及力矩,从而产生爆胎后恢复整车稳定的横摆力矩,由踏板制动分配调节器重新分配踏板制动装置对各轮输出的制动力,使整车获得平衡的制动力和力矩,或启动升力悬架,部分或全部恢复车身平衡,最大限度地利用爆胎后各轮的附着系数,实现爆胎安全和稳定控制。
现有的另一种汽车爆胎控制方法包括:实时采集爆胎信号和车速信号;根据采集到的爆胎信号,发送制动信号,使汽车紧急制动,同时在车速信号超过设定值时将锁定方向,可以在车速超过设定的安全值时保持汽车原有行驶方向,汽车不会完全失去改变方向的能力。
在上述系统及方法中,液压制动系统是必不可少的,制动防抱死系统(antilockbrake system,ABS)、车身电子稳定系统(electronic stability program,ESP)是在液压制动的基础上对单个或多个车轮进行液压制动进行横摆力矩控制,液压制动存在系统复杂、响应慢、成本高的缺点。
其次,爆胎持续的时间非常短,在爆胎过程中,整车有可能已经发生了微小的偏航,爆胎时锁定汽车方向,在弯道行驶或高速行驶时极易发生危险。
再次,常规的电子稳定系统(包括ABS和ESP)没有考虑到爆胎后的汽车轮胎特性,不能有效的控制车辆运动轨迹及车身姿态,爆胎后整车质心向爆胎轮转移,对角线轮胎载荷减小,载荷减少了的轮胎能利用的附着力也减小,载荷增大的轮胎却不能充分利用其附着力,导致常规电子稳定性控制不能产生足够的控制横摆力矩使汽车保持爆胎前的运动状态,甚至有时会适得其反,使在稳定区行驶的车轮,由于电子稳定系统错误判断与干预,导致车辆失稳。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明需要提供一种用于四轮独立驱动的汽车的车身稳定控制系统、方法及汽车。
本发明实施方式的车身稳定控制系统包括:
分别与所述汽车的四个车轮耦合的电机;
分别与所述电机连接的电机控制器;
信息采集模块,用于采集所述汽车的车况信息参数;及
与所述电机控制器及所述信息采集模块连接的整车控制器,所述整车控制器用于根据所述车况信息参数计算控制横摆力矩,所述控制横摆力矩用于消除所述汽车的预估横摆力矩与实际横摆力矩之间的横摆力矩差值;
所述整车控制器用于根据所述车况信息参数确定所述汽车的偏移方向和侧倾程度;
所述整车控制器还用于在爆胎时根据所述车况信息参数判断所述汽车是否处于稳定区;
所述整车控制器用于在所述汽车处于稳定区时对爆胎的所述车轮同轴的另一侧所述车轮对应的所述电机实施制动控制以产生所述控制横摆力矩;
所述整车控制器还用于根据所述偏移方向和所述侧倾程度分配施加在非爆胎的所述车轮的所述控制横摆力矩,及在所述汽车处于非稳定区时对与所述偏移方向相反的一侧的非爆胎的所述车轮对应的所述电机实施制动控制以产生所述控制横摆力矩,并对与所述偏移方向相同的一侧的非爆胎的所述车轮对应的所述电机实施驱动控制以产生所述控制横摆力矩。
在某些实施方式中,所述信息采集模块包括:
胎压传感器,所述胎压传感器用于分别采集所述车轮的胎压;
偏航率传感器,所述偏航率传感器用于采集所述汽车的纵向加速度、横向加速度及横摆角速度;
方向盘转角传感器,所述方向盘转角传感器用于采集所述汽车的方向盘转角;及
轮速传感器,所述轮速传感器用于采集所述汽车的轮速;
所述整车控制器用于根据所述横摆角速度确定所述偏移方向;
所述整车控制器还用于根据所述胎压、所述纵向加速度、所述横向加速度、所述方向盘转角、所述轮速及所述横摆角速度确定所述侧倾程度。
在某些实施方式中,所述整车控制器用于通过下式计算所述控制横摆力矩:
Figure BDA0001195491050000021
其中,MRSC即为所述控制横摆力矩;lf、lr分别为所述汽车的前轴、后轴至所述汽车的质心的距离;Fyf、Fyr分别为所述汽车的前轮及后轮受到的侧向力,且满足下面的关系式:
Figure BDA0001195491050000031
Figure BDA0001195491050000032
其中,kf、kr分别为所述汽车的前轴、后轴的侧偏刚度,由所述胎压得到;αf、αr分别为所述汽车的前轮、后轮的加速度,由所述横向加速度及所述纵向加速度得到;δf、δr分别为所述汽车的前轮、后轮的转角,由所述方向盘转角得到;vx、vy分别为所述汽车的纵向、横向速度,由所述轮速得到;γ为所述横摆角速度;IZ为所述汽车绕Z轴的转动惯量;
Figure BDA0001195491050000033
为预估横摆角速度的求导,即预估横摆角加速度,且
Figure BDA0001195491050000034
其中,L为所述汽车的前轴及后轴之间的距离;μ为路面附着系数,g为重力加速度;K为稳定性因素,为:
Figure BDA0001195491050000035
其中,m为所述汽车的质量;ζ为常数;
Figure BDA0001195491050000036
为质心侧偏角的求导,而质心侧偏角β由如下关系式得到:
Figure BDA0001195491050000037
Figure BDA0001195491050000038
为预估质心侧偏角的求导,βd的取值如下:
Figure BDA0001195491050000039
其中,β1为所述质心侧偏角的门限值,βmax为所述质心侧偏角的最大值。
在某些实施方式中,所述信息采集模块包括:
胎压传感器,所述胎压传感器用于分别采集所述车轮的胎压;
偏航率传感器,所述偏航率传感器用于采集所述汽车的纵向加速度、横向加速度及横摆角速度;
方向盘转角传感器,所述方向盘转角传感器用于采集所述汽车的方向盘转角;及
轮速传感器,所述轮速传感器用于采集所述汽车的轮速;
所述整车控制器用于根据所述横摆角速度、所述方向盘转角、所述轮速、所述胎压判断所述汽车是否处于稳定区。
在某些实施方式中,所述整车控制器用于判断Δγ<γ1及β<β1是否成立;若Δγ<γ1及β<β1成立,则所述汽车处于稳定区;若Δγ≥γ1或β≥β1成立,则所述汽车处于非稳定区;其中,Δγ为所述横摆角速度与预估横摆角速度的差值;所述预估横摆角速度通过下式计算:
Figure BDA0001195491050000041
其中,γd为所述预估横摆角速度,δf为所述汽车的前轮转角,由所述方向盘转角推算得到;vx为所述汽车的纵向速度,由所述轮速推算得到;L为所述汽车的前轴和后轴之间的距离;μ为路面附着系数,g为重力加速度;K为稳定性因素,且
Figure BDA0001195491050000042
其中,m为所述汽车的质量;lf、lr分别为所述汽车的前轴、后轴至所述汽车的质心的距离;kf、kr分别为所述汽车的前轴、后轴的侧偏刚度,由所述胎压推算得到;γ1为所述横摆角速度差值的门限值,β1为所述质心侧偏角的门限值;β为质心侧偏角,且由如下关系式得到:
Figure BDA0001195491050000043
在某些实施方式中,若左前轮或右前轮爆胎,所述汽车处于非稳定区,且所述汽车左偏,则所述整车控制器用于对左后轮进行驱动控制,并对右后轮实施制动控制;
若左前轮或右前轮爆胎,所述汽车处于非稳定区,且所述汽车右偏,则所述整车控制器用于对右后轮进行驱动控制,并对左后轮实施制动控制;
若左后轮或右后轮爆胎,所述汽车处于非稳定区,且所述汽车左偏,则所述整车控制器用于对左前轮进行驱动控制,并对右前轮实施制动控制;
若左后轮或右后轮爆胎,所述汽车处于非稳定区,且所述汽车右偏,则所述整车控制器用于对右前轮进行驱动控制,并对左前轮实施制动控制。
在某些实施方式中,所述整车控制器通过如下比例分配施加在非爆胎的所述车轮的所述控制横摆力矩:
Figure BDA0001195491050000044
Figure BDA0001195491050000045
Figure BDA0001195491050000046
Figure BDA0001195491050000047
其中,Trr为分配给右后轮的制动扭矩的大小;Trl为分配给左后轮的驱动扭矩大小;Tfr为分配给右前轮的制动扭矩的大小;Tfl为分配给左前轮的驱动扭矩大小;Fz1、Fz2、Fz3、Fz4分别为所述左前轮、所述右前轮、所述左后轮、所述右后轮的垂向力,且满足下面的条件式:
Figure BDA0001195491050000048
Figure BDA0001195491050000049
Figure BDA00011954910500000410
Figure BDA00011954910500000411
其中,l、lf、lr分别为所述汽车的前轴和后轴之间的距离,前轴、后轴至所述汽车的质心的距离;ax、ay分别为所述汽车的纵向、横向加速度;hg、b分别为所述汽车的质心的高度和轮距;m和g为所述汽车的质量和重力加速度。
本发明实施方式的车身稳定控制方法包括:
采集汽车的车轮的轮胎的胎压、纵向加速度、横向加速度、横摆角速度、方向盘转角及轮速;
根据所述胎压、所述纵向加速度、所述横向加速度、所述方向盘转角、所述轮速及所述横摆角速度计算控制横摆力矩,所述控制横摆力矩用于消除所述汽车的预估横摆力矩与实际横摆力矩之间的横摆力矩差值;
根据所述横摆角速度确定所述汽车的偏移方向并根据所述胎压、所述纵向加速度、所述横向加速度、所述方向盘转角、所述轮速及所述横摆角速度确定所述汽车的侧倾程度;
在爆胎时根据所述横摆角速度、所述方向盘转角、所述轮速、所述胎压判断所述汽车是否处于稳定区;
在所述汽车处于稳定区时对爆胎的所述车轮同轴的另一侧所述车轮对应的所述电机实施制动控制以产生所述控制横摆力矩;及
根据所述偏移方向和所述侧倾程度分配施加在非爆胎的所述车轮的所述控制横摆力矩,及在所述汽车处于非稳定区时对与所述偏移方向相反的一侧的非爆胎的所述车轮对应的所述电机实施制动控制以产生所述控制横摆力矩,并对与所述偏移方向相同的一侧的非爆胎的所述车轮对应的所述电机实施驱动控制以产生所述控制横摆力矩。
在某些实施方式中,所述所述车身稳定控制方法通过下式计算所述控制横摆力矩:
Figure BDA0001195491050000051
其中,MRSC即为所述控制横摆力矩;lf、lr分别为所述汽车的前轴、后轴至所述汽车的质心的距离;Fyf、Fyr分别为所述汽车的前轮及后轮受到的侧向力,且满足下面的关系式:
Figure BDA0001195491050000052
Figure BDA0001195491050000053
其中,kf、kr分别为所述汽车的前轴、后轴的侧偏刚度,由所述胎压得到;αf、αr分别为所述汽车的前轮、后轮的加速度,由所述横向加速度及所述纵向加速度得到;δf、δr分别为所述汽车的前轮、后轮的转角,由所述方向盘转角得到;vx、vy分别为所述汽车的纵向、横向速度,由所述轮速得到;γ为所述横摆角速度;IZ为所述汽车绕Z轴的转动惯量;
Figure BDA0001195491050000054
为预估横摆角速度的求导,即预估横摆角加速度,且
Figure BDA0001195491050000061
其中,L为所述汽车的前轴及后轴之间的距离;μ为路面附着系数,g为重力加速度;K为稳定性因素,为:
Figure BDA0001195491050000062
其中,m为所述汽车的质量;ζ为常数;
Figure BDA0001195491050000063
为质心侧偏角的求导,而质心侧偏角β由如下关系式得到:
Figure BDA0001195491050000064
Figure BDA0001195491050000065
为预估质心侧偏角的求导,βd的取值如下:
Figure BDA0001195491050000066
其中,β1为所述质心侧偏角的门限值,βmax为所述质心侧偏角的最大值。
在某些实施方式中,所述车身稳定控制方法还包括:判断Δγ<γ1及β<β1是否成立;若Δγ<γ1及β<β1成立,则所述汽车处于稳定区;若Δγ≥γ1或β≥β1成立,则所述汽车处于非稳定区;其中,Δγ为所述横摆角速度与预估横摆角速度的差值;所述预估横摆角速度通过下式计算:
Figure BDA0001195491050000067
其中,γd为所述预估横摆角速度,δf为所述汽车的前轮转角,由所述方向盘转角推算得到;vx为所述汽车的纵向速度,由所述轮速推算得到;L为所述汽车的前轴和后轴之间的距离;μ为路面附着系数,g为重力加速度;K为稳定性因素,且
Figure BDA0001195491050000068
其中,m为所述汽车的质量;lf、lr分别为所述汽车的前轴、后轴至所述汽车的质心的距离;kf、kr分别为所述汽车的前轴、后轴的侧偏刚度,由所述胎压推算得到;γ1为所述横摆角速度差值的门限值,β1为所述质心侧偏角的门限值;β为质心侧偏角,且由如下关系式得到:
Figure BDA0001195491050000069
在某些实施方式中,若左前轮或右前轮爆胎,所述汽车处于非稳定区,且所述汽车左偏,则对左后轮进行驱动控制,并对右后轮实施制动控制;
若左前轮或右前轮爆胎,所述汽车处于非稳定区,且所述汽车右偏,则对右后轮进行驱动控制,并对左后轮实施制动控制;
若左后轮或右后轮爆胎,所述汽车处于非稳定区,且所述汽车左偏,则对左前轮进行驱动控制,并对右前轮实施制动控制;
若左后轮或右后轮爆胎,所述汽车处于非稳定区,且所述汽车右偏,则对右前轮进行驱动控制,并对左前轮实施制动控制。
在某些实施方式中,所述车身稳定控制方法通过如下比例分配施加在非爆胎的所述车轮的所述控制横摆力矩:
Figure BDA0001195491050000071
Figure BDA0001195491050000072
Figure BDA0001195491050000073
Figure BDA0001195491050000074
其中,Trr为分配给右后轮的制动扭矩的大小;Trl为分配给左后轮的驱动扭矩大小;Tfr为分配给右前轮的制动扭矩的大小;Tfl为分配给左前轮的驱动扭矩大小;Fz1、Fz2、Fz3、Fz4分别为所述左前轮、所述右前轮、所述左后轮、所述右后轮的垂向力,且满足下面的条件式:
Figure BDA0001195491050000075
Figure BDA0001195491050000076
Figure BDA0001195491050000077
Figure BDA0001195491050000078
其中,l、lf、lr分别为所述汽车的前轴和后轴之间的距离,前轴、后轴至所述汽车的质心的距离;ax、ay分别为所述汽车的纵向、横向加速度;hg、b分别为所述汽车的质心的高度和轮距;m和g为所述汽车的质量和重力加速度。
本发明实施方式的汽车包括:
四个车轮;
分别与所述四个车轮耦合的电机;
分别与所述电机连接的电机控制器;
胎压传感器,所述胎压传感器用于分别采集所述车轮的胎压;
偏航率传感器,所述偏航率传感器用于采集所述汽车的纵向加速度、横向加速度及横摆角速度;
方向盘转角传感器,所述方向盘转角传感器用于采集所述汽车的方向盘转角;
轮速传感器,所述轮速传感器用于采集所述汽车的轮速;及
与所述电机控制器、所述胎压传感器、所述偏航率传感器、所述方向盘转角传感器及所述轮速传感器连接的整车控制器;
所述整车控制器用于根据所述胎压、所述纵向加速度、所述横向加速度、所述方向盘转角、所述轮速及所述横摆角速度计算控制横摆力矩,所述控制横摆力矩用于消除所述汽车的预估横摆力矩与实际横摆力矩之间的横摆力矩差值;
所述整车控制器用于根据所述横摆角速度确定所述汽车的偏移方向并根据所述胎压、所述纵向加速度、所述横向加速度、所述方向盘转角、所述轮速及所述横摆角速度确定所述汽车的侧倾程度;
所述整车控制器还用于在爆胎时根据所述横摆角速度、所述方向盘转角、所述轮速、所述胎压判断所述汽车是否处于稳定区;
所述整车控制器用于在所述汽车处于稳定区时对爆胎的所述车轮同轴的另一侧所述车轮对应的所述电机实施制动控制以产生所述控制横摆力矩;
所述整车控制器还用于根据所述偏移方向和所述侧倾程度分配施加在非爆胎的所述车轮的所述控制横摆力矩,及在所述汽车处于非稳定区时对与所述偏移方向相反的一侧的非爆胎的所述车轮对应的所述电机实施制动控制以产生所述控制横摆力矩,并对与所述偏移方向相同的一侧的非爆胎的所述车轮对应的所述电机实施驱动控制以产生所述控制横摆力矩。
本发明实施方式的车身稳定控制方法及系统利用所述电机快速反应及回馈制动特性替代系统复杂、响应慢、成本高的液压制动系统,达到简化系统,快速响应及降低成本的目的。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点可以从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本发明实施方式的用于四轮独立驱动的汽车的车身稳定控制方法及系统应用的汽车的功能模块示意图。
图2是汽车的两自由度车辆模型示意图。
图3是本发明实施方式的预估质心侧偏角的取值的示意图。
图4是本发明实施方式的用于四轮独立驱动的汽车的车身稳定控制方法及系统应用的示意图。
图5是本发明实施方式的用于四轮独立驱动的汽车的车身稳定控制方法及系统应用的另一个示意图。
图6是本发明实施方式的用于四轮独立驱动的汽车的车身稳定控制方法的流程示意图。
主要元件及符号说明:
汽车100、整车控制器10、车身稳定控制模块11、电机控制器20、电机30、变速器31、传动轴32、方向盘转角传感器41、偏航率传感器42、旋变传感器43、轮速传感器44、胎压传感器45、电池50;
车轮101。
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中,相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明的实施方式,而不能理解为对本发明的实施方式的限制。
请参阅图1,本发明实施方式的车身稳定控制方法及系统可应用的四轮独立驱动的汽车100。汽车100包括四个车轮101,包括通过前轴连接的左前轮及右前轮及通过后轴连接的左后轮及右后轮,每个车轮101包括轮毂及套设在轮毂上的轮胎。
本实施方式中,车身稳定控制系统包括信号采集传感器、整车控制器10、电机控制器20及电机30。本实施方式中,信号采集传感器、整车控制器10及电机控制器20可通过整车的控制器局域网络(controller area network,CAN)总线进行通信。电机控制器20与电机30之间通过电流线连接。
对应四个车轮101,汽车100包括四个电机控制器20及四个电机30。每个电机控制器20用于独立控制对应的电机30运转。每个电机30用于独立驱动或回馈制动对应的车轮101,例如对车轮101施加正向扭矩或反向扭矩以产生驱动力或制动力。具体地,本实施方式中,电机30为轮边电机或轮毂电机,对应的,汽车100还包括四个变速器31及四个传动轴32,每个电机30通过对应的变速器31及传动轴32连接到对应的车轮101。如此,汽车100可实现四轮独立驱动。
信号采集传感器用于采集车况信息参数,车况信息参数包括方向盘转角、横摆角速度、横向加速度、纵向加速度、轮速及胎压。
本实施方式中,信号采集传感器包括方向盘转角传感器41、偏航率传感器42、设置于每个电机30上的旋变传感器43、设置于每个车轮101上的轮速传感器44及胎压传感器45。其中,方向盘转角传感器41用于采集方向盘转角。偏航率传感器42可以包括纵向加速度传感器、侧向加速度传感器及横摆角速度传感器。横摆角速度传感器用于采集横摆角速度。纵向加速度传感器用于采集纵向加速度,横向加速度传感器用于采集横向加速度。旋变传感器43用于采集对应的电机30的旋转变化速度,即电机转速。轮速传感器44用于采集对应的车轮101的转速,即轮速。可以理解,旋变传感器43及轮速传感器44均可以采集轮速,因此均可作为轮速传感器。胎压传感器45用于采集车轮101的轮胎的胎压。
另外,作为信号采集传感器的一部分,电机控制器20还通过CAN总线回馈电机30的驱动能力。
再有,汽车100包括电池50,电池50与整车控制器10连接,并通过CAN总线回馈电池50的电荷状况,这也是车况信息参数。另外,电池50还通过电流线与电机控制器20连接,以提供电力。
从而,整车控制器10通过CAN总线可以获得车况信息参数。例如,整车控制器10根据胎压传感器45回馈的轮胎的胎压获得轮胎情况以及前轴及后轴的侧偏刚度,根据轮胎的胎压判断汽车100是否发生爆胎。
整车控制器10负责控制汽车100的运行,并可以包括有车身稳定控制模块11,车身稳定控制模块11用于计算控制横摆力矩,控制横摆力矩用于消除汽车100的预估横摆力矩与实际横摆力矩之间的横摆力矩差值,并根据控制横摆力矩独立驱动或制动四个车轮101以实现车身稳定。
整车控制器10根据车况信息参数确定汽车100的偏移方向和侧倾程度。具体地,整车控制器10可以根据横摆角速度确定偏移方向。横摆角速度为正值表示汽车100向左偏移,横摆角速度为负值表示汽车100向右偏移。整车控制器10可以根据胎压、纵向加速度、横向加速度、方向盘转角、轮速及横摆角速度确定侧倾程度。然后,整车控制器10根据偏移方向和侧倾程度分配施加在非爆胎的车轮101的控制横摆力矩。
可以理解,除车身稳定控制模块11外,整车控制器10还可以包括有其他的控制模块用于实现汽车100的其他功能。
本实施方式中,请参图2,根据牛顿定律得出二自由度车辆模型的动力学方程可知:
Figure BDA0001195491050000101
其中,MRSC即为控制横摆力矩;lf、lr分别为汽车100的前轴、后轴至汽车100的质心的距离,在汽车100的设计及生产过程中确定并可保存于整车控制器10内。
Fyf、Fyr分别为汽车100的前轮(左前轮及前后轮)及后轮(左后轮及右后轮)受到的侧向力,可通过以下动力学方程得到:
Figure BDA0001195491050000102
Figure BDA0001195491050000103
其中,kf、kr分别为汽车100的前轴、后轴的侧偏刚度,可以由胎压传感器45回馈的四个车轮101的轮胎的胎压推算得到。
αf、αr分别为汽车100的前轮、后轮的加速度,可以由偏航率传感器42采集并反馈。
δf、δr分别为汽车100的前轮、后轮的转角,可以由方向盘转角传感器41反馈的方向盘转角推算得到。
vx、vy分别为汽车100的纵向、横向速度,可以由旋变传感器43回馈的旋变速度或轮速传感器44回馈的轮速推算得到。
γ为横摆角速度,可以由偏航率传感器42采集得到。
IZ为汽车100绕Z轴的转动惯量,可以在汽车100生产时测得并存储在整车控制器10中。
Figure BDA0001195491050000111
为预估横摆角速度的求导,即预估横摆角加速度。考虑到路面附着影响,
Figure BDA0001195491050000112
其中,L为汽车100的前轴及后轴之间的距离,即轴距,在汽车100生产过程中确定,并存储于整车控制器10内。μ为路面附着系数,g为重力加速度。
K为稳定性因素,具体为:
Figure BDA0001195491050000113
其中,m为汽车100的质量,在汽车100生产过程中确定,并存储在整车控制器10内。
ζ为常数。
Figure BDA0001195491050000114
为质心侧偏角的求导,而质心侧偏角β由如下关系式得到:
Figure BDA0001195491050000115
Figure BDA0001195491050000116
为预估质心侧偏角的求导,βd的取值如下:
Figure BDA0001195491050000117
其中,β1为质心侧偏角的门限值,βmax为质心侧偏角的最大值。而
Figure BDA0001195491050000118
为预估质心侧偏角的求导,请参阅图3,弯道行驶时预估质心侧偏角βd的选取按照以下规则:
1.当汽车100的质心侧偏角β小于门限值β1时,预估质心侧偏角βd选取为汽车100的实际质心侧偏角β,即
Figure BDA0001195491050000119
2.当汽车100的质心侧偏角β大于βmax时,其中βmax=an-1(0.02μg),表明此时汽车100处于不稳定或即将不稳定的状态,此时预估质心侧偏角选取为βd=0;
3.当汽车100质心侧偏角取值处于β1和βmax之间时,预估质心侧偏角βd按照如图3中的线性关系选取。
综上所述,预估质心侧偏角βd的取值如下:
Figure BDA0001195491050000121
其中,β1为所述质心侧偏角的门限值,βmax为所述质心侧偏角的最大值。
综上,整车控制器10根据信号采集传感器采集的车况信息参数可以计算得控制横摆力矩MRSC
车身稳定控制模块11在计算得到控制横摆力矩MRSC后根据车身稳定情况、偏移方向和侧倾程度确定应该对四个车轮101分别施加多大的驱动或者制动以产生控制横摆力矩MRSC。在这过程中,车身稳定控制模块11还需考虑车轮101的轮胎状况,例如是否爆胎,电机30的驱动能力,例如电机30是否故障,以及电池50的电荷状况,例如是否具有足量的电量来实施车身稳定。
车身稳定控制模块11在实施控制的同时,信号采集传感器仍实时采集车况信息参数,而车身稳定控制模块11也根据实时得到的车况信息参数实时更新计算控制横摆力矩MRSC,并根据更新的控制横摆力矩MRSC调整驱动或回馈制动四个车轮101,根据实时得到的车况信息参数实时更新车身稳定情况、偏移方向和侧倾程度,更新分配到四个车轮101上的控制横摆力矩以实现车身稳定控制。因此,本发明的实施方式的车身稳定系统是闭环系统,从而可以有效保证车身稳定。
假若发生爆胎,爆胎持续时间一般只有0.1s左右,爆胎后,1.爆胎的轮胎滚动阻力系数增加到正常值的21倍左右,滚动阻力迅速增加,瞬间增加了一个横摆扭矩,使汽车容易发生偏航;2.爆胎轮胎的径向刚度降为原来的1/13左右,胎体在短时间内凹陷下去,车体重心转移,爆胎轮垂直载荷增加,其对角线车辆垂直载荷相应减少,车身发生侧倾,为了克服爆胎引起的横摆扭矩,必须对其对角线车轮施加一个较大的制动力矩,由于对角线车轮垂直载荷减小,相应的可利用的地面附着力降低,所以对角线轮胎的制动扭矩不足以克服爆胎轮引起的横摆扭矩,必须对其它轮辅助制动;3.爆胎轮胎的胎侧偏刚度减小为正常值的37.63%左右,根据“附着椭圆”理论,如果爆胎后,继续保持原来的驱动或施加紧急制动,那么爆胎轮侧向能利用的附着力就很小,再加上爆胎轮侧偏刚度降低,极易引起爆胎轮侧滑,整车不可控,所以爆胎后必须调整爆胎轮的驱动扭矩,让其大小与瞬间增大的滚动阻力平衡,大小相等,方向相反,使纵向合力为零,尽可能让提高爆胎轮侧向附着性能;4.爆胎轮胎的纵向滑刚度降低为正常值的43.28%左右,爆胎轮纵向非常容易打滑,需要降低爆胎轮扭矩值;5.爆胎轮胎的侧倾刚度减小为正常轮胎侧倾刚度的40.43%左右,爆胎后车身容易侧倾,高速时有侧翻的危险;其有效滚动半径降为原来的80%,同样的转速下,爆胎轮行驶的距离很少,导致偏航。
因此,车身稳定控制模块11需实时根据胎压传感器45采集的信息参数判断汽车100是否发生爆胎。具体的,在爆胎时,车身稳定控制模块11需根据车况信息参数计算预估横摆角速度γd与实际横摆角速度γ的横摆角速度差值Δγ及质心侧偏角β,并根据横摆角速度差值Δγ及质心侧偏角β将控制横摆力矩MRSc分配到四个车轮101。
例如,刚发生爆胎时,横摆角速度差值Δγ及质心侧偏角β比较小(Δγ<γ1及β<β1成立),其中,γ1为横摆角速度差值的门限值及β1为质心侧偏角的门限值,汽车100处于稳定区,这时爆胎车轮101同轴的另一侧车轮101的电机30就要响应对爆胎车轮101同轴的另一侧车轮101实施制动控制,以平衡爆胎初期产生的横摆力矩差值,遏制整车向非稳定区发展的趋势。
当Δγ≥γ1或β≥β1时,说明汽车100将要进入非稳定区,车身稳定控制模块11发出更强烈的控制指令,首先通过偏航率传感器42采集汽车100的横摆角速度以确定偏移方向。横摆角速度γ为正值表示汽车100向左偏移,横摆角速度γ为负值表示汽车100向右偏移。车身稳定控制模块11对与偏移方向相反的一侧的非爆胎的车轮101对应的电机30实施制动控制以产生控制横摆力矩,并对与偏移方向相同的一侧的非爆胎的车轮101对应的电机30实施驱动控制以产生控制横摆力矩。
在某些实施方式中,若左前轮或右前轮爆胎,汽车100处于非稳定区,且汽车100左偏,则整车控制器10用于对左后轮进行驱动控制,并对右后轮实施制动控制。若左前轮或右前轮爆胎,汽车100处于非稳定区,且汽车100右偏,则整车控制器10用于对右后轮进行驱动控制,并对左后轮实施制动控制。若左后轮或右后轮爆胎,汽车100处于非稳定区,且汽车100左偏,则整车控制器10用于对左前轮进行驱动控制,并对右前轮实施制动控制。若左后轮或右后轮爆胎,汽车100处于非稳定区,且汽车100右偏,则整车控制器10用于对右前轮进行驱动控制,并对左前轮实施制动控制。
具体地,整车控制器10通过如下比例分配施加在非爆胎的车轮101的控制横摆力矩MRSC
Figure BDA0001195491050000131
Figure BDA0001195491050000132
Figure BDA0001195491050000133
Figure BDA0001195491050000134
其中,Trr为分配给右后轮的制动扭矩的大小;Trl为分配给左后轮的驱动扭矩大小;Tfr为分配给右前轮的制动扭矩的大小;Tfl为分配给左前轮的驱动扭矩大小;Fz1、Fz2、Fz3、Fz4分别为左前轮、右前轮、左后轮、右后轮的垂向力,且满足下面的条件式:
Figure BDA0001195491050000141
Figure BDA0001195491050000142
Figure BDA0001195491050000143
Figure BDA0001195491050000144
其中,l、lf、lr分别为100汽车的前轴和后轴之间的距离,前轴、后轴至汽车100的质心的距离;ax、ay分别为汽车100的纵向、横向加速度;hg、b分别为汽车100的质心的高度和轮距;m和g为汽车100的质量和重力加速度。
如此,使汽车100快速进入稳定区行驶,即Δγ<γ1且β<β1。
达到稳定区后,为了避免因回馈制动降速引起追尾,车身稳定控制模块11又根据控制横摆力矩MRSC对非爆胎车轮101做调整,使汽车100保持一定车速稳定行驶。具体的调整过程将在后续部分举例介绍。
请参阅图4,作为一个例子,在汽车100行驶过程中,左前轮突然爆胎,爆胎信号传递给整车控制器10,同时整车控制器10根据方向盘转角传感器41、轮速传感器44及胎压传感器45采集的车况信息参数实时计算出汽车100的预估横摆角速度γd,与由偏航率传感器42测得的横摆角速度γ比较得到横摆角速度差值Δγ,同时由轮速传感器44采集的车况信息参数估算出质心侧偏角β,利用转动惯量IZ实时计算出用于消除预估横摆力矩与实际横摆力矩的横摆力矩差值的控制横摆力矩MRSC。车身稳定控制模块11设定横摆角速度差值门限γ1、质心侧偏角门限值β1。刚发生爆胎时,Δγ、β比较小,Δγ<γ1及β<β1成立,汽车100处于稳定区,右前轮的电机30就要响应对爆胎车轮101同轴的右前轮实施制动控制,以平衡爆胎初期产生的横摆力矩差值,遏制汽车100向非稳定区发展的趋势。然而,若无法遏制,当Δγ≥γ1或β≥β1时,说明汽车100将要进入非稳定区,整车控制器10发出更强烈的控制指令,首先将对左后轮和右后轮发出控制指令,通过偏航率传感器42采集汽车100的横摆角速度以确定偏移方向。若横摆角速度γ为正值表示汽车100向左偏移,这时要对右后轮实施制动控制,同时对左后轮进行驱动控制,并使施加在右后轮和左后轮上的扭矩大小根据载荷转移比例分配,具体分配比例如下:
Figure BDA0001195491050000145
Figure BDA0001195491050000146
其中,Trr为分配给右后轮的制动扭矩的大小;Trl为分配给左后轮的驱动扭矩大小;Fz3、Fz4分别为左后轮、右后轮的垂向力,且满足下面的条件式:
Figure BDA0001195491050000151
Figure BDA0001195491050000152
其中,l、lf、lr分别为汽车100的前轴和后轴之间的距离,前轴、后轴至汽车100的质心的距离;ax、ay分别为汽车100的纵向、横向加速度;hg、b分别为汽车100的质心的高度和轮距;m和g为汽车100的质量和重力加速度。
请参阅图5,若横摆角速度γ为负值表示汽车100向右偏移,这时要对右后轮实施驱动控制,同时对左后轮进行制动控制,并使施加在右后轮和左后轮上的扭矩大小根据载荷转移比例分配,具体分配比例计算同上。
如此,产生一个与偏移方向相反的横摆扭矩MRSC,使汽车100快速进入稳定区行驶,即Δγ<γ1,β<β1。达到稳定区后,为了避免因施加横摆扭矩制动控制导致降速而引起追尾,整车控制器10又要做进一步分析,对非爆胎轮扭矩做进一步的调整,其调整过程可以如下:汽车100达到稳定状态后,此时解除加在后轴两轮的驱动或制动扭矩,让其保持爆胎前的状态驱动,若因爆胎后前轴两轮失去动力维持不了原有的车速,可适当增加油门深度,使爆胎后后轴两轮扭矩值保持与爆胎前四轮扭矩值同等大小,保持稳定车速行驶。
可以理解,当汽车100的前轮爆胎时,通过上述比例分配施加在非爆胎的车轮101的控制横摆力矩。当汽车100的后轮爆胎时,控制横摆力矩的分配比例如下:
Figure BDA0001195491050000153
Figure BDA0001195491050000154
其中,Tfr为分配给右前轮的制动扭矩的大小;Tfl为分配给左前轮的驱动扭矩大小;Fz1、Fz2分别为左前轮、右前轮的垂向力,且满足下面的条件式:
Figure BDA0001195491050000155
Figure BDA0001195491050000156
其中,l、lf、lr分别为汽车100的前轴和后轴之间的距离,前轴、后轴至汽车100的质心的距离;ax、ay分别为汽车100的纵向、横向加速度;hg、b分别为汽车100的质心的高度和轮距;m和g为汽车100的质量和重力加速度。
请参阅图6,本发明较佳实施方式的用于四轮独立驱动的汽车的车身稳定控制方法可以由车身稳定控制系统实现,并应用于汽车。车身稳定控制方法包括:
S1.采集汽车的车轮的轮胎的胎压、纵向加速度、横向加速度、横摆角速度、方向盘转角及轮速;
S2.根据胎压、纵向加速度、横向加速度、方向盘转角、轮速及横摆角速度计算控制横摆力矩,控制横摆力矩用于消除汽车的预估横摆力矩与实际横摆力矩之间的横摆力矩差值;
S3.根据横摆角速度确定汽车的偏移方向并根据胎压、纵向加速度、横向加速度、方向盘转角、轮速及横摆角速度确定汽车的侧倾程度;
S4.在爆胎时根据横摆角速度、方向盘转角、轮速、胎压判断汽车是否处于稳定区;
S5.在汽车处于稳定区时对爆胎的车轮同轴的另一侧车轮对应的电机实施制动控制以产生控制横摆力矩;及
S6.根据偏移方向和侧倾程度分配施加在非爆胎的车轮的控制横摆力矩,及在汽车处于非稳定区时对与偏移方向相反的一侧的非爆胎的车轮对应的电机实施制动控制以产生控制横摆力矩,并对与偏移方向相同的一侧的非爆胎的车轮对应的电机实施驱动控制以产生控制横摆力矩。
在某些实施方式中,车身稳定控制方法通过下式计算控制横摆力矩:
Figure BDA0001195491050000161
其中,MRSC即为控制横摆力矩;lf、lr分别为汽车的前轴、后轴至汽车的质心的距离;Fyf、Fyr分别为汽车的前轮及后轮受到的侧向力,且满足下面的关系式:
Figure BDA0001195491050000162
Figure BDA0001195491050000163
其中,kf、kr分别为汽车的前轴、后轴的侧偏刚度,由胎压得到;αf、αr分别为汽车的前轮、后轮的加速度,由横向加速度及纵向加速度得到;δf、δr分别为汽车的前轮、后轮的转角,由方向盘转角得到;vx、vy分别为汽车的纵向、横向速度,由轮速得到;γ为横摆角速度;IZ为汽车绕Z轴的转动惯量;
Figure BDA0001195491050000164
为预估横摆角速度的求导,即预估横摆角加速度,且
Figure BDA0001195491050000165
其中,L为汽车的前轴及后轴之间的距离;μ为路面附着系数,g为重力加速度;K为稳定性因素,为:
Figure BDA0001195491050000166
其中,m为汽车的质量;ζ为常数;
Figure BDA0001195491050000167
为质心侧偏角的求导,而质心侧偏角β由如下关系式得到:
Figure BDA0001195491050000168
Figure BDA0001195491050000169
为预估质心侧偏角的求导,βd的取值如下:
Figure BDA0001195491050000171
其中,β1为质心侧偏角的门限值,βmax为质心侧偏角的最大值。
在某些实施方式中,车身稳定控制方法还包括:判断Δγ<γ1及β<β1是否成立;若Δγ<γ1及β<β1成立,则汽车处于稳定区;若Δγ≥γ1或β≥β1成立,则汽车处于非稳定区;其中,Δγ为横摆角速度与预估横摆角速度的差值;预估横摆角速度通过下式计算:
Figure BDA0001195491050000172
其中,γd为预估横摆角速度,δf为汽车的前轮转角,由方向盘转角推算得到;vx为汽车的纵向速度,由轮速推算得到;L为汽车的前轴和后轴之间的距离;μ为路面附着系数,g为重力加速度;K为稳定性因素,且
Figure BDA0001195491050000173
其中,m为汽车的质量;lf、lr分别为汽车的前轴、后轴至汽车的质心的距离;kf、kr分别为汽车的前轴、后轴的侧偏刚度,由胎压推算得到;γ1为横摆角速度差值的门限值,β1为质心侧偏角的门限值;β为质心侧偏角,且由如下关系式得到:
Figure BDA0001195491050000174
在某些实施方式中,车身稳定控制方法通过如下比例分配施加在非爆胎的车轮的控制横摆力矩:
Figure BDA0001195491050000175
Figure BDA0001195491050000176
Figure BDA0001195491050000177
Figure BDA0001195491050000178
其中,Trr为分配给右后轮的制动扭矩的大小;Trl为分配给左后轮的驱动扭矩大小;Tfr为分配给右前轮的制动扭矩的大小;Tfl为分配给左前轮的驱动扭矩大小;Fz1、Fz2、Fz3、Fz4分别为左前轮、右前轮、左后轮、右后轮的垂向力,且满足下面的条件式:
Figure BDA0001195491050000179
Figure BDA00011954910500001710
Figure BDA00011954910500001711
Figure BDA00011954910500001712
其中,l、lf、lr分别为汽车的前轴和后轴之间的距离,前轴、后轴至汽车的质心的距离;ax、ay分别为汽车的纵向、横向加速度;hg、b分别为汽车的质心的高度和轮距;m和g为汽车的质量和重力加速度。
本实施方式的车身稳定控制方法中未展开的其它部分,可参以上实施方式的车身稳定控制系统的对应部分,在此不再详细展开。
在本发明的实施方式的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明的实施方式和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的实施方式的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的实施方式的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的实施方式的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明的实施方式中的具体含义。
在本发明的实施方式中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
上文的公开提供了许多不同的实施方式或例子用来实现本发明的实施方式的不同结构。为了简化本发明的实施方式的公开,上文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明的实施方式可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明的实施方式提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理模块的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(控制方法),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本发明的实施方式的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明的各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。
尽管上面已经示出和描述了本发明的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施实施进行变化、修改、替换和变型。

Claims (13)

1.一种车身稳定控制系统,其特征在于,包括:
分别与汽车的四个车轮耦合的电机;
分别与所述电机连接的电机控制器;
信息采集模块,用于采集所述汽车的车况信息参数;及
与所述电机控制器及所述信息采集模块连接的整车控制器,所述整车控制器用于根据所述车况信息参数计算控制横摆力矩,所述控制横摆力矩用于消除所述汽车的预估横摆力矩与实际横摆力矩之间的横摆力矩差值;
所述整车控制器用于根据所述车况信息参数确定所述汽车的偏移方向和侧倾程度;
所述整车控制器还用于在爆胎时根据所述车况信息参数判断所述汽车是否处于稳定区;
所述整车控制器用于在所述汽车处于稳定区时对爆胎的所述车轮同轴的另一侧所述车轮对应的所述电机实施制动控制以产生所述控制横摆力矩;
所述整车控制器还用于根据所述偏移方向和所述侧倾程度分配施加在非爆胎的所述车轮的所述控制横摆力矩,及在所述汽车处于非稳定区而产生偏移时对与所述偏移方向相反的一侧的非爆胎的所述车轮对应的所述电机实施制动控制以产生所述控制横摆力矩,并对与所述偏移方向相同的一侧的非爆胎的所述车轮对应的所述电机实施驱动控制以产生所述控制横摆力矩。
2.如权利要求1所述的车身稳定控制系统,其特征在于,所述信息采集模块包括:
胎压传感器,所述胎压传感器用于分别采集所述车轮的胎压;
偏航率传感器,所述偏航率传感器用于采集所述汽车的纵向加速度、横向加速度及横摆角速度;
方向盘转角传感器,所述方向盘转角传感器用于采集所述汽车的方向盘转角;及
轮速传感器,所述轮速传感器用于采集所述汽车的轮速;
所述整车控制器用于根据所述横摆角速度确定所述偏移方向;
所述整车控制器还用于根据所述胎压、所述纵向加速度、所述横向加速度、所述方向盘转角、所述轮速及所述横摆角速度确定所述侧倾程度。
3.如权利要求2所述的车身稳定控制系统,其特征在于,所述整车控制器用于通过下式计算所述控制横摆力矩:
Figure FDA0002547122040000021
其中,MRSC即为所述控制横摆力矩;lf、lr分别为所述汽车的前轴、后轴至所述汽车的质心的距离;Fyf、Fyr分别为所述汽车的前轮及后轮受到的侧向力,且满足下面的关系式:
Figure FDA0002547122040000022
Figure FDA0002547122040000023
其中,kf、kr分别为所述汽车的前轴、后轴的侧偏刚度,由所述胎压得到;αf、αr分别为所述汽车的前轮、后轮的加速度,由所述横向加速度及所述纵向加速度得到;δf、δr分别为所述汽车的前轮、后轮的转角,由所述方向盘转角得到;vx、vf分别为所述汽车的纵向、横向速度,由所述轮速得到;γ为所述横摆角速度;IZ为所述汽车绕Z轴的转动惯量
Figure FDA0002547122040000024
为预估横摆角速度的求导,即预估横摆角加速度,且
Figure FDA0002547122040000025
其中,L为所述汽车的前轴及后轴之间的距离;μ为路面附着系数,g为重力加速度;K为稳定性因素,为:
Figure FDA0002547122040000026
其中,m为所述汽车的质量;ζ为常数;
Figure FDA0002547122040000027
为质心侧偏角的求导,而质心侧偏角β由如下关系式得到:
Figure FDA0002547122040000028
Figure FDA0002547122040000029
为预估质心侧偏角的求导,βd的取值如下:
Figure FDA00025471220400000210
其中,β1为所述质心侧偏角的门限值,βmax为所述质心侧偏角的最大值。
4.如权利要求1所述的车身稳定控制系统,其特征在于,所述信息采集模块包括:
胎压传感器,所述胎压传感器用于分别采集所述车轮的胎压;
偏航率传感器,所述偏航率传感器用于采集所述汽车的纵向加速度、横向加速度及横摆角速度;
方向盘转角传感器,所述方向盘转角传感器用于采集所述汽车的方向盘转角;及
轮速传感器,所述轮速传感器用于采集所述汽车的轮速;
所述整车控制器用于根据所述横摆角速度、所述方向盘转角、所述轮速、所述胎压判断所述汽车是否处于稳定区。
5.如权利要求4所述的车身稳定控制系统,其特征在于,所述整车控制器用于判断Δγ<γ1及β<β1是否成立;若Δγ<γ1及β<β1成立,则所述汽车处于稳定区;若Δγ≥γ1或β≥β1成立,则所述汽车处于非稳定区;其中,Δγ为所述横摆角速度与预估横摆角速度的差值;所述预估横摆角速度通过下式计算:
Figure FDA0002547122040000031
其中,γd为所述预估横摆角速度,δf为所述汽车的前轮转角,由所述方向盘转角推算得到;vx为所述汽车的纵向速度,由所述轮速推算得到;L为所述汽车的前轴和后轴之间的距离;μ为路面附着系数,g为重力加速度;K为稳定性因素,且
Figure FDA0002547122040000032
其中,m为所述汽车的质量;lf、lr分别为所述汽车的前轴、后轴至所述汽车的质心的距离;kf、kr分别为所述汽车的前轴、后轴的侧偏刚度,由所述胎压推算得到;γ1为所述横摆角速度差值的门限值,β1为所述质心侧偏角的门限值;β为质心侧偏角,且由如下关系式得到:
Figure FDA0002547122040000033
6.如权利要求1所述的车身稳定控制系统,其特征在于,若左前轮或右前轮爆胎,所述汽车处于非稳定区,且所述汽车左偏,则所述整车控制器用于对左后轮进行驱动控制,并对右后轮实施制动控制;
若左前轮或右前轮爆胎,所述汽车处于非稳定区,且所述汽车右偏,则所述整车控制器用于对右后轮进行驱动控制,并对左后轮实施制动控制;
若左后轮或右后轮爆胎,所述汽车处于非稳定区,且所述汽车左偏,则所述整车控制器用于对左前轮进行驱动控制,并对右前轮实施制动控制;
若左后轮或右后轮爆胎,所述汽车处于非稳定区,且所述汽车右偏,则所述整车控制器用于对右前轮进行驱动控制,并对左前轮实施制动控制。
7.如权利要求1所述的车身稳定控制系统,其特征在于,所述整车控制器通过如下比例分配施加在非爆胎的所述车轮的所述控制横摆力矩:
Figure FDA0002547122040000034
Figure FDA0002547122040000035
Figure FDA0002547122040000036
Figure FDA0002547122040000041
其中,Trr为分配给右后轮的制动扭矩的大小;Trl为分配给左后轮的驱动扭矩大小;Tfr为分配给右前轮的制动扭矩的大小;Tfl为分配给左前轮的驱动扭矩大小;Fz1、Fz2、Fz3、Fz4分别为所述左前轮、所述右前轮、所述左后轮、所述右后轮的垂向力,且满足下面的条件式:
Figure FDA0002547122040000042
Figure FDA0002547122040000043
Figure FDA0002547122040000044
Figure FDA0002547122040000045
其中,l、lf、lr分别为所述汽车的前轴和后轴之间的距离,前轴、后轴至所述汽车的质心的距离;ax、ay分别为所述汽车的纵向、横向加速度;hg、b分别为所述汽车的质心的高度和轮距;m和g为所述汽车的质量和重力加速度。
8.一种车身稳定控制方法,其特征在于,包括:
采集汽车的车轮的轮胎的胎压、纵向加速度、横向加速度、横摆角速度、方向盘转角及轮速;
根据所述胎压、所述纵向加速度、所述横向加速度、所述方向盘转角、所述轮速及所述横摆角速度计算控制横摆力矩,所述控制横摆力矩用于消除所述汽车的预估横摆力矩与实际横摆力矩之间的横摆力矩差值;
根据所述横摆角速度确定所述汽车的偏移方向并根据所述胎压、所述纵向加速度、所述横向加速度、所述方向盘转角、所述轮速及所述横摆角速度确定所述汽车的侧倾程度;
在爆胎时根据所述横摆角速度、所述方向盘转角、所述轮速、所述胎压判断所述汽车是否处于稳定区;
在所述汽车处于稳定区时对爆胎的所述车轮同轴的另一侧所述车轮对应的电机实施制动控制以产生所述控制横摆力矩;及
根据所述偏移方向和所述侧倾程度分配施加在非爆胎的所述车轮的所述控制横摆力矩,及在所述汽车处于非稳定区而产生偏移时对与所述偏移方向相反的一侧的非爆胎的所述车轮对应的所述电机实施制动控制以产生所述控制横摆力矩,并对与所述偏移方向相同的一侧的非爆胎的所述车轮对应的所述电机实施驱动控制以产生所述控制横摆力矩。
9.如权利要求8所述的车身稳定控制方法,其特征在于,通过下式计算所述控制横摆力矩:
Figure FDA0002547122040000051
其中,MRSC即为所述控制横摆力矩;lf、lr分别为所述汽车的前轴、后轴至所述汽车的质心的距离;Fyf、Fyr分别为所述汽车的前轮及后轮受到的侧向力,且满足下面的关系式:
Figure FDA0002547122040000052
Figure FDA0002547122040000053
其中,kf、kr分别为所述汽车的前轴、后轴的侧偏刚度,由所述胎压得到;αf、αr分别为所述汽车的前轮、后轮的加速度,由所述横向加速度及所述纵向加速度得到;δf、βr分别为所述汽车的前轮、后轮的转角,由所述方向盘转角得到;vx、vy分别为所述汽车的纵向、横向速度,由所述轮速得到;γ为所述横摆角速度;IZ为所述汽车绕Z轴的转动惯量;
Figure FDA00025471220400000510
为预估横摆角速度的求导,即预估横摆角加速度,且
Figure FDA0002547122040000054
其中,L为所述汽车的前轴及后轴之间的距离;μ为路面附着系数,g为重力加速度;K为稳定性因素,为:
Figure FDA0002547122040000055
其中,m为所述汽车的质量;ζ为常数;
Figure FDA00025471220400000511
为质心侧偏角的求导,而质心侧偏角β由如下关系式得到:
Figure FDA0002547122040000056
Figure FDA0002547122040000057
为预估质心侧偏角的求导,βd的取值如下:
Figure FDA0002547122040000058
其中,β1为所述质心侧偏角的门限值,βmax为所述质心侧偏角的最大值。
10.如权利要求8所述的车身稳定控制方法,其特征在于,还包括:判断Δγ<γ1及β<β1是否成立;若Δγ<γ1及β<β1成立,则所述汽车处于稳定区;若Δγ≥γ1或β≥β1成立,则所述汽车处于非稳定区;其中,Δγ为所述横摆角速度与预估横摆角速度的差值;所述预估横摆角速度通过下式计算:
Figure FDA0002547122040000059
其中,γd为所述预估横摆角速度,δf为所述汽车的前轮转角,由所述方向盘转角推算得到;vx为所述汽车的纵向速度,由所述轮速推算得到;L为所述汽车的前轴和后轴之间的距离;μ为路面附着系数,g为重力加速度;K为稳定性因素,且
Figure FDA0002547122040000061
其中,m为所述汽车的质量;lf、lr分别为所述汽车的前轴、后轴至所述汽车的质心的距离;kf、kr分别为所述汽车的前轴、后轴的侧偏刚度,由所述胎压推算得到;γ1为所述横摆角速度差值的门限值,β1为所述质心侧偏角的门限值;β为质心侧偏角,且由如下关系式得到:
Figure FDA0002547122040000062
11.如权利要求8所述的车身稳定控制方法,其特征在于,若左前轮或右前轮爆胎,所述汽车处于非稳定区,且所述汽车左偏,则对左后轮进行驱动控制,并对右后轮实施制动控制;
若左前轮或右前轮爆胎,所述汽车处于非稳定区,且所述汽车右偏,则对右后轮进行驱动控制,并对左后轮实施制动控制;
若左后轮或右后轮爆胎,所述汽车处于非稳定区,且所述汽车左偏,则对左前轮进行驱动控制,并对右前轮实施制动控制;
若左后轮或右后轮爆胎,所述汽车处于非稳定区,且所述汽车右偏,则对右前轮进行驱动控制,并对左前轮实施制动控制。
12.如权利要求8所述的车身稳定控制方法,其特征在于,通过如下比例分配施加在非爆胎的所述车轮的所述控制横摆力矩:
Figure FDA0002547122040000063
Figure FDA0002547122040000064
Figure FDA0002547122040000065
Figure FDA0002547122040000066
其中,Trr为分配给右后轮的制动扭矩的大小;Trl为分配给左后轮的驱动扭矩大小;Tfr为分配给右前轮的制动扭矩的大小;Tfl为分配给左前轮的驱动扭矩大小;Fz1、Fz2、Fz3、Fz4分别为所述左前轮、所述右前轮、所述左后轮、所述右后轮的垂向力,且满足下面的条件式:
Figure FDA0002547122040000067
Figure FDA0002547122040000068
Figure FDA0002547122040000071
Figure FDA0002547122040000072
其中,l、lf、lr分别为所述汽车的前轴和后轴之间的距离,前轴、后轴至所述汽车的质心的距离;ax、ay分别为所述汽车的纵向、横向加速度;hg、b分别为所述汽车的质心的高度和轮距;m和g为所述汽车的质量和重力加速度。
13.一种汽车,其特征在于,包括:
四个车轮;
分别与所述四个车轮耦合的电机;
分别与所述电机连接的电机控制器;
胎压传感器,所述胎压传感器用于分别采集所述车轮的胎压;
偏航率传感器,所述偏航率传感器用于采集所述汽车的纵向加速度、横向加速度及横摆角速度;
方向盘转角传感器,所述方向盘转角传感器用于采集所述汽车的方向盘转角;
轮速传感器,所述轮速传感器用于采集所述汽车的轮速;及
与所述电机控制器、所述胎压传感器、所述偏航率传感器、所述方向盘转角传感器及所述轮速传感器连接的整车控制器;
所述整车控制器用于根据所述胎压、所述纵向加速度、所述横向加速度、所述方向盘转角、所述轮速及所述横摆角速度计算控制横摆力矩,所述控制横摆力矩用于消除所述汽车的预估横摆力矩与实际横摆力矩之间的横摆力矩差值;
所述整车控制器用于根据所述横摆角速度确定所述汽车的偏移方向并根据所述胎压、所述纵向加速度、所述横向加速度、所述方向盘转角、所述轮速及所述横摆角速度确定所述汽车的侧倾程度;
所述整车控制器还用于在爆胎时根据所述横摆角速度、所述方向盘转角、所述轮速、所述胎压判断所述汽车是否处于稳定区;
所述整车控制器用于在所述汽车处于稳定区时对爆胎的所述车轮同轴的另一侧所述车轮对应的所述电机实施制动控制以产生所述控制横摆力矩;
所述整车控制器还用于根据所述偏移方向和所述侧倾程度分配施加在非爆胎的所述车轮的所述控制横摆力矩,及在所述汽车处于非稳定区而产生偏移时对与所述偏移方向相反的一侧的非爆胎的所述车轮对应的所述电机实施制动控制以产生所述控制横摆力矩,并对与所述偏移方向相同的一侧的非爆胎的所述车轮对应的所述电机实施驱动控制以产生所述控制横摆力矩。
CN201611236728.XA 2016-12-28 2016-12-28 车身稳定控制系统、方法及汽车 Active CN108248454B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611236728.XA CN108248454B (zh) 2016-12-28 2016-12-28 车身稳定控制系统、方法及汽车

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611236728.XA CN108248454B (zh) 2016-12-28 2016-12-28 车身稳定控制系统、方法及汽车

Publications (2)

Publication Number Publication Date
CN108248454A CN108248454A (zh) 2018-07-06
CN108248454B true CN108248454B (zh) 2020-09-15

Family

ID=62720368

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611236728.XA Active CN108248454B (zh) 2016-12-28 2016-12-28 车身稳定控制系统、方法及汽车

Country Status (1)

Country Link
CN (1) CN108248454B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110920605B (zh) 2018-08-31 2021-05-14 华为技术有限公司 一种车辆控制方法及设备
CN109353342B (zh) * 2018-11-14 2023-09-26 南京航空航天大学 一种车辆弯道安全速度控制系统及方法
CN109606034A (zh) * 2018-12-11 2019-04-12 湖北汽车工业学院 一种爆胎预警系统及预警方法
CN109823326B (zh) * 2019-03-19 2021-02-09 重庆邮电大学 四轮乘用车辆爆胎后的紧急制动控制方法
CN110677428A (zh) * 2019-09-30 2020-01-10 上海智驾汽车科技有限公司 基于智能网联的车辆控制方法以及装置
CN111891117A (zh) * 2020-04-29 2020-11-06 佛山市龙生光启科技有限公司 一种智能车胎纠偏系统
CN111907515A (zh) * 2020-04-29 2020-11-10 佛山市龙生光启科技有限公司 一种自动纠偏系统及应用其的车胎
WO2022141323A1 (zh) * 2020-12-30 2022-07-07 华为技术有限公司 一种车辆前后驱动扭矩分配方法、装置及车辆
CN115202371B (zh) * 2022-09-19 2023-02-07 深圳市凯之成智能装备有限公司 平板清扫机器人的运动控制方法及相关装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1207090B1 (en) * 2000-11-20 2007-04-18 Toyota Jidosha Kabushiki Kaisha Vehicle motion control device and method
CN101380876A (zh) * 2008-09-04 2009-03-11 清华大学 汽车爆胎安全控制方法及系统
JP2011067076A (ja) * 2009-09-18 2011-03-31 Toyota Motor Corp 左右独立駆動車両の駆動力制御装置
KR20130026328A (ko) * 2011-09-05 2013-03-13 현대자동차주식회사 타이어 파손 시 차량 안정화 장치 및 방법
CN103935265A (zh) * 2014-04-24 2014-07-23 吴刚 一种电动汽车的车身稳定控制系统
CN105799548A (zh) * 2016-03-22 2016-07-27 吉林大学 一种提高四轮轮毂电机驱动电动汽车爆胎安全性控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1207090B1 (en) * 2000-11-20 2007-04-18 Toyota Jidosha Kabushiki Kaisha Vehicle motion control device and method
CN101380876A (zh) * 2008-09-04 2009-03-11 清华大学 汽车爆胎安全控制方法及系统
JP2011067076A (ja) * 2009-09-18 2011-03-31 Toyota Motor Corp 左右独立駆動車両の駆動力制御装置
KR20130026328A (ko) * 2011-09-05 2013-03-13 현대자동차주식회사 타이어 파손 시 차량 안정화 장치 및 방법
CN103935265A (zh) * 2014-04-24 2014-07-23 吴刚 一种电动汽车的车身稳定控制系统
CN105799548A (zh) * 2016-03-22 2016-07-27 吉林大学 一种提高四轮轮毂电机驱动电动汽车爆胎安全性控制方法

Also Published As

Publication number Publication date
CN108248454A (zh) 2018-07-06

Similar Documents

Publication Publication Date Title
CN108248454B (zh) 车身稳定控制系统、方法及汽车
US10322718B2 (en) Vehicle stability control method and system, and vehicle
US20220169121A1 (en) Vehicle dynamics control in electric drive vehicles
CN108237950B (zh) 车辆的控制方法、系统及车辆
CN112440979B (zh) 一种控制车辆稳定性的方法及设备
WO2017025042A1 (zh) 用于四轮驱动电动车辆的稳定控制系统、方法及电动车辆
US10967870B2 (en) Hill descent system for vehicle and control method thereof
KR101360038B1 (ko) 인휠 모터를 이용한 차량 제어 방법
JP6042706B2 (ja) 車両制御装置
CN109606133A (zh) 基于双层控制的分布式驱动电动汽车转矩矢量控制方法
JP2006335171A (ja) 車輌の制駆動力制御装置
JP2009184575A (ja) 車両の制御装置
JP2010119204A (ja) 電気自動車の車両制御装置
JP2015217861A (ja) 車両制御装置
US20210171017A1 (en) Electronic stability control method for vehicle
US20200207332A1 (en) Method and Apparatus for Controlling a Vehicle
CN104973053B (zh) 用于车辆的电子稳定控制装置及其方法
JP4582031B2 (ja) 四輪駆動車の駆動力制御装置
CN110239499B (zh) 车辆的控制装置及车辆的控制方法
JP5082694B2 (ja) 車両の駆動力配分制御装置
EP3529113B1 (en) Lateral dynamic control for regenerative and friction brake blending
JP2010188918A (ja) 挙動制御装置
JP2008167640A (ja) 電気自動車の車両制御装置、及び電気自動車の駆動システム
JP5018051B2 (ja) 車両の駆動力制御装置
CN114801772A (zh) 车辆控制装置和控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant