CN108247049A - 一种采用CoCrMo合金粉末的激光选区增材制造方法 - Google Patents

一种采用CoCrMo合金粉末的激光选区增材制造方法 Download PDF

Info

Publication number
CN108247049A
CN108247049A CN201711397142.6A CN201711397142A CN108247049A CN 108247049 A CN108247049 A CN 108247049A CN 201711397142 A CN201711397142 A CN 201711397142A CN 108247049 A CN108247049 A CN 108247049A
Authority
CN
China
Prior art keywords
alloy powders
cocrmo
cocrmo alloy
prepared
drip molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711397142.6A
Other languages
English (en)
Inventor
闫飞
韩志宇
陈小林
刘洋
王庆相
梁书锦
张平祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
XI'AN OUZHONG MATERIAL TECHNOLOGY Co Ltd
Original Assignee
XI'AN OUZHONG MATERIAL TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by XI'AN OUZHONG MATERIAL TECHNOLOGY Co Ltd filed Critical XI'AN OUZHONG MATERIAL TECHNOLOGY Co Ltd
Priority to CN201711397142.6A priority Critical patent/CN108247049A/zh
Publication of CN108247049A publication Critical patent/CN108247049A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/37Process control of powder bed aspects, e.g. density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种采用CoCrMo合金粉末的激光选区增材制造方法,包括以下步骤:1)采用超高转速等离子旋转电极制粉工艺(SS‑PREP)制备CoCrMo合金粉末,筛分得到15~50μm粉末;2)采用激光选区熔化技术制备CoCrMo成形件;3)对合金进行真空热处理;4)在合金分别取样,用于金相与拉伸性能检测。采用本方法制备的CoCrMo合金具有表面光洁、高强度、高塑性的特点,并且在不同方向上呈现出高的组织、性能一致性。

Description

一种采用CoCrMo合金粉末的激光选区增材制造方法
技术领域
本发明属于金属3D打印成形技术领域,具体涉及一种采用CoCrMo合金粉末的激光选区增材制造方法。
背景技术
增材制造(Additive Manufacturing,AM)技术是采用材料逐渐累加的方法制造实体零件的技术。采用AM技术可以加工许多过去难以制造的复杂结构零件,并大大减少了加工工序,缩短了加工周期。而且越是复杂结构的产品,其制造的速度作用越显著。粉末基增材制造技术可以使用激光束和电子束作为热源实现3D打印。其中金属材料激光熔化增材制造技术:以激光束为热源,熔化所添加金属材料粉末或者丝材,实现高致密度金属零件的数字化制造。主要分为两种类型:基于同轴送粉的激光熔化沉积增材制造(Laser MeltingDeposition,简称LMD)和基于自动铺粉的激光选区熔化增材制造(Selective LaserMelting,简称SLM)。
CoCrMo合金具有很好的机械性能和理化性质,是常用的钴基材料之一,从上世纪50年代起,铸造、锻造成形工艺制备的CoCrMo合金陆续用于人工义齿与承受重大载荷的关节假体,如髋关节、膝关节等。随着SLM技术的兴起,相比于传统工艺,SLM技术的材料利用率更高、制备周期更短、并且可以满足复杂成形的特点,非常适用于CoCrMo合金的成形。目前,SLM技术采用气雾化法制备的粉末进行成形。气雾化法制备的粉末含有较多的空心粉、粘接粉,这些缺陷的存在会损害成形件的性能。采用等离子旋转电极制粉(PREP)制备的粉末流动性更好,且避免了空心粉、卫星粉等缺陷,因此非常适合用于SLM技术成形;但是,PREP制粉法细粉收得率低,难以满足SLM成形工艺的需求。近年来,随着超高速等离子旋转电极制粉(SS-PREP)的技术突破,亟需PREP CoCrMo合金粉末在SLM领域的应用。
发明内容
为克服上述现有技术的不足,本发明提供了一种采用CoCrMo合金粉末的激光选区增材制造方法,采用高品质、细粒径的SS-PREP粉末作为打印材料,从而提高成形件的综合力学性能;本方法制备的成形件在XY、Z、45°三个方向均可以满足:抗拉强度>1200MPa,屈服强度>1000MPa,延伸率>15%。
为实现上述目的,本发明采用的技术方案是:一种采用CoCrMo合金粉末的激光选区增材制造方法,包括以下步骤:
1)采用SS-PREP制粉工艺制备CoCrMo合金粉末,筛分得到15~50μm粉末;
2)采用SLM设备进行成形,得到成形件,激光功率20~1000W,扫描速度50~800mm/s,扫描间距0.03~0.11mm,铺粉层厚20~60μm;
3)将成形件进行真空去应力退火,随炉升温至800~1200℃,保温2~6h,随炉冷却;
4)在成形件上XY、Z、45°三个方向分别取样,测试室温拉伸性能。
所述的CoCrMo合金粉末粒度为15~50μm, 中值粒径D50为25~35μm。
所述的成形件,在XY、Z、45°三个方向均满足:抗拉强度>1200MPa,屈服强度>1000MPa,延伸率>15%。
本发明的有益效果在于:
与现有技术相比,本发明使用超高速等离子旋转电极制粉工艺(SS-PREP),实现了高品质CoCrMo合金粉末的制备,使得SLM用CoCrMo粉末不仅仅局限在气雾化粉末中,拓宽了SLM用CoCrMo粉末的种类;
使用本方法制得的粉末进行成形及热处理,其力学性能可达到:抗拉强度>1200MPa,屈服强度>1000MPa,延伸率>15%,并且在X Y、Z、45°方向上保持了力学性能一致性。
具体实施方式
下面结合具体实施例对本发明作进一步详细说明。
实施例1
一种采用CoCrMo合金粉末的激光选区增材制造方法,包括以下步骤:
1)采用SS-PREP工艺制备CoCrMo合金粉末,CoCrMo合金粉末粒径为25~50μm,D50=35μm;
2)采用SLM工艺制备CoCrMo成形件,得到成形件,激光功率20W,扫描速度400mm/s,扫描间距0.06mm,铺粉层厚30μm;
3)将成形件进行真空退火,随炉升温至1000℃,保温5h,随炉冷却;
4)在样件上X Y、Z、45°三个方向分别取样,测试室温拉伸性能,如下表所示。
实施例2
一种采用CoCrMo合金粉末的激光选区增材制造方法,包括以下步骤:
1)采用SS-PREP制粉工艺制备CoCrMo合金粉末,CoCrMo合金粉末粒径为15~35μm,D50=25μm;
2)采用SLM工艺制备CoCrMo成形件,SLM工艺中:激光功率1000W,扫描速度300mm/s,扫描间距0.07mm,铺粉层厚30μm;
3)将成形件进行真空退火,随炉升温至1100℃,保温4h,随炉冷却。
4)在样件上X Y、Z、45°三个方向分别取样,测试室温拉伸性能,如下表所示。
实施例3
一种采用CoCrMo合金粉末的激光选区增材制造方法,包括以下步骤:
1)采用SS-PREP制粉工艺制备CoCrMo合金粉末,CoCrMo合金粉末粒径为20~45μm,D50=31μm;
2)采用SLM工艺制备CoCrMo成形件,得到成形件,激光功率500W,扫描速度500mm/s,扫描间距0.05mm,铺粉层厚30μm;
3)将成形件进行真空退火,随炉升温至1050℃,保温6h,随炉冷却;
4)在成形件上X Y、Z、45°三个方向分别取样,测试室温拉伸性能,如下表所示。
实施例4
一种采用CoCrMo合金粉末的激光选区增材制的造方法,其特征在于,包括以下步骤:
1)采用SS-PREP制粉工艺制备CoCrMo合金粉末,CoCrMo合金粉末粒径为15μm;
2)采用SLM设备进行成形,得到成形件,激光功率2kW,扫描速度50mm/s,扫描间距0.03mm,铺粉层厚20μm;
3)将成形件进行真空去应力退火,随炉升温至800℃,保温2h,随炉冷却;
4)在成形件上XY、Z、45°三个方向分别取样,测试室温拉伸性能。
实施例5
一种采用CoCrMo合金粉末的激光选区增材的制造方法,其特征在于,包括以下步骤:
1)采用SS-PREP制粉工艺制备CoCrMo合金粉末,CoCrMo合金粉末粒径为85μm;
2)采用SLM设备进行成形,得到成形件,激光功率24kW,扫描速度375mm/s,扫描间距0.07mm,铺粉层厚40μm;
3)将成形件进行真空去应力退火,随炉升温至1000℃,保温4h,随炉冷却;
4)在成形件上XY、Z、45°三个方向分别取样,测试室温拉伸性能。
实施例6
一种采用CoCrMo合金粉末的激光选区增材的制造方法,其特征在于,包括以下步骤:
1)采用SS-PREP制粉工艺制备CoCrMo合金粉末,CoCrMo合金粉末粒径为200μm;
2)采用SLM设备进行成形,得到成形件,激光功率50kW,扫描速度800mm/s,扫描间距0.11mm,铺粉层厚60μm;
3)将成形件进行真空去应力退火,随炉升温至1200℃,保温6h,随炉冷却;
4)在成形件上XY、Z、45°三个方向分别取样,测试室温拉伸性能。

Claims (6)

1.一种采用CoCrMo合金粉末的激光选区增材制造方法,其特征在于,包括以下步骤:
1)采用SS-PREP制粉工艺制备CoCrMo合金粉末,筛分得到15~50μm粉末;
2)采用SLM设备进行成形,得到成形件,激光功率20~1000W,扫描速度50~800mm/s,扫描间距0.03~0.11mm,铺粉层厚20~60μm;
3)将成形件进行真空去应力退火,随炉升温至800~1200℃,保温2~6h,随炉冷却;
4)在成形件上XY、Z、45°三个方向分别取样,测试室温拉伸性能。
2.根据权利要求1所述的一种采用CoCrMo合金粉末的激光选区增材制造方法,其特征在于,所述的CoCrMo合金粉末粒度为15~50μm,中值粒径D50为25~35μm。
3.根据权利要求1所述的一种采用CoCrMo合金粉末的激光选区增材制造方法,其特征在于,所述的成形件,在XY、Z、45°三个方向均满足:抗拉强度>1200MPa,屈服强度>1000MPa,延伸率>15%。
4.根据权利要求1所述的一种采用CoCrMo合金粉末的激光选区增材制造方法,其特征在于,包括以下步骤:
一种采用CoCrMo合金粉末的激光选区增材制造方法,包括以下步骤:
1)采用SS-PREP工艺制备CoCrMo合金粉末,CoCrMo合金粉末粒径为25~50μm,D50=35μm;
2)采用SLM工艺制备CoCrMo成形件,得到成形件,激光功率20W,扫描速度400mm/s,扫描间距0.06mm,铺粉层厚30μm;
3)将成形件进行真空退火,随炉升温至1000℃,保温5h,随炉冷却;
4)在样件上X Y、Z、45°三个方向分别取样,测试室温拉伸性能。
5.根据权利要求1所述的一种采用CoCrMo合金粉末的激光选区增材制造方法,其特征在于,包括以下步骤:
1)采用SS-PREP制粉工艺制备CoCrMo合金粉末,CoCrMo合金粉末粒径为15~35μm,D50=25μm;
2)采用SLM工艺制备CoCrMo成形件,SLM工艺中:激光功率1000W,扫描速度300mm/s,扫描间距0.07mm,铺粉层厚30μm;
3)将成形件进行真空退火,随炉升温至1100℃,保温4h,随炉冷却;
4)在样件上X Y、Z、45°三个方向分别取样,测试室温拉伸性能。
6.根据权利要求1所述的一种采用CoCrMo合金粉末的激光选区增材制造方法,其特征在于,包括以下步骤:
1)采用SS-PREP制粉工艺制备CoCrMo合金粉末,CoCrMo合金粉末粒径为20~45μm,D50=31μm;
2)采用SLM工艺制备CoCrMo成形件,得到成形件,激光功率500W,扫描速度500mm/s,扫描间距0.05mm,铺粉层厚30μm;
3)将成形件进行真空退火,随炉升温至1050℃,保温6h,随炉冷却;
4)在成形件上X Y、Z、45°三个方向分别取样,测试室温拉伸性能,如下表所示:
取样方向 抗拉强度/MPa 屈服强度/MPa 延伸率/% X Y 1142 1024 17.5 Z 1137 1035 17.5 45° 1133 1029 17.0
CN201711397142.6A 2017-12-21 2017-12-21 一种采用CoCrMo合金粉末的激光选区增材制造方法 Pending CN108247049A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711397142.6A CN108247049A (zh) 2017-12-21 2017-12-21 一种采用CoCrMo合金粉末的激光选区增材制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711397142.6A CN108247049A (zh) 2017-12-21 2017-12-21 一种采用CoCrMo合金粉末的激光选区增材制造方法

Publications (1)

Publication Number Publication Date
CN108247049A true CN108247049A (zh) 2018-07-06

Family

ID=62723701

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711397142.6A Pending CN108247049A (zh) 2017-12-21 2017-12-21 一种采用CoCrMo合金粉末的激光选区增材制造方法

Country Status (1)

Country Link
CN (1) CN108247049A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109014230A (zh) * 2018-08-31 2018-12-18 金堆城钼业股份有限公司 一种钼金属格栅的制备方法
CN110142970A (zh) * 2019-05-23 2019-08-20 中国科学技术大学 一种用于3d打印技术的壳模型构造方法
CN114559054A (zh) * 2022-03-02 2022-05-31 北京工业大学 一种激光粉末床熔融制备gh99镍基合金成形工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106424733A (zh) * 2016-12-13 2017-02-22 广东汉唐量子光电科技有限公司 一种CoCrMo 合金牙冠3D 打印与电解抛光复合加工系统
CN106853536A (zh) * 2016-12-19 2017-06-16 西安欧中材料科技有限公司 制备3D打印用CoCrWMo合金球形粉末的方法
CN206263257U (zh) * 2016-12-13 2017-06-20 广东汉唐快速制造应用技术研究院有限公司 一种CoCrMo合金牙冠3D打印与电解抛光复合加工装置
US20170182598A1 (en) * 2015-12-28 2017-06-29 General Electric Company Metal additive manufacturing using gas mixture including oxygen
CN107116219A (zh) * 2017-05-22 2017-09-01 西安欧中材料科技有限公司 一种采用SS‑PREP Ti6Al4V球形粉末的激光铺粉增材制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170182598A1 (en) * 2015-12-28 2017-06-29 General Electric Company Metal additive manufacturing using gas mixture including oxygen
CN106424733A (zh) * 2016-12-13 2017-02-22 广东汉唐量子光电科技有限公司 一种CoCrMo 合金牙冠3D 打印与电解抛光复合加工系统
CN206263257U (zh) * 2016-12-13 2017-06-20 广东汉唐快速制造应用技术研究院有限公司 一种CoCrMo合金牙冠3D打印与电解抛光复合加工装置
CN106853536A (zh) * 2016-12-19 2017-06-16 西安欧中材料科技有限公司 制备3D打印用CoCrWMo合金球形粉末的方法
CN107116219A (zh) * 2017-05-22 2017-09-01 西安欧中材料科技有限公司 一种采用SS‑PREP Ti6Al4V球形粉末的激光铺粉增材制造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109014230A (zh) * 2018-08-31 2018-12-18 金堆城钼业股份有限公司 一种钼金属格栅的制备方法
CN109014230B (zh) * 2018-08-31 2021-11-05 金堆城钼业股份有限公司 一种钼金属格栅的制备方法
CN110142970A (zh) * 2019-05-23 2019-08-20 中国科学技术大学 一种用于3d打印技术的壳模型构造方法
CN114559054A (zh) * 2022-03-02 2022-05-31 北京工业大学 一种激光粉末床熔融制备gh99镍基合金成形工艺

Similar Documents

Publication Publication Date Title
RU2566117C2 (ru) Способ изготовления трехмерного изделия
CN109628772B (zh) 一种超短周期高强度-高延展性镍铝青铜合金及制备方法
CN108247049A (zh) 一种采用CoCrMo合金粉末的激光选区增材制造方法
JP5767447B2 (ja) Cu、In、GaおよびSeの元素を含有する粉末の製造方法、及びCu、In、GaおよびSeの元素を含有するスパッタリングターゲット
CN107234240A (zh) 一种采用SS‑PREP Ti6Al4V球形粉末的电子束铺粉增材的制造方法
CN105648270B (zh) 一种3d打印制备的稀土钛合金材料
CN105522151B (zh) 一种3d打印医用钛合金材料的方法
CN107116219A (zh) 一种采用SS‑PREP Ti6Al4V球形粉末的激光铺粉增材制造方法
CN107876794A (zh) 增材制造用的Mo粉末、Mo合金球形粉末的制备方法
CN105603255B (zh) 一种3d打印制备医用钛合金材料
CN107326218A (zh) 一种3d打印用dd5镍基高温合金粉末的制备方法
CN109759598A (zh) 一种3d打印用gh4169镍基高温合金粉末的制备方法
CN112024870A (zh) 一种3d打印用smtgh3230球形粉末及其制备方法和应用
CN114318037A (zh) 一种基于激光增材制造的高钨含量钨镍合金材料及其制备方法
CN111778424A (zh) 一种有效可控的具有多极孔结构的骨架的制备方法
CN110340343A (zh) 采用prep tc4粉末的激光熔化沉积增材制造及热处理方法
US9028583B2 (en) Process for producing refractory metal alloy powders
CN106735276A (zh) 一种高品质球形镍粉的制备方法
CN111101043B (zh) 一种激光增材制造的CrMoVNbAl高熵合金及其成形工艺
CN112024869A (zh) 一种3d打印用smtgh5188球形粉末及其制备方法和应用
JP6862312B2 (ja) アディティブマニュファクチャリング方法及び蒸気タービン部品の製造方法
Ren et al. Remarkable improvement in microstructure and mechanical properties of cold sprayed Al deposits via impact forging post-spray treatment
CN113843415B (zh) 钽铌合金粉末及其制备方法
JP2015151610A (ja) Co−Cr−Mo基合金粉末組成物
KR20160071619A (ko) 철계 초내열 합금의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180706