CN105648270B - 一种3d打印制备的稀土钛合金材料 - Google Patents

一种3d打印制备的稀土钛合金材料 Download PDF

Info

Publication number
CN105648270B
CN105648270B CN201610033835.6A CN201610033835A CN105648270B CN 105648270 B CN105648270 B CN 105648270B CN 201610033835 A CN201610033835 A CN 201610033835A CN 105648270 B CN105648270 B CN 105648270B
Authority
CN
China
Prior art keywords
printing
titanium alloy
powder
annealing
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610033835.6A
Other languages
English (en)
Other versions
CN105648270A (zh
Inventor
谢浩龙
林志丹
黄霖
邓淑玲
刘燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Baoda New Material Technology Co.,Ltd.
Original Assignee
Guangzhou Zhi Zhilong Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Zhi Zhilong Technology Co Ltd filed Critical Guangzhou Zhi Zhilong Technology Co Ltd
Priority to CN201610033835.6A priority Critical patent/CN105648270B/zh
Publication of CN105648270A publication Critical patent/CN105648270A/zh
Application granted granted Critical
Publication of CN105648270B publication Critical patent/CN105648270B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/68Cleaning or washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

本发明提供一种3D打印稀土钛合金材料,由以下原料制备得到:所述钛合金粉体的组成包含以下组分(质量百分比):Ni:11‑18%,Al:7.3‑8.9%,Cu:0.56‑0.9%,Zr:1.2‑1.7%,Mo:0.2‑0.4%,Fe:1‑2.8%,Ag:0.1‑0.5%,Nd:0.6‑1%,V:0.5‑0.8%,Pr:1‑3%,Er:0.5‑1.5%,Y:1‑2%,CeO2:1‑3%,LaB6:0.1‑3.3%,余量为Ti。通过合理的成分设计,通过烧结再合金化均匀,采用机械合金化获得合金粉末,制备出均匀的并且兼容性好的合金粉末,过具体热处理配合,使得钛合金具有高强度,高弹性模量,和好的伸长率和断裂韧性,最终导致成品性能高;通过上述具体制备方法参数的限定与具体合金成分的配合,使得性能稳定性达到了90%以上,具备了较为理想的性能后可更加适用于医用钛合金材料中。

Description

一种3D打印制备的稀土钛合金材料
技术领域
本发明涉及一种3D打印制备的稀土钛合金材料。
背景技术
生物医用材料是指以医疗为目的,用于诊断、治疗、修复或替换人体组织器官或增进其功能的材料。骨科中用于制造各种人工关节和人工骨医用材料主要包括高分子材料、金属材料、非金属材料和复合材料。鉴于金属材料具有较高的强度、韧性和优良的加工性能,可被用作人工膝关节、股关节、齿科植入体、牙根及义齿金属支架等,从而在外科移植手术中得到了广泛地应用。
3D打印技术是以计算机三维设计模型为蓝本,通过软件分层离散和数控成型系统,利用高能激光束、电子束等方式将金属线、金属粉末、陶瓷粉末、或者塑料细胞组织等特殊材料进行逐层堆积粘结最终叠加成型制造出实体产品。这也决定了其打印材料和应用方向的不同,会产生一些垂直的发展领域。
现有的生物工程可以打印出颅骨中头盖骨、牙齿骨骼、修复人体髋关节、脊柱、细胞、器官软组织等,而且航空航天领域也采用3D打印技术打印出过运20、歼15的主承力部分的起落架等。
但是,由于3D打印对材料要求的特殊性以及医用、航空航天领域对材料的高要求性,现有的材料还完全满足上述所有要求。
激光增材制造,即激光3D打印技术,是通过激光熔覆的方式,实现层层堆积,并借助数字化控制堆积路径,从而直接一步制造出复杂构件的技术。与传统去材制造、锻压、铸造等技术相比,具有以下优势:(1)原料利用率高;(2)省去模具成本;(3)设计制备周期短;(4)无需或仅需要少量后续加工;(5)可制备传统技术无法实现的复杂构件。因此,激光3D打印技术在世界范围内迅速发展,受到政府、国防、企业、研究院所的高度重视。
然而,采用激光3D打印制备钛合金及构件时因为每层都会发生多次熔化,且冷却速度极快,所以金相组织粗大、不均匀、且呈针状,综合性能不高;虽然通过后续中低温退火热处理可以一定程度上改善其力学性能,但由于热处理过程中容易形成粗大组织,从而降低力学性能。另外,由于激光3D打印钛金属产品的后续热处理工艺窗口较窄,其力学性能改善有限,所以存在以下不足:(1)强度水平与耐热温度不高;(2)金相组织粗大且不均匀;(3)后续热处理改性过程中金相组织长大;(4)后续热处理工艺参数可选范围较窄,力学性能改善有限;(5)由于金相组织为粗大的针状组织,合金及构件的塑性水平低。
发明内容
本发明一种3D打印稀土钛合金材料,通过组分的优化,粉体制备的改进以及热处理过程的优化获得。
本发明一种3D打印稀土钛合金材料,由以下原料制备得到:所述钛合金粉体的组成包含以下组分(质量百分比):Ni:11-18%,Al:7.3-8.9%,Cu:0.56-0.9%,Zr:1.2-1.7%,Mo:0.2-0.4%,Fe:1-2.8%,Ag:0.1-0.5%,Nd:0.6-1%,V:0.5-0.8%,Pr:1-3%,Er:0.5-1.5%,Y:1-2%,CeO2:1-3%,LaB6:0.1-3.3%,余量为Ti。
进一步地,所述钛合金粉体的组成包含以下组分(质量百分比):Ni:15.6%,Al:7.6%,Cu:0.88%,Zr:1.3%,Mo:0.26%,Fe:1.92%,Ag:0.35%,Nd:0.78%,V:0.66%, Pr:1.6%,Er:0.9%,Y:1.4%,CeO2:1.23%,LaB6:1.2%,余量为Ti。
更进一步地,提供一种3D打印制备稀土钛合金材料的方法,包括以下步骤:
(1)粉体制备:混粉:将所述单质粉末和化合物粉末在混粉机中混合均匀,将混合均匀后的粉末进行高能球磨;将球磨后的粉末实施加压加热操作,温度为180-195℃,压力为950-1050MPa,保压时间为3-10分钟;在真空炉内进行烧结,烧结温度为850-1250℃,烧结保温时间为2-10h;得到钛合金块体, 将钛合金块体置于刚玉陶瓷球磨罐中,首先抽真空至1×10-2-9×10-2Pa,然后 在300-450r/min转速下,采用粒度为1-8mm的刚玉球球磨24-48小时;最后用筛选出粒度为15-36μm的合金粉体,以其作为激光3D打印用粉体材料;
(2)激光3D打印成型,激光功率200-250W,扫描速度为1200-1400mm/s,真空或氩气保护气氛下打印,将激光打印成型的坯料超声波清洗10~15mins,清洗后在120℃烘干;
(3)将坯料加热焙烧,加热温度为700-800℃,保温时间为1~1.5h,真空度为1.0×10-3~10-4Pa;
(4)三重退火处理,将坯料进行首次退火处理,退火温度为650-700℃,保温2-4小时,空冷;随后进行二次退火处理,退火温度为445-480℃,保温5-8小时,空冷;最后进行三次退火处理,退火温度为290-360℃,保温10-14小时,空冷;
(5)采用电化学抛光对步骤(3)获得的所述半成品进行后处理,得到表面粗糙度介于60μm ~70μm 的成品;
进一步地,将球磨后的粉末实施加压加热操作,温度为185℃,压力为1025MPa,保压时间为5分钟;在真空炉内进行烧结,烧结温度为900℃,烧结保温时间为5h;得到钛合金块体, 将钛合金块体置于刚玉陶瓷球磨罐中,首先抽真空至3×10-2Pa,然后 在360r/min转速下,采用粒度为2mm的刚玉球球磨36小时;最后用筛选出粒度为20μm的合金粉体,以其作为激光3D打印用粉体材料;
进一步地,激光3D打印成型,激光功率240W,扫描速度为1300mm/s,真空或氩气保护气氛下打印,将激光打印成型的坯料超声波清洗12mins,清洗后在120℃烘干。
进一步地,三重退火处理,将坯料进行首次退火处理,退火温度为660℃,保温4小时,空冷;随后进行二次退火处理,退火温度为450℃,保温6小时,空冷;最后进行三次退火处理,退火温度为300℃,保温12小时,空冷。
通过合理的成分设计,通过烧结再合金化均匀,采用机械合金化获得合金粉末,制备出均匀的并且兼容性好的合金粉末,过具体热处理配合,使得钛合金具有高强度,高弹性模量,和好的伸长率和断裂韧性,最终导致成品性能高;通过上述具体制备方法参数的限定与具体合金成分的配合,使得性能稳定性达到了90%以上,具备了较为理想的性能后可更加适用于医用钛合金材料中。
具体实施方式
实施例1
一种3D打印稀土钛合金材料,由以下原料制备得到:所述钛合金粉体的组成包含以下组分(质量百分比):Ni:12.3%,Al:7.8%,Cu:0.82%,Zr:1.35%,Mo:0.22%,Fe:1.6%,Ag:0.35%,Nd:0.85%,V:0.56%, Pr:1.1%,Er:1.2%,Y:1.5%,CeO2:1.8%,LaB6:1.3%,余量为Ti。其制备方法包括以下步骤:
(1)粉体制备:混粉:将上述单质粉末和化合物粉末在混粉机中混合均匀,将混合均匀后的粉末进行高能球磨;将球磨后的粉末实施加压加热操作,温度为190℃,压力为980MPa,保压时间为5分钟;在真空炉内进行烧结,烧结温度为890℃,烧结保温时间为4h;得到钛合金块体, 将钛合金块体置于刚玉陶瓷球磨罐中,首先抽真空至1×10-2Pa,然后 在330r/min转速下,采用粒度为3mm的刚玉球球磨28小时;最后用筛选出粒度为20μm的合金粉体,以其作为激光3D打印用粉体材料;
(2)激光3D打印成型,激光功率220W,扫描速度为1300mm/s,真空或氩气保护气氛下打印,将激光打印成型的坯料超声波清洗12mins,清洗后在120℃烘干;
(3)将坯料加热焙烧,加热温度为780℃,保温时间为1h,真空度为10-4Pa;
(4)三重退火处理,将坯料进行首次退火处理,退火温度为680℃,保温3小时,空冷;随后进行二次退火处理,退火温度为460℃,保温6小时,空冷;最后进行三次退火处理,退火温度为298℃,保温13小时,空冷;
(5)采用电化学抛光对步骤(3)获得的所述半成品进行后处理,得到表面粗糙度为65μm 的成品;
所述成品的其室温压缩屈服强度和断裂应变分别1225MPa和45.2%, 其弹性模量为44.1GPa。
实施例2
一种3D打印稀土钛合金材料,由以下原料制备得到:所述钛合金粉体的组成包含以下组分(质量百分比):Ni:13%,Al:7.7%,Cu:0.76%,Zr:1.35%,Mo:0.33%,Fe:1.9%,Ag:0.12%,Nd:0.77%,V:0.68%, Pr:1.8%,Er:0.75%,Y:1.3%,CeO2:1.6%,LaB6:1.6%,余量为Ti;
其制备方法包括以下步骤:
(1)粉体制备,混粉:将上述单质粉末和化合物粉末在混粉机中混合均匀,将混合均匀后的粉末进行高能球磨;将球磨后的粉末实施加压加热操作,温度为185℃,压力为1030MPa,保压时间为6分钟;在真空炉内进行烧结,烧结温度为980℃,烧结保温时间为5h;得到钛合金块体, 将钛合金块体置于刚玉陶瓷球磨罐中,首先抽真空至1×10-2Pa,然后 在360r/min转速下,采用粒度为5mm的刚玉球球磨36小时;最后用筛选出粒度为18μm的合金粉体,以其作为激光3D打印用粉体材料;
(2)激光3D打印成型,激光功率250W,扫描速度为1300mm/s,真空或氩气保护气氛下打印,将激光打印成型的坯料超声波清洗13mins,清洗后在120℃烘干;
(3)将坯料加热焙烧,加热温度为760℃,保温时间为1h,真空度为10-4Pa;
(4)三重退火处理,将坯料进行首次退火处理,退火温度为660℃,保温3小时,空冷;随后进行二次退火处理,退火温度为470℃,保温6小时,空冷;最后进行三次退火处理,退火温度为330℃,保温11小时,空冷;
(5)采用电化学抛光对步骤(3)获得的所述半成品进行后处理,得到表面粗糙度为65μm 的成品;
所述成品的室温压缩屈服强度和断裂应变分别为1231MPa和48.5%,弹性模量为37GPa。

Claims (6)

1.一种3D打印制备的稀土钛合金材料,其特征在于:由以下原料制备得到:原料粉体的组成包含以下组分(质量百分比):Ni:11-18%,Al:7.3-8.9%,Cu:0.56-0.9%,Zr:1.3-1.7%,Mo:0.2-0.4%,Fe:1-1.92%,Ag:0.1-0.5%,Nd:0.78-1%,V:0.5-0.8%,Pr:1-3%,Er:0.5-1.5%,Y:1-2%,CeO 2:1-3%,LaB 6:0.1-3.3%,余量为Ti。
2.如权利要求1所述的3D打印制备的稀土钛合金材料,其特征在于:原料粉体的组成包含以下组分(质量百分比):Ni:15.6%,Al:7.6%,Cu:0.88%,Zr:1.3%,Mo:0.26%,Fe:1.92%,Ag:0.35%,Nd:0.78%,V:0.66%,Pr:1.6%,Er:0.9%,Y:1.4%,CeO 2:1.23%,LaB 6:1.2%,余量为Ti。
3.如权利要求1或2所述的3D打印制备的稀土钛合金材料,其特征在于:其制备方法包括以下步骤:
(1)粉体制备:混粉:将单质粉末和化合物粉末在混粉机中混合均匀,将混合均匀后的粉末进行高能球磨;将球磨后的粉末实施加压加热操作,温度为180-195℃,压力为950-1050MPa,保压时间为3-10分钟;在真空炉内进行烧结,烧结温度为850-1250℃,烧结保温时间为2-10h;得到钛合金块体,将钛合金块体置于刚玉陶瓷球磨罐中,首先抽真空至1×10 -2-9×10 -2Pa,然后在300-450r/min转速下,采用粒度为1-8mm的刚玉球球磨24-48小时;最后用筛选出粒度为15-36μm的合金粉体,以其作为激光3D打印用粉体材料;
(2)激光3D打印成型,激光功率200-250W,扫描速度为1200-1400mm/s,真空或氩气保护气氛下打印,将激光打印成型的坯料超声波清洗10~15mins,清洗后在120℃烘干;
(3)将坯料加热焙烧,加热温度为700-800℃,保温时间为1~1.5h,真空度为1.0×10 -3~10 -4Pa;
(4)三重退火处理,将坯料进行首次退火处理,退火温度为650-700℃,保温2-4小时,空冷;随后进行二次退火处理,退火温度为445-480℃,保温5-8小时,空冷;最后进行三次退火处理,退火温度为290-360℃,保温10-14小时,空冷;
(5)采用电化学抛光对步骤(4)获得的半成品进行后处理,得到表面粗糙度介于60μm~70μm的成品。
4.如权利要求3所述的3D打印制备的稀土钛合金材料,其特征在于:其制备方法包括:将球磨后的粉末实施加压加热操作,温度为185℃,压力为1025MPa,保压时间为5分钟;在真空炉内进行烧结,烧结温度为900℃,烧结保温时间为5h;得到钛合金块体,将钛合金块体置于刚玉陶瓷球磨罐中,首先抽真空至3×10 -2Pa,然后在360r/min转速下,采用粒度为2mm的刚玉球球磨36小时;最后用筛选出粒度为20μm的合金粉体,以其作为激光3D打印用粉体材料。
5.如权利要求4所述的3D打印制备的稀土钛合金材料,其特征在于:其制备方法中:激光3D打印成型,激光功率240W,扫描速度为1300mm/s,真空或氩气保护气氛下打印,将激光打印成型的坯料超声波清洗12mins,清洗后在120℃烘干。
6.如权利要求5所述的3D打印制备的稀土钛合金材料,其特征在于:其制备方法中:三重退火处理,将坯料进行首次退火处理,退火温度为660℃,保温4小时,空冷;随后进行二次退火处理,退火温度为450℃,保温6小时,空冷;最后进行三次退火处理,退火温度为300℃,保温12小时,空冷。
CN201610033835.6A 2016-01-19 2016-01-19 一种3d打印制备的稀土钛合金材料 Active CN105648270B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610033835.6A CN105648270B (zh) 2016-01-19 2016-01-19 一种3d打印制备的稀土钛合金材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610033835.6A CN105648270B (zh) 2016-01-19 2016-01-19 一种3d打印制备的稀土钛合金材料

Publications (2)

Publication Number Publication Date
CN105648270A CN105648270A (zh) 2016-06-08
CN105648270B true CN105648270B (zh) 2017-10-27

Family

ID=56486677

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610033835.6A Active CN105648270B (zh) 2016-01-19 2016-01-19 一种3d打印制备的稀土钛合金材料

Country Status (1)

Country Link
CN (1) CN105648270B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108130473A (zh) * 2017-12-23 2018-06-08 洛阳名力科技开发有限公司 镜架用弹性合金材料及其制备方法
CN108145970B (zh) * 2018-01-04 2020-02-18 艾伯尔三氐打印技术(重庆)有限公司 一种生物材料3d打印机多进一出喷头
CN108179316B (zh) * 2018-01-04 2019-11-05 艾伯尔三氐打印技术(重庆)有限公司 一种生物材料3d打印机用钛合金及制备方法
CN108456803B (zh) * 2018-01-04 2020-02-18 艾伯尔三氐打印技术(重庆)有限公司 一种生物材料3d打印机多进一出喷头的制备方法
CN110499438B (zh) * 2019-09-30 2021-06-04 广东省航空航天装备技术研究所 材料组合物、钛合金制品及其制备方法
CN110735065B (zh) * 2019-11-01 2021-01-22 广东省航空航天装备技术研究所 一种复合材料组合物、钛合金制品及其制备方法
CN113201664A (zh) * 2021-04-21 2021-08-03 上海材料研究所 一种原位自生钛基复合材料及其增材制造成形方法和构件
CN114939656B (zh) * 2022-05-31 2023-07-21 南昌航空大学 一种添加稀土氧化物改善激光增材制造合金钢性能的方法
CN115446329B (zh) * 2022-09-08 2024-04-19 辽宁五寰特种材料与智能装备产业技术研究院有限公司 一种基于SLM技术的高强Ti-Al-V基合金3D打印制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101962721A (zh) * 2010-11-02 2011-02-02 中南大学 一种粉末冶金钛合金及其制备方法
CN104831119A (zh) * 2015-04-15 2015-08-12 苏州维泰生物技术有限公司 一种关节用钛合金材料及其制备方法
CN104928513B (zh) * 2015-07-09 2017-08-25 哈尔滨工业大学 一种钛合金激光3d打印改进方法
CN105014073A (zh) * 2015-08-18 2015-11-04 上海航天精密机械研究所 一种tc4钛合金激光选区熔化增材制造及热处理方法

Also Published As

Publication number Publication date
CN105648270A (zh) 2016-06-08

Similar Documents

Publication Publication Date Title
CN105648270B (zh) 一种3d打印制备的稀土钛合金材料
CN105522151B (zh) 一种3d打印医用钛合金材料的方法
CN105603255B (zh) 一种3d打印制备医用钛合金材料
CN105522152B (zh) 一种3d打印稀土钛合金材料的方法
JP7228307B2 (ja) 球状タンタル-チタン合金粉末、それを含有する製品、及びその作製方法
CN106312060B (zh) 一种高性能低模量医用钛合金三维金属零件的制备方法
CN108380891B (zh) 一种钛基生物医用梯度复合材料的制备方法
CN108705092B (zh) 一种3d打印原位稀土掺杂钛基复合材料活性骨植入体及成形方法
CN105256160B (zh) 一种陶瓷基镍合金复合材料的3d打印方法
CN108034846B (zh) 一种高强度低弹性模量锆铌钛牙科种植体材料及其制备方法
CN102312128A (zh) 一种利用放电等离子烧结制备钛铌钽锆生物医用钛合金的方法
CN105033249A (zh) 一种3d打印用钛及钛合金丝或粉末的制备方法
CN104894420B (zh) 一种钛铌锆基焦磷酸钙生物复合材料的制备方法
CN109926582B (zh) 一种医用钛铌合金制品的制备方法
Bhushan et al. Fabrication and characterization of a new range of β-type Ti-Nb-Ta-Zr-xHaP (x= 0, 10) alloy by mechanical alloying and spark plasma sintering for biomedical applications
WO2012124661A1 (ja) 高強度・低弾性に優れるチタン-マグネシウム材料
CN109847110A (zh) 一种多孔Ti-Nb-Zr复合人造骨植入材料及其制备方法和应用
Mergulhão et al. Perspective of additive manufacturing selective laser melting in Co-Cr-Mo alloy in the consolidation of dental prosthesis
CN101229587A (zh) 生物陶瓷钛基复合材料及其制备方法
CN112826616A (zh) 一种钛合金正畸钳及其制备方法
CN105463249B (zh) 一种高强低模医用β‑Ti合金材料及其制备方法
CN101967613B (zh) 钛基金属玻璃/羟基磷灰石复合材料及其制备方法
CN108213439A (zh) 一种采用粉末注射成形生产牙用正畸自锁托槽的方法
JP6198062B2 (ja) Co基合金粉末
CN114231774A (zh) 一种银锗红外保健饰品的制造工艺

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Xie Haolong

Inventor after: Lin Zhidan

Inventor after: Huang Lin

Inventor after: Deng Shuling

Inventor after: Liu Yan

Inventor before: Wang Yan

CB03 Change of inventor or designer information
TA01 Transfer of patent application right

Effective date of registration: 20170913

Address after: 502 room 121, 510000 science Avenue, hi tech Industrial Development Zone, Guangdong, Guangzhou, China

Applicant after: Guangzhou Zhi Zhilong Technology Co. Ltd.

Address before: 100000 Beijing city Shijingshan District Jingyang street Rongjing City No. 9 Building 2 unit 103

Applicant before: Wang Yan

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210713

Address after: 510000 room 01-306, building J, No. 190, Panhe Road, Huangpu District, Guangzhou City, Guangdong Province

Patentee after: Guangzhou Baoda New Material Technology Co.,Ltd.

Address before: 510000 Room 502, 121 science Avenue, high tech Industrial Development Zone, Guangzhou City, Guangdong Province

Patentee before: GUANGZHOU ZHIZHILONG TECHNOLOGY Co.,Ltd.

TR01 Transfer of patent right