CN108247039B - 一种金纳米带的制备方法 - Google Patents

一种金纳米带的制备方法 Download PDF

Info

Publication number
CN108247039B
CN108247039B CN201810185099.5A CN201810185099A CN108247039B CN 108247039 B CN108247039 B CN 108247039B CN 201810185099 A CN201810185099 A CN 201810185099A CN 108247039 B CN108247039 B CN 108247039B
Authority
CN
China
Prior art keywords
gold
regulator
preparation
particle solution
covered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810185099.5A
Other languages
English (en)
Other versions
CN108247039A (zh
Inventor
成汉文
蒋继波
宫雨豪
刘一琪
王肖元
高代超
陈浩天
罗谨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technology
Original Assignee
Shanghai Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technology filed Critical Shanghai Institute of Technology
Priority to CN201810185099.5A priority Critical patent/CN108247039B/zh
Publication of CN108247039A publication Critical patent/CN108247039A/zh
Application granted granted Critical
Publication of CN108247039B publication Critical patent/CN108247039B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/068Flake-like particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明公开了一种金纳米带的制备方法。该制备方法的具体步骤如下:(1)将阳离子调节剂、四氯金酸和还原剂在水中混合搅拌10~30min,得到正电荷覆盖的金粒子溶液;(2)向上述正电荷覆盖的金粒子溶液中加入巯基型阴离子调节剂,室温下搅拌10~25小时,得到金纳米带。本发明方法简单,可以合成不同尺寸纳米金粒子形成的纳米带,并获得较好的单分散性,为纳米技术领域中纳米粒子表面控制剂的选择及不同形貌的纳米材料可控制备提供了重要的指导依据。

Description

一种金纳米带的制备方法
技术领域
本发明涉及一维纳米材料制备技术领域,具体的说,涉及一种金纳米带的制备方法。
背景技术
亚纳米-纳米范围内的金属纳米材料已经在催化、传感和医学诊断中得到越来越多的应用,其中粒径和粒子空间特征在功能特性中起着关键作用。如有报道通过硫醇盐实现纳米簇的构建,携带生物药剂,在风湿性关节炎、支气管哮喘、疟疾、医疗护理等方面起到缓慢释放药物的作用。还有报道利用聚合物实现纳米粒子从单分散型演变成几个纳米的字符串的可控微观结构构建方法。
纳米带是不同于纳米粒子、纳米管的新一维纳米结构。根据不同形状或结构的金属纳米粒子的电磁场增强理论研究表明:不论是三角形粒子、椭圆形粒子还是纳米粒子二聚体,在光谱中容易形成热点的都是纳米材料的棱角、边缘等区域,因此纳米带的边缘均易成为光谱增强的热点,这样的电子特性使得金属纳米带在具备很大的应用前景。
目前氧化物等半导体材料的纳米带研究较多,而金属尤其是贵金属的纳米带研究较少,如何通过简单的化学合成法可控制备金属纳米带仍是一个有意义的研究方向。
发明内容
针对以上技术问题,本发明利的目的在于提供一种新颖的金纳米带的制备方法。该方法通过静电引力作用,将独立的不同尺寸的金纳米粒子串成纳米带,工艺简单,反应条件温和,容易控制。
本发明中,首先是在合成金纳米粒子的过程中引入阳离子调节剂,覆盖在纳米金表面,再加入具有强结合力的巯基型阴离子调节剂,通过阳离子调节剂和阴离子调节剂之间的静电引力作用,将独立的不同尺寸纳米金粒子形成纳米带;本发明形成的纳米带具有较好的单分散性。
本发明的技术方案具体介绍如下。
本发明提供一种金纳米带的制备方法,具体步骤如下:
(1)将阳离子调节剂、四氯金酸和还原剂在水中混合搅拌10~30min,得到正电荷覆盖的金粒子溶液;
(2)向上述正电荷覆盖的金粒子溶液中加入巯基型阴离子调节剂,室温下搅拌10~25小时,得到金纳米带。
本发明中,步骤(1)中,阳离子调节剂、四氯金酸和还原剂的摩尔比为100:(28-35):(40-60)。
本发明中,步骤(1)中,阳离子调节剂为十六烷基三甲基溴化铵或十八烷基三甲基溴化铵;还原剂为硼氢化钠。
本发明中,步骤(1)中,正电荷覆盖的金粒子溶液中的金粒子的尺寸在2-20nm之间。
本发明中,步骤(2)中,巯基型阴离子调节剂为巯基丙酸或巯基丁酸。
本发明中,步骤(2)中,巯基型阴离子调节剂和正电荷覆盖的金粒子溶液的体积比1:10~1:5。
和现有技术相比,本发明的有益效果在于:
1、方法简单,适用范围光,可以将不同尺寸纳米金粒子形成纳米带,并获得较好的单分散性。
2、本发明通过阴阳离子调节剂的相互作用来控制金粒子彼此相接却又能保持一定间距。而根据不同形状或结构的金属纳米粒子的电磁场增强理论研究表明:在光谱中容易形成热点的都是纳米材料的棱角、边缘等区域,因此纳米带的边缘以及粒子-粒子彼此之间均易成为光谱增强的热点,这样的电子特性使得金属纳米带在具备很大的应用前景。
附图说明
图1为金纳米带的球差电镜图(a)及示意图(b)。
具体实施方式
下面结合具体的实施例对本发明的技术方案做进一步的描述,但本发明并不限于下述实施例。
本发明实施例中所用的各种原料,如无特殊说明,均为市售。
实施例1
(1)~8纳米金粒子的制备
首先100毫升浓度为0.10摩尔/升的十六烷基三甲基溴化铵溶液中加入5毫升0.030摩尔/升的四氯金酸溶液以及浓度为0.50摩尔/升的硼氢化钠溶液4毫升,搅拌20分钟,得到十六烷基三甲基溴化铵覆盖的金粒子溶液;
(2)金纳米带的制备
在上述金粒子溶液中,加入7毫升的巯基丙酸,室温下搅拌10个小时。搅拌过程中巯基丙酸根替代原本吸附在纳米粒子表面的溴离子,进而与十六烷基三甲基铵正离子进行静电结合,长链正离子易形成头尾相接的双体,从而依次将单个的纳米粒子通过表面上组装的正负离子静电引力结合成金纳米带带。
(3)纳米带形貌表征
通过球差电镜对纳米金带的尺寸和形貌进行表征,观察到的金纳米带呈细致而紧密排布且粒子粒径为~8nm,如图1所示。
实施例2
(1)~12纳米金粒子的制备
首先100毫升浓度为0.10摩尔/升的十六烷基三甲基溴化铵溶液中加入5毫升0.028摩尔/升的四氯金酸溶液以及浓度为0.55摩尔/升的硼氢化钠溶液4毫升,搅拌20分钟,得到十六烷基三甲基溴化铵覆盖的金粒子溶液;
(2)金纳米带的制备
在上述金粒子溶液中,加入10毫升的巯基丙酸,室温下搅拌10个小时。搅拌过程中巯基丙酸根替代原本吸附在纳米粒子表面的溴离子,进而与十六烷基三甲基铵正离子进行静电结合,长链正离子易形成头尾相接的双体,从而依次将单个的纳米粒子通过表面上组装的正负离子静电引力结合成金纳米带带。
(3)纳米带形貌表征
通过球差电镜对纳米金带的尺寸和形貌进行表征,观察到的金纳米带呈细致而紧密排布,粒子粒径~17nm。

Claims (1)

1.一种金纳米带的制备方法,其特征在于,具体步骤如下:
(1)将阳离子调节剂、四氯金酸和还原剂在水中混合搅拌10~30min,得到正电荷覆盖的金粒子溶液;
(2)向上述正电荷覆盖的金粒子溶液中加入巯基型阴离子调节剂,室温下搅拌10~25小时,得到金纳米带;
步骤(1)中,阳离子调节剂、四氯金酸和还原剂的摩尔比为100:(28-35):(40-60);阳离子调节剂为十六烷基三甲基溴化铵或十八烷基三甲基溴化铵;还原剂为硼氢化钠;正电荷覆盖的金粒子溶液中的金粒子的尺寸在2-20nm之间;
步骤(2)中,巯基型阴离子调节剂为巯基丙酸或巯基丁酸;巯基型阴离子调节剂和正电荷覆盖的金粒子溶液的体积比1:10~1:5。
CN201810185099.5A 2018-03-06 2018-03-06 一种金纳米带的制备方法 Expired - Fee Related CN108247039B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810185099.5A CN108247039B (zh) 2018-03-06 2018-03-06 一种金纳米带的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810185099.5A CN108247039B (zh) 2018-03-06 2018-03-06 一种金纳米带的制备方法

Publications (2)

Publication Number Publication Date
CN108247039A CN108247039A (zh) 2018-07-06
CN108247039B true CN108247039B (zh) 2020-10-02

Family

ID=62745823

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810185099.5A Expired - Fee Related CN108247039B (zh) 2018-03-06 2018-03-06 一种金纳米带的制备方法

Country Status (1)

Country Link
CN (1) CN108247039B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113567425A (zh) * 2021-08-01 2021-10-29 杭州氢源素生物科技有限公司 基于纳米金颗粒的微生物浓度指示液、微生物浓度指示装置及其制备方法和应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2837035A2 (en) * 2012-04-12 2015-02-18 Sol Voltaics AB Methods of nanowire functionalization, dispersion and attachment
CN102744402B (zh) * 2012-07-28 2014-02-19 福州大学 一种贵金属纳米粒子固相不对称修饰方法
CN103341623B (zh) * 2013-06-25 2015-01-07 江南大学 一种静电作用力诱导的金纳米棒组装体的制备方法
CN103293108B (zh) * 2013-06-25 2015-05-13 北京理工大学 一种金纳米球一维排列热点结构及其应用
KR101701762B1 (ko) * 2015-07-03 2017-02-03 한림대학교 산학협력단 다중 가지를 지니는 별 모양 금 나노입자 및 그 제조방법
CN105562675A (zh) * 2015-12-08 2016-05-11 陕西盛迈石油有限公司 一种硝酸诱导金纳米带的制备方法
CN106841157B (zh) * 2016-12-23 2019-12-17 南京大学 一种基于水相纳米颗粒自组装制备纳米多孔结构的方法及其应用

Also Published As

Publication number Publication date
CN108247039A (zh) 2018-07-06

Similar Documents

Publication Publication Date Title
Dalmaschio et al. Impact of the colloidal state on the oriented attachment growth mechanism
Pol et al. Synthesis of europium oxide nanorods by ultrasound irradiation
Wongwailikhit et al. The preparation of iron (III) oxide nanoparticles using W/O microemulsion
Wang et al. Shape-control and characterization of magnetite prepared via a one-step solvothermal route
Libor et al. The synthesis of nickel nanoparticles with controlled morphology and SiO2/Ni core-shell structures
CN101391786B (zh) 一种制备具有高比表面积纳米氧化铝材料的方法
CN108817414B (zh) 一种离子液体水溶液中金纳米花的制备方法
Sundrarajan et al. Novel cubic magnetite nanoparticle synthesis using room temperature ionic liquid
Wikander et al. Size control and growth process of alkylamine-stabilized platinum nanocrystals: a comparison between the phase transfer and reverse micelles methods
CN108658128B (zh) 一种具有分级结构的MoS2微纳米球的制备方法
EP3199232A1 (en) Hollow metal nanoparticle, catalyst including same, and method for manufacturing hollow metal nanoparticle
CN105452156A (zh) 制备碳载体-金属纳米粒子复合物的方法以及由该方法制备的碳载体-金属纳米粒子复合物
Ying et al. Preparation of ultrafine nickel powder by polyol method and its oxidation product
EA010338B1 (ru) Стабилизирующие растворы для субмикронных частиц, способы их получения и способы стабилизации субмикронных частиц
CN109382512A (zh) 一种花状纳米银粉体自组装结构的制备方法
CN108817417A (zh) 一种类球状纳米银片团簇的制备方法
Lu et al. Fabrication, characterization, and formation mechanism of hollow spindle-like hematite via a solvothermal process
Zhang et al. Preparation and evaluation of Fe 3 O 4-core@ Ag-shell nanoeggs for the development of fingerprints
CN108247039B (zh) 一种金纳米带的制备方法
Feng et al. Converting ultrafine silver nanoclusters to monodisperse silver sulfide nanoparticles via a reversible phase transfer protocol
Iacob et al. Amorphous iron–chromium oxide nanoparticles with long-term stability
Yue et al. Molecular dynamics study on the growth mechanism of goethite (α-FeOOH) nanorods
Yang et al. Controlled synthesis of cuprous oxide nanospheres and copper sulfide hollow nanospheres
Li et al. Synthesis and shape evolution of novel cuniform-like MnO2 in aqueous solution
CN1800027A (zh) 一种磁性过渡金属氧化物纳米颗粒液相生长过程中颗粒粒径的控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201002