CN108242444A - 真空管场效应晶体管阵列及其制造方法 - Google Patents

真空管场效应晶体管阵列及其制造方法 Download PDF

Info

Publication number
CN108242444A
CN108242444A CN201611204711.6A CN201611204711A CN108242444A CN 108242444 A CN108242444 A CN 108242444A CN 201611204711 A CN201611204711 A CN 201611204711A CN 108242444 A CN108242444 A CN 108242444A
Authority
CN
China
Prior art keywords
material layer
vacuum tube
vacuum
source electrode
fet array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611204711.6A
Other languages
English (en)
Other versions
CN108242444B (zh
Inventor
肖德元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zing Semiconductor Corp
Original Assignee
Zing Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zing Semiconductor Corp filed Critical Zing Semiconductor Corp
Priority to CN201611204711.6A priority Critical patent/CN108242444B/zh
Priority to TW106117058A priority patent/TWI630662B/zh
Publication of CN108242444A publication Critical patent/CN108242444A/zh
Application granted granted Critical
Publication of CN108242444B publication Critical patent/CN108242444B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/764Air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823412MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823481MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type isolation region manufacturing related aspects, e.g. to avoid interaction of isolation region with adjacent structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1037Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure and non-planar channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66666Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明提供一种真空管场效应晶体管阵列及其制造方法,所述真空管场效应晶体管阵列包括:源极材料层;漏极材料层;分立设置于所述源极材料层与所述漏极材料层之间的若干栅极结构;所述栅极结构包括条形金属栅;所述条形金属栅侧壁形成有栅极介质层;所述条形金属栅顶端通过第一绝缘层与所述漏极材料层连接,底端通过第二绝缘层与所述源极材料层连接;各栅极结构之间平行排列,且相邻栅极结构之间构成真空沟道。本发明的真空管场效应晶体管阵列可作为大功率器件,并具有结构简单的优点,可方便通过3D打印制造,不仅可以实现较小的体积,还有利于降低生产成本。

Description

真空管场效应晶体管阵列及其制造方法
技术领域
本发明属于集成电路技术领域,涉及一种真空管场效应晶体管阵列及其制造方法。
背景技术
对于载流子运输介质,真空本质上优于固体,因为它允许弹道运输,而在半导体中,载流子会遭受光学和声学声子散射。真空中的电子速度理论上是3×1010cm/s,但在半导体中,电子速度仅约为5×107cm/s。一些科学家认为,在真空晶体管中,似乎只有电子可以在电极之间流动,而空穴不能。除非我们学会处理正电子,否则将不可能做任何互补型电路,例如CMOS。而没有互补型电路,功率将过高,最有可能限制真空晶体管进入细分市场。很难想象,任何大型数字电路都会用到真空晶体管。
目前真空晶体管主要有四种类型(Jin-Woo Han,Jae Sub Oh and M.Meyyappan,Vacuum Nanoelectronics:Back to the Future?-Gate insulated nanoscale vacuumchannel transistor,APL,100,213505(2012)):(a)垂直场发射型、(b)平面横向场发射型、(c)MOSFET型、(d)绝缘栅空气沟道晶体管。
3-D打印是由麻省理工学院的团队领导的Emanuel Sachs在20世纪80年代末发明的(专利US5204055),也被称为粘结剂喷射,该技术涉及铺设一层粉末,然后喷出液体粘合剂的地区被凝固。与传统的喷墨打印机类似,3-D打印机能够在前一层构建额外的层来构建三维物体,甚至是复杂的对象,作为医疗植入物。这些3D打印技术已经达到这样一个阶段,所需的产品结构可以独立于它们的形状的复杂性,甚至生物打印组织也成为可能。维也纳理工大学曾通过3D打印制作了一辆285μ米长的赛车。
目前,传统的真空晶体管主要是通过玻璃烧结的方法制作,体积较大。而通过半导体方法制作的真空晶体管加工成本高,不适合大批量生产。
因此,如何提供一种新的真空管场效应晶体管阵列及其制造方法,以降低工艺复杂性,并保证优异的器件性能,成为本领域技术人员亟待解决的一个重要技术问题。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种真空管场效应晶体管阵列及其制造方法,用于解决现有技术中无法低成本制造小型真空晶体管的问题。
为实现上述目的及其他相关目的,本发明提供一种真空管场效应晶体管阵列,包括:
源极材料层;
漏极材料层;
分立设置于所述源极材料层与所述漏极材料层之间的若干栅极结构;所述栅极结构包括条形金属栅;所述条形金属栅侧壁形成有栅极介质层;所述条形金属栅顶端通过第一绝缘层与所述漏极材料层连接,底端通过第二绝缘层与所述源极材料层连接;各栅极结构之间平行排列,且相邻栅极结构之间构成真空沟道。
可选地,所述栅极结构的宽度范围是1-100μm,所述真空沟道的宽度范围是1-50μm。
可选地,所述条形金属栅的材料包括Al。
可选地,所述栅介质层的材料包括氧化铝、氧化铪及氮化铝中的一种或多种。
可选地,所述源极材料层或漏极材料层的材料包括Zr、V、Nb、Ta、Cr、Mo、W、Fe、Co、Pd、Cu、Al、Ga、In、Ti、TiN及TaN中的一种或多种。
可选地,所述真空管场效应晶体管阵列还包括半导体衬底及形成于所述半导体衬底上的第三绝缘层,所述源极材料层形成于所述第三绝缘层之上。
本发明还提供一种真空管场效应晶体管阵列的制造方法,包括如下步骤:
提供一半导体衬底;
在所述半导体衬底上依次形成第三绝缘层及源极材料层;
通过3D打印法在所述源极材料层上形成若干分立的条状结构,所述条状结构自下而上依次包括第二绝缘层、条形金属栅及第一绝缘层;各条状结构之间平行排列,且相邻条状结构之间构成条状沟道;
在所述条形金属栅侧壁形成栅介质层;
在真空条件下形成覆盖各条状结构顶端的漏极材料层,其中,所述漏极材料层与源极材料层分别密封住所述条状沟道的顶端与低端,得到真空沟道。
可选地,形成所述漏极材料层之后,还包括一退火步骤,以使所述真空沟道顶端的漏极材料以及所述漏极材料层形成过程中落入所述真空沟道底部的漏极材料平滑化。
可选地,所述退火的气氛包括H2、N2及Ar中的一种或多种,退火温度范围是600-1200℃,退火时间为0.1-120min。
可选地,所述栅介质层的材料包括氧化铝、氧化铪及氮化铝中的一种或多种。
可选地,所述条形金属栅的材料包括铝,所述栅介质层的材料包括氮化铝,所述氮化铝是通过对所述条形金属栅侧壁进行氮气或氨气等离子体处理得到。
可选地,所述真空沟道的真空度为0.01-50Torr。
如上所述,本发明的真空管场效应晶体管阵列及其制造方法,具有以下有益效果:本发明的真空管场效应晶体管阵列中,源极材料层与漏极材料层之间分立设置有若干栅极结构,各栅极结构之间平行排列,且相邻栅极结构之间构成真空沟道,其中,条形金属栅与真空沟道之间通过栅介质层隔离,可以减小栅极漏电流。真空沟道两端分别由源极材料层与漏极材料层封闭。本发明的真空管场效应晶体管阵列结构简单,可通过3D打印制造,不仅可以实现较小的体积,还有利于降低生产成本。
附图说明
图1显示为本发明的真空管场效应晶体管阵列的剖面结构示意图。
图2-图3显示为本发明的真空管场效应晶体管阵列中真空管场效应晶体管的能带图。
图4显示为本发明的真空管场效应晶体管阵列的制造方法中在所述半导体衬底上依次形成第三绝缘层及源极材料层的示意图。
图5显示为本发明的真空管场效应晶体管阵列的制造方法中通过3D打印法在所述源极材料层上形成若干分立的条状结构的示意图。
图6显示为本发明的真空管场效应晶体管阵列的制造方法中在所述条形金属栅侧壁形成栅介质层的示意图。
图7显示为本发明的真空管场效应晶体管阵列的制造方法中在真空条件下形成覆盖各条状结构顶端的漏极材料层的示意图。
图8显示为本发明的真空管场效应晶体管阵列的制造方法通过退火步骤,使所述真空沟道两端部位的漏极材料平滑化的示意图。
元件标号说明
1 半导体衬底
2 第三绝缘层
3 源极材料层
4 第二绝缘层
5 条形金属栅
6 栅介质层
7 第一绝缘层
8 漏极材料层
9 真空沟道
d1 栅极结构的宽度
d2 真空沟道的宽度
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
请参阅图1至图8。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
实施例一
本发明提供一种真空管场效应晶体管阵列,请参阅图1,显示为所述真空管场效应晶体管阵列的剖面结构示意图,包括:
源极材料层3;
漏极材料层8;
分立设置于所述源极材料层3与所述漏极材料层8之间的若干栅极结构;所述栅极结构包括条形金属栅5;所述条形金属栅5侧壁形成有栅极介质层6;所述条形金属栅5顶端通过第一绝缘层7与所述漏极材料层8连接,底端通过第二绝缘层4与所述源极材料层3连接;各栅极结构之间平行排列,且相邻栅极结构之间构成真空沟道9。
本实施例中,所述源极材料层3形成于所述第三绝缘层2之上,所述第三绝缘层2下方为半导体衬底1。所述半导体衬底1包括但不限于Si、Ge、SiGe等常规半导体衬底。所述第一绝缘层7、第二绝缘层4、第三绝缘层2包括但不限于氧化硅等适合的绝缘材料。
本实施例中,各栅极结构均垂直于所述源极材料层3设置,且均匀排列。各条形金属栅5的宽度优选为相等,且各真空沟道9的宽度也优选为相等。
作为示例,图1中还示出了所述栅极结构的宽度d1以及所述真空沟道的宽度d2。本实施例中,所述栅极结构的宽度范围是1-100μm,所述真空沟道的宽度范围是1-50μm。
具体的,所述真空沟道9两端分别由所述源极材料层3与漏极材料层8封闭。所述源极材料层3或漏极材料层8的材料包括但不限于Zr、V、Nb、Ta、Cr、Mo、W、Fe、Co、Pd、Cu、Al、Ga、In、Ti、TiN及TaN中的一种或多种。本实施例中,所述真空沟道的真空度优选为0.01-50Torr。
作为示例,所述条形金属栅5的材料包括Al。所述栅介质层6的材料包括但不限于氧化铝、氧化铪及氮化铝中的一种或多种。所述栅介质层6将所述条形金属栅5与所述真空沟道9隔离,可以减小栅极漏电流。
请参阅图2及图3,显示为本发明的真空管场效应晶体管阵列中真空管场效应晶体管的能带图。其中,图2显示为栅电压Vg小于开启电压Vt时,势垒宽度较宽,源极中的载流子难以跨越势垒,晶体管关闭的情形;图3显示为栅电压Vg大于开启电压Vt时,势垒宽度变窄,源极中的载流子能够跨越势垒,晶体管开启的情形。
本发明的真空管场效应晶体管阵列可作为大功率器件,并具有结构简单的优点,可方便通过3D打印制造,不仅可以实现较小的体积,还有利于降低生产成本。
实施例二
本发明还提供一种真空管场效应晶体管阵列的制造方法,包括如下步骤:
首先请参阅图4,提供一半导体衬底1;在所述半导体衬底1上依次形成第三绝缘层2及源极材料层3。所述半导体衬底1包括但不限于Si、Ge、SiGe等常规半导体衬底。所述第三绝缘层2包括但不限于氧化硅等适合的绝缘材料。所述源极材料层3的材料包括但不限于Zr、V、Nb、Ta、Cr、Mo、W、Fe、Co、Pd、Cu、Al、Ga、In、Ti、TiN及TaN中的一种或多种。
本实施例中,所述半导体衬底1优选为Si衬底,所述第三绝缘层2优选为氧化硅,可通过热氧化方法形成于所述Si衬底表面。所述源极材料层3可采用电子束蒸发法、溅射法或物理气相沉积法等形成于所述第三绝缘层2表面。
然后请参阅图5,通过3D打印法在所述源极材料层3上形成若干分立的条状结构,所述条状结构自下而上依次包括第二绝缘层4、条形金属栅5及第一绝缘层7;各条状结构之间平行排列,且相邻条状结构之间构成条状沟道。
具体的,3D打印法是快速成型技术的一种,它是一种以数字模型文件为基础,运用粉末状金属、介质材料等可粘合材料,通过逐层打印的方式来构造物体的技术。本实施例中,所述条状结构包括三层材料,即绝缘层-金属-绝缘层,且结构简单,很容易通过3D打印法形成,可以实现较小的真空管场效应晶体管体积。
本实施例中,所述第一绝缘层7、第二绝缘层4包括但不限于氧化硅等适合的绝缘材料。所述条形金属栅5的材料包括但不限于铝。
接着请参阅图6,在所述条形金属栅5侧壁形成栅介质层6。所述栅介质层6的材料包括但不限于氧化铝、氧化铪及氮化铝中的一种或多种。所述栅介质层6可将所述条形金属栅5与所述真空沟道9隔离,可以减小栅极漏电流。
作为示例,所述条形金属栅5的材料包括铝,所述栅介质层6的材料包括氮化铝,所述氮化铝是通过对所述条形金属栅5侧壁进行氮气(N2)或氨气(NH3)等离子体处理得到。
再请参阅图7,在真空条件下形成覆盖各条状结构顶端的漏极材料层8,其中,所述漏极材料层8与源极材料层3分别密封住所述条状沟道的顶端与低端,得到真空沟道9。本实施例中,所述真空沟道的真空度优选为0.01-50Torr。
具体的,漏极材料层8的材料包括但不限于Zr、V、Nb、Ta、Cr、Mo、W、Fe、Co、Pd、Cu、Al、Ga、In、Ti、TiN及TaN中的一种或多种。所述漏极材料层8的形成方法包括但不限于电子束蒸发法、溅射法、物理气相沉积法等。
需要指出的是,在所述漏极材料层形成过程中,可能会有部分漏极材料落入所述真空沟道9底部,且所述真空沟道9顶部也可能悬挂一部分漏极材料。这些漏极材料可能具有尖角,导致电场过强,使真空管场效应晶体管容易烧坏。因此,本实施例中,在形成所述漏极材料层8之后,还包括一退火步骤,以使所述真空沟道9顶端的漏极材料以及所述漏极材料层8形成过程中落入所述真空沟道9底部的漏极材料平滑化(如图8所示)。
具体的,所述退火的气氛包括H2、N2及Ar中的一种或多种,退火温度范围是600-1200℃,例如800℃、1000℃,退火时间可以为0.1-120min。
至此,完成了所述真空管场效应晶体管阵列的制造,本发明的真空管场效应晶体管阵列的制造方法采用了3D打印技术,克服了传统玻璃烧结法制造得到的真空管体积较大的缺点,以及半导体方法制造真空晶体管加工成本高,不适合大批量生产的缺点。
综上所述,本发明的真空管场效应晶体管阵列中,源极材料层与漏极材料层之间分立设置有若干栅极结构,各栅极结构之间平行排列,且相邻栅极结构之间构成真空沟道,其中,条形金属栅与真空沟道之间通过栅介质层隔离,可以减小栅极漏电流。真空沟道两端分别由源极材料层与漏极材料层封闭。本发明的真空管场效应晶体管阵列可作为大功率器件,并具有结构简单的优点,可方便通过3D打印制造,不仅可以实现较小的体积,还有利于降低生产成本。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (12)

1.一种真空管场效应晶体管阵列,其特征在于,包括:
源极材料层;
漏极材料层;
分立设置于所述源极材料层与所述漏极材料层之间的若干栅极结构;所述栅极结构包括条形金属栅;所述条形金属栅侧壁形成有栅极介质层;所述条形金属栅顶端通过第一绝缘层与所述漏极材料层连接,底端通过第二绝缘层与所述源极材料层连接;各栅极结构之间平行排列,且相邻栅极结构之间构成真空沟道。
2.根据权利要求1所述的真空管场效应晶体管阵列,其特征在于:所述栅极结构的宽度范围是1-100μm,所述真空沟道的宽度范围是1-50μm。
3.根据权利要求1所述的真空管场效应晶体管阵列,其特征在于:所述条形金属栅的材料包括Al。
4.根据权利要求1所述的真空管场效应晶体管阵列,其特征在于:所述栅介质层的材料包括氧化铝、氧化铪及氮化铝中的一种或多种。
5.根据权利要求1所述的真空管场效应晶体管阵列,其特征在于:所述源极材料层或漏极材料层的材料包括Zr、V、Nb、Ta、Cr、Mo、W、Fe、Co、Pd、Cu、Al、Ga、In、Ti、TiN及TaN中的一种或多种。
6.根据权利要求1所述的真空管场效应晶体管阵列,其特征在于:所述真空管场效应晶体管阵列还包括半导体衬底及形成于所述半导体衬底上的第三绝缘层,所述源极材料层形成于所述第三绝缘层之上。
7.一种真空管场效应晶体管阵列的制造方法,其特征在于,包括如下步骤:
提供一半导体衬底;
在所述半导体衬底上依次形成第三绝缘层及源极材料层;
通过3D打印法在所述源极材料层上形成若干分立的条状结构,所述条状结构自下而上依次包括第二绝缘层、条形金属栅及第一绝缘层;各条状结构之间平行排列,且相邻条状结构之间构成条状沟道;
在所述条形金属栅侧壁形成栅介质层;
在真空条件下形成覆盖各条状结构顶端的漏极材料层,其中,所述漏极材料层与源极材料层分别密封住所述条状沟道的顶端与低端,得到真空沟道。
8.根据权利要求7所述的真空管场效应晶体管阵列的制造方法,其特征在于:形成所述漏极材料层之后,还包括一退火步骤,以使所述真空沟道顶端的漏极材料以及所述漏极材料层形成过程中落入所述真空沟道底部的漏极材料平滑化。
9.根据权利要求8所述的真空管场效应晶体管阵列的制造方法,其特征在于:所述退火的气氛包括H2、N2及Ar中的一种或多种,退火温度范围是600-1200℃,退火时间为0.1-120min。
10.根据权利要求7所述的真空管场效应晶体管阵列的制造方法,其特征在于:所述栅介质层的材料包括氧化铝、氧化铪及氮化铝中的一种或多种。
11.根据权利要求10所述的真空管场效应晶体管阵列的制造方法,其特征在于:所述条形金属栅的材料包括铝,所述栅介质层的材料包括氮化铝,所述氮化铝是通过对所述条形金属栅侧壁进行氮气或氨气等离子体处理得到。
12.根据权利要求7所述的真空管场效应晶体管阵列的制造方法,其特征在于:所述真空沟道的真空度为0.01-50Torr。
CN201611204711.6A 2016-12-23 2016-12-23 真空管场效应晶体管阵列及其制造方法 Active CN108242444B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201611204711.6A CN108242444B (zh) 2016-12-23 2016-12-23 真空管场效应晶体管阵列及其制造方法
TW106117058A TWI630662B (zh) 2016-12-23 2017-05-23 真空管場效電晶體陣列及其製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611204711.6A CN108242444B (zh) 2016-12-23 2016-12-23 真空管场效应晶体管阵列及其制造方法

Publications (2)

Publication Number Publication Date
CN108242444A true CN108242444A (zh) 2018-07-03
CN108242444B CN108242444B (zh) 2020-11-27

Family

ID=62704058

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611204711.6A Active CN108242444B (zh) 2016-12-23 2016-12-23 真空管场效应晶体管阵列及其制造方法

Country Status (2)

Country Link
CN (1) CN108242444B (zh)
TW (1) TWI630662B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110310873A (zh) * 2019-06-25 2019-10-08 东南大学 一种扩展栅极结构的垂直型纳米间隙真空晶体管及其制备方法
CN112420725A (zh) * 2019-08-22 2021-02-26 爱思开海力士有限公司 半导体存储器装置及其制造方法
CN113506824A (zh) * 2020-09-10 2021-10-15 安藤善文 真空沟道场效应晶体管及其制造方法以及半导体装置
US11784178B2 (en) 2020-08-03 2023-10-10 SK Hynix Inc. Semiconductor memory device and manufacturing method of semiconductor memory device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021034560A (ja) * 2019-08-23 2021-03-01 キオクシア株式会社 半導体装置およびその製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1294760A (zh) * 1998-03-25 2001-05-09 韩国科学技术院 真空场效应晶体管
KR20080093689A (ko) * 2007-04-18 2008-10-22 (주)제이디에이테크놀로지 진공 채널 트랜지스터
CN104299988A (zh) * 2014-09-26 2015-01-21 中国科学院半导体研究所 一种具有平面型发射阴极的纳米真空三极管及其制作方法
CN105118762A (zh) * 2015-08-24 2015-12-02 中国科学院半导体研究所 倒装阳极的纳米真空三极管结构及制备方法
CN105529356A (zh) * 2016-02-24 2016-04-27 西安交通大学 一种具有垂直结构圆柱形导电沟道的场发射晶体管
CN106571367A (zh) * 2015-10-12 2017-04-19 上海新昇半导体科技有限公司 真空管闪存结构及其制造方法
CN107359242A (zh) * 2016-05-10 2017-11-17 上海新昇半导体科技有限公司 真空纳米管场效应晶体管及其制造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7135728B2 (en) * 2002-09-30 2006-11-14 Nanosys, Inc. Large-area nanoenabled macroelectronic substrates and uses therefor
KR101042962B1 (ko) * 2008-10-29 2011-06-20 한국전자통신연구원 열음극 전자방출 진공 채널 트랜지스터, 다이오드 및 그 진공 채널 트랜지스터의 제조방법
US20130264536A1 (en) * 2010-09-08 2013-10-10 Privatran, Inc. Siox-based nonvolatile memory architecture
AU2011384617A1 (en) * 2012-01-01 2014-07-10 Tracense Systems Ltd. Nanostructure and process of fabricating same
CN104143513B (zh) * 2013-05-09 2016-12-28 中芯国际集成电路制造(上海)有限公司 纳米真空场效应电子管及其形成方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1294760A (zh) * 1998-03-25 2001-05-09 韩国科学技术院 真空场效应晶体管
KR20080093689A (ko) * 2007-04-18 2008-10-22 (주)제이디에이테크놀로지 진공 채널 트랜지스터
CN104299988A (zh) * 2014-09-26 2015-01-21 中国科学院半导体研究所 一种具有平面型发射阴极的纳米真空三极管及其制作方法
CN105118762A (zh) * 2015-08-24 2015-12-02 中国科学院半导体研究所 倒装阳极的纳米真空三极管结构及制备方法
CN106571367A (zh) * 2015-10-12 2017-04-19 上海新昇半导体科技有限公司 真空管闪存结构及其制造方法
CN105529356A (zh) * 2016-02-24 2016-04-27 西安交通大学 一种具有垂直结构圆柱形导电沟道的场发射晶体管
CN107359242A (zh) * 2016-05-10 2017-11-17 上海新昇半导体科技有限公司 真空纳米管场效应晶体管及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
肖德元等: "无结场效应管――新兴的后CMOS器件研究进展 ", 《固体电子学研究与进展》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110310873A (zh) * 2019-06-25 2019-10-08 东南大学 一种扩展栅极结构的垂直型纳米间隙真空晶体管及其制备方法
CN112420725A (zh) * 2019-08-22 2021-02-26 爱思开海力士有限公司 半导体存储器装置及其制造方法
CN112420725B (zh) * 2019-08-22 2024-04-05 爱思开海力士有限公司 半导体存储器装置及其制造方法
US11784178B2 (en) 2020-08-03 2023-10-10 SK Hynix Inc. Semiconductor memory device and manufacturing method of semiconductor memory device
CN113506824A (zh) * 2020-09-10 2021-10-15 安藤善文 真空沟道场效应晶体管及其制造方法以及半导体装置
US11476074B2 (en) 2020-09-10 2022-10-18 Yoshiyuki Ando Vacuum channel field effect transistor, producing method thereof, and semiconductor device

Also Published As

Publication number Publication date
CN108242444B (zh) 2020-11-27
TWI630662B (zh) 2018-07-21
TW201824396A (zh) 2018-07-01

Similar Documents

Publication Publication Date Title
CN108242444A (zh) 真空管场效应晶体管阵列及其制造方法
JP2011029637A5 (zh)
CN104254914B (zh) 制造金属栅极的方法
JP2011009728A5 (zh)
CN109244073B (zh) 半导体器件结构及其制作方法
US20170104079A1 (en) Vacuum tube nonvolatile memory and the method for making the same
CN109477206A (zh) 溅射靶材及该溅射靶材的制造方法
US10141454B2 (en) Field-effect transistors having black phosphorus channel and methods of making the same
CN107946364A (zh) 具有复合晶型的无机金属氧化物薄膜晶体管及其制造方法
CN102157548A (zh) 一种基于石墨烯层的晶体管
CN102376624A (zh) 一种石墨烯器件及其制造方法
Milletarì et al. Crossover to the anomalous quantum regime in the extrinsic spin Hall effect of graphene
TWI657041B (zh) 一種奈米碳管束場效電晶體陣列及其製造方法
TWI591729B (zh) 雙閘極石墨烯場效電晶體及其製造方法
Nagashio Graphene field-effect transistor application-electric band structure of graphene in transistor structure extracted from quantum capacitance
CN103855021A (zh) 一种FinFET器件的制造方法
Saeidmanesh et al. Analytical model for threshold voltage of double gate bilayer graphene field effect transistors
CN105225954B (zh) 基于嵌入式金属纳米点的晶体管的制造方法及制造的产品
CN107342314A (zh) 一种顶栅石墨烯场效应晶体管的制备方法
KR101857436B1 (ko) MPSx 물질 기반의 게이트 절연물질을 이용한 전계효과 트랜지스터
CN205542792U (zh) 一种降低漏电流的GaN器件
CN105448716A (zh) 基于金属纳米点沟道的晶体管的制造方法及制得产品
CN203521428U (zh) 具有u形管状沟道的无pn结晶体管
Lee et al. Compact modeling of extremely scaled graphene FETs
Lyu et al. Fabrication of Sub-50nm ZnO thin-film transistors with film profile engineering and laminated hardmask structure

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant