CN108232157A - 一种碳包覆钼酸镍电极材料及其制备方法 - Google Patents

一种碳包覆钼酸镍电极材料及其制备方法 Download PDF

Info

Publication number
CN108232157A
CN108232157A CN201810007235.1A CN201810007235A CN108232157A CN 108232157 A CN108232157 A CN 108232157A CN 201810007235 A CN201810007235 A CN 201810007235A CN 108232157 A CN108232157 A CN 108232157A
Authority
CN
China
Prior art keywords
nickel
molybdate
preparation
predecessor
carbon coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810007235.1A
Other languages
English (en)
Inventor
姜高学
李丽
曹丙强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201810007235.1A priority Critical patent/CN108232157A/zh
Publication of CN108232157A publication Critical patent/CN108232157A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种碳包覆钼酸镍电极材料及其制备方法。该制备方法的具体步骤为:(1)将硝酸镍和钼酸铵、沉淀剂溶解于去离子水中,搅拌,形成混合均匀溶液;(2)将步骤(1)得到的混合均匀溶液置于水热反应釜中密封,在140℃‑190℃反应2‑48小时,自然冷却至室温。经洗涤、离心分离、真空干燥,得到钼酸镍前驱物;(3)将步骤(2)得到的前驱物加入油酸,混合均匀,静置12‑48小时,经乙醇洗涤、离心分离、真空干燥,得到油酸包覆的钼酸镍前驱物。(4)将步骤(3)得到的前驱物在氩气氛围中450‑600℃煅烧2‑8小时,冷却至室温即得碳包覆钼酸镍。本发明制备方法简单、易于操作、重复性好,该方法制备得到的钼酸镍成本低廉、操作简单,电化学性能优越。

Description

一种碳包覆钼酸镍电极材料及其制备方法
技术领域
本发明涉及纳米材料及其应用领域,尤其涉及一种碳包覆钼酸镍电极材料及其制备方法。
背景技术
锂离子电池已经作为一种重要的能量源被人们大范围的使用,无论是在电子通讯领域,还是在交通运输领域等,它都担当着极为重要的角色,有着广泛的应用前景。锂离子电池工作电压高、比能量高、容量大、自放电小、循环性好、使用寿命长、重量轻、体积小,是现代高性能电池的代表,是移动电话、笔记本电脑等便携式电子设备的理想电源,并有望成为未来电动汽车、无绳电动工具等的主要动力来源之一。
钼酸镍作为双金属氧化物其禁带宽度比单金属氧化物更小,电子电导率更大,具有更高的理论容量。但是金属氧化物参与电极反应时会经历较大的体积变化,材料内部会产生较大的应力,导致电极材料因粉化而失活、脱落,比容量衰减快。而包覆碳层不仅可以提高电子的导电性,而且可以作为一种保护层来阻止活性物质在锂化过程中的结构坍塌,缓冲了体积膨胀所带来的材料粉化和脱落,对其电化学性能有明显的改善,在锂离子电池的应用上有很大的意义。
发明内容
本发明的目的在于提供一种碳包覆钼酸镍电极材料及其制备方法,制备方法简单、易于操作、重复性好,该方法制备得到的碳包覆钼酸镍成本低廉、操作简单。
本发明采用以下技术方案:
一种碳包覆钼酸镍电极材料及其制备方法,其特征在于采用以下步骤:
(1)将硝酸镍和钼酸铵、沉淀剂溶解于40ml去离子水中,搅拌,形成混合均匀溶液;其中硝酸镍的含量为2-10mmol,钼酸铵的含量为0.5-5mmol,沉淀剂的含量为1-10mmol,沉淀剂选自尿素、苯并咪唑;
(2)将步骤(1)得到的混合均匀溶液置于反应釜中密封,在140℃-190℃反应2-48小时,自然冷却至室温。经洗涤、离心分离、真空干燥,得到钼酸镍前驱物;
(3)将步骤(2)得到的前驱物加入油酸,混合均匀,静置12-48小时。经乙醇洗涤、离心分离、真空干燥,得到油酸包覆的钼酸镍前驱物;
(4)将步骤(3)得到的前驱体在氩气氛围中煅烧,450-600℃煅烧1-10h,冷却至室温即得碳包覆的钼酸镍。
优选地,步骤(1)中所述的硝酸镍、钼酸铵、沉淀剂的摩尔比为6:1:5。
优选地,步骤(2)中所述的混合均匀溶液置于水热反应釜中密封,在160℃反应12h小时。
优选地,步骤(3)中所述的煅烧温度为500℃,煅烧时间为4h。
有益效果
(1)本发明提供了一种碳包覆钼酸镍电极材料及其制备的方法,制备方法简单、易于操作,重复性好,通过调节硝酸镍、钼酸铵和沉淀剂的种类和配比,以及水热反应温度和时间,使钼酸镍均匀、纯度高,有利于电解液的渗透和扩散,便于锂离子的传输;
(2)本发明得到的碳包覆钼酸镍应用于锂离子电池负极材料,充放电容量高、循环寿命好、高倍率放电性能好,在200mA/g电流密度下,经过100周循环后充放电比容量依旧稳定在950mAh/g左右,其循环稳定性很高。
附图说明
图1为本发明实施例1合成的碳包覆的棒状钼酸镍的扫描显微镜(SEM)照片;
图2为本发明实施例1合成的碳包覆的棒状钼酸镍的透射显微镜(TEM)照片;
图3为本发明实施例1合成的碳包覆钼酸镍的X-射线衍射(XRD)图谱;
图4为本发明实施例1合成的碳包覆钼酸镍电极的循环寿命图。
具体实施方式
下面列举实施例对本发明进行说明,但本发明并不局限于这些实施例。
实施例1
将6mmol硝酸镍、1mmol钼酸铵和5mmol尿素溶于40mL去离子水中,室温下搅拌30min形成混合均匀溶液,将混合均匀溶液置于水热反应釜中密封,在160℃下反应12小时。将得到的产物用20mL去离子水洗涤,离心分离,重复三次上述洗涤过程,将得到的固体中加入20mL无水乙醇洗涤,离心分离,真空干燥,得钼酸镍前驱物。将得到的前驱物加入20ml油酸,混合均匀,静置24h,倒掉上层油酸,加20mL无水乙醇,离心分离,真空干燥,得到碳包覆的钼酸镍前驱体,在氩气氛围中煅烧,500℃煅烧4小时,冷却至室温即得碳包覆钼酸镍材料。
本发明制备的碳包覆钼酸镍电极材料的性能评价方式:将本发明制备的碳包覆钼酸镍、超级P-Li导电炭黑和CMC粘合剂分别按照8:1:1的比例充分研磨混匀,并调成均匀浆料,涂覆Cu箔上,烘干,压实。在高纯氩气(纯度大于99.99%)气氛的手套箱中组装成2025型扣式电池(H2O含量小于1ppm,O2含量小于3ppm),其中金属锂片作为负极。
本实施例制备的碳包覆棒状钼酸镍的扫描电镜(SEM)谱图见附图1,从图中可以看出,产物形貌为细棒状,直径在200nm左右,形状规则;碳包覆的棒状钼酸镍的透射电镜(TEM)谱图见附图2,从图中可以看出在纳米钼酸镍表面包覆了薄薄的一层碳,碳层厚度在4nm左右;本实施例制备的碳包覆钼酸镍材料的X-射线衍射(XRD)见附图3,从图中可以看出,所得产品纯度高,结晶良好。图4为本实施例制备的碳包覆钼酸镍材料制备的电极在200mA/g电流密度下循环寿命曲线。从图中可发现,其首次放电容量约为1405mAh/g,容量较高;经过一段时间的活化后,容量保持稳定,80周循环后放电比容量高达1050mAh/g,且每次循环的库伦效率均大于99%,显示了优异的容量保持率。
实施例2
将4mmol硝酸镍、1.5mmol钼酸铵和6mmol苯并咪唑溶于40mL去离子水中,室温下搅拌30min形成混合均匀溶液,将混合均匀溶液置于水热反应釜中密封,在180℃下反应24小时,将得到的产物用20mL去离子水洗涤,离心分离,重复三次上述洗涤过程,得到的固体中加入20mL无水乙醇洗涤,真空干燥,得钼酸镍前驱物。将得到的前驱物加入20ml油酸,混合均匀,静置24h,倒掉上层油酸,加20mL无水乙醇,离心分离,然后真空干燥,得到碳包覆的钼酸镍前驱体,在氩气氛围中煅烧,500℃煅烧4小时,冷却至室温即得碳包覆钼酸镍材料。
实施例3
将2mmol硝酸镍、0.5mmol钼酸铵和1mmol尿素溶于40mL去离子水中,室温下搅拌30min形成混合均匀溶液,将混合均匀溶液置于水热反应釜中密封,在160℃下反应12小时,将得到的产物用20mL去离子水洗涤,离心分离,重复三次上述洗涤过程,得到的固体中加入20mL无水乙醇脱水,在真空干燥箱中60℃干燥6h得钼酸镍前驱物。将得到的前驱物加入20ml油酸,混合均匀,静置24h,倒掉上层油酸,加20mL无水乙醇,离心分离,然后真空干燥,得到碳包覆的钼酸镍前驱体,在氩气氛围中煅烧,500℃煅烧4小时,冷却至室温即得碳包覆钼酸镍材料。
实施例4
将10mmol硝酸镍、5mmol钼酸铵和10mmol尿素溶解于40ml去离子水,室温下搅拌30min形成混合均匀溶液,将混合均匀溶液置于水热反应釜中密封,在140℃下反应2小时,将得到的产物用20mL去离子水洗涤,离心分离,重复三次上述洗涤过程,得到的固体中加入20mL无水乙醇洗涤,真空干燥,得钼酸镍前驱物。将得到的前驱物加入20ml油酸,混合均匀,静置24h,倒掉上层油酸,加20mL无水乙醇,离心分离,然后真空干燥,得到碳包覆的钼酸镍前驱体,在氩气氛围中煅烧,400℃煅烧4小时,冷却至室温即得碳包覆钼酸镍材料。
实施例5
将2mmol硝酸镍、0.5mmol钼酸铵和1mmol尿素溶解于40mL 去离子水中,室温下搅拌30min形成混合均匀溶液,将混合均匀溶液置于水热反应釜中密封,在190℃下反应48小时,将得到的产物用20mL去离子水洗涤,5000r/min离心5min得固体,重复三次上述洗涤过程,得到的固体中加入20mL无水乙醇脱水,真空干燥,得钼酸镍前驱物。将得到的前驱物加入20ml油酸,混合均匀,静置24h,倒掉上层油酸,加20mL无水乙醇,离心分离,然后真空干燥,得到碳包覆的钼酸镍前驱体。前驱体在氩气氛围中600℃煅烧4小时,冷却至室温即得碳包覆钼酸镍材料。

Claims (4)

1.一种碳包覆钼酸镍电极材料及其制备方法,其特征在于采用以下步骤:
(1)将硝酸镍和钼酸铵、沉淀剂溶解于40ml去离子水中,搅拌,形成混合均匀溶液;其中硝酸镍的含量为2-10mmol,钼酸铵的含量为0.5-5mmol,沉淀剂的含量为1-10mmol,沉淀剂选自尿素、苯并咪唑;
(2)将步骤(1)得到的混合均匀溶液置于反应釜中密封,在140℃-190℃反应2-48小时,自然冷却至室温,经洗涤、离心分离、真空干燥,得到钼酸镍前驱物;
(3)将步骤(2)得到的前驱物加入油酸,混合均匀,静置12-48小时,经乙醇洗涤、离心分离、真空干燥,得到油酸包覆的钼酸镍前驱物;
(4)将步骤(3)得到的前驱物在氩气氛围中煅烧,450-600℃煅烧1-10h,冷却至室温即得碳包覆的钼酸镍。
2.根据权利要求1所述的一种碳包覆钼酸镍电极材料及其制备方法,其特征在于步骤(1)中所述的硝酸镍、钼酸铵、沉淀剂的摩尔比为6:1:5。
3.根据权利要求1所述的一种碳包覆钼酸镍电极材料及其制备方法,其特征在于步骤(2)中所述的混合均匀溶液置于水热反应釜中密封,在160℃反应12h。
4.根据权利要求1所述的一种碳包覆钼酸镍电极材料及其制备方法,其特征在于步骤(4)中所述的煅烧温度为500℃,煅烧时间为4h。
CN201810007235.1A 2018-01-04 2018-01-04 一种碳包覆钼酸镍电极材料及其制备方法 Pending CN108232157A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810007235.1A CN108232157A (zh) 2018-01-04 2018-01-04 一种碳包覆钼酸镍电极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810007235.1A CN108232157A (zh) 2018-01-04 2018-01-04 一种碳包覆钼酸镍电极材料及其制备方法

Publications (1)

Publication Number Publication Date
CN108232157A true CN108232157A (zh) 2018-06-29

Family

ID=62642811

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810007235.1A Pending CN108232157A (zh) 2018-01-04 2018-01-04 一种碳包覆钼酸镍电极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN108232157A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110433818A (zh) * 2019-08-16 2019-11-12 陕西科技大学 一种钼酸镍碳复合纳米球、制备方法及其作为电解水析氢催化剂的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103811189A (zh) * 2014-02-12 2014-05-21 东华大学 一种钼酸钴与石墨烯纳米复合材料的制备方法
CN104821238A (zh) * 2015-03-17 2015-08-05 广东工业大学 一种用于超级电容器电极材料钼酸盐的制备方法及其应用
CN105244182A (zh) * 2015-09-29 2016-01-13 重庆大学 电容器电极材料β-NiMoO4的制备方法及超级电容器
CN106449138A (zh) * 2016-09-14 2017-02-22 中国计量大学 碳包覆的钼酸钴网状纳米片阵列材料、制备方法及应用
CN106847539A (zh) * 2017-01-16 2017-06-13 华南师范大学 一种超级电容器用的碳包覆钴钼酸杂化二氧化锰异质结构的复合材料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103811189A (zh) * 2014-02-12 2014-05-21 东华大学 一种钼酸钴与石墨烯纳米复合材料的制备方法
CN104821238A (zh) * 2015-03-17 2015-08-05 广东工业大学 一种用于超级电容器电极材料钼酸盐的制备方法及其应用
CN105244182A (zh) * 2015-09-29 2016-01-13 重庆大学 电容器电极材料β-NiMoO4的制备方法及超级电容器
CN106449138A (zh) * 2016-09-14 2017-02-22 中国计量大学 碳包覆的钼酸钴网状纳米片阵列材料、制备方法及应用
CN106847539A (zh) * 2017-01-16 2017-06-13 华南师范大学 一种超级电容器用的碳包覆钴钼酸杂化二氧化锰异质结构的复合材料

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110433818A (zh) * 2019-08-16 2019-11-12 陕西科技大学 一种钼酸镍碳复合纳米球、制备方法及其作为电解水析氢催化剂的应用
CN110433818B (zh) * 2019-08-16 2022-02-25 陕西科技大学 一种钼酸镍碳复合纳米球、制备方法及其作为电解水析氢催化剂的应用

Similar Documents

Publication Publication Date Title
Tang et al. An aqueous rechargeable lithium battery of excellent rate capability based on a nanocomposite of MoO 3 coated with PPy and LiMn 2 O 4
Zhang et al. Porous Li 2 C 8 H 4 O 4 coated with N-doped carbon by using CVD as an anode material for Li-ion batteries
CN108598444B (zh) 锂离子电池复合负极材料三氧化二钒/石墨烯及制备方法
Liu et al. One-pot synthesis of carbon-coated nanosized LiTi2 (PO4) 3 as anode materials for aqueous lithium ion batteries
CN108172805A (zh) 一种碳包覆镍钴钼金属氧化物复合电极材料及其制备方法
CN105870439B (zh) 一种多孔四氧化三钴的制备方法及其应用
CN108933237B (zh) 一种锂离子电池正极材料的制备方法及应用
CN109671946B (zh) 锌离子电池正极活性材料、正极材料、锌离子电池正极、锌离子电池及其制备方法和应用
Chen et al. Hierarchical flower-like NiCo 2 O 4@ TiO 2 hetero-nanosheets as anodes for lithium ion batteries
CN112467122B (zh) 正硅酸锂复合材料及其制备方法和应用
CN109659540A (zh) 一种多孔碳包覆碲化锑纳米片的制备方法及其作为金属离子电池负极材料的应用
Chen et al. Superior wide-temperature lithium storage in a porous cobalt vanadate
Zhang et al. VOPO4⋅ 2H2O: Large-scale synthesis and zinc-ion storage application
CN108878851A (zh) 一维多孔菱形空管状的α-硫化锰/硫化钼@碳复合材料的制备方法及其应用
CN105609772A (zh) 微波法制备n,s共掺杂石墨烯锂硫电池正极材料的方法
CN107819125A (zh) 一种稻草捆状四氧化三钴的制备方法及其在锂离子电池中的应用
CN108987688B (zh) 一种碳基复合材料、制备方法及钠离子电池
CN109896524A (zh) 一种二维晶体MXene纳米材料的制备方法及其应用
CN107275571A (zh) 一种硫化锂/纳米硅碳全电池及其制备方法与应用
CN108428840A (zh) 一种纯硒正极锂硒电池的制备方法
Wang et al. SiO 2@ NiO core–shell nanocomposites as high performance anode materials for lithium-ion batteries
Noerochim et al. Synthesis of dual-phase Li 4 Ti 5 O 12-TiO 2 nanowires as anode for lithium-ion battery
CN104577126A (zh) 一种形貌均匀的MWCNT@a-C@Co9S8复合电极材料的制备方法及在锂电中的应用
Gu et al. A Typha Angustifolia-like MoS2/carbon nanofiber composite for high performance Li-S batteries
Khalaji et al. Facile synthesis, characterization and electrochemical performance of nickel oxide nanoparticles prepared by thermal decomposition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180629