CN108203839A - g-C3N4/H-S-TiO2基纳米管阵列及其制备方法和应用 - Google Patents

g-C3N4/H-S-TiO2基纳米管阵列及其制备方法和应用 Download PDF

Info

Publication number
CN108203839A
CN108203839A CN201810051061.9A CN201810051061A CN108203839A CN 108203839 A CN108203839 A CN 108203839A CN 201810051061 A CN201810051061 A CN 201810051061A CN 108203839 A CN108203839 A CN 108203839A
Authority
CN
China
Prior art keywords
tio
nanotube array
based nanotube
array
prepared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810051061.9A
Other languages
English (en)
Inventor
刘世凯
周淑慧
刘雪涛
张镇峰
刘贺朋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Technology
Original Assignee
Henan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Technology filed Critical Henan University of Technology
Priority to CN201810051061.9A priority Critical patent/CN108203839A/zh
Publication of CN108203839A publication Critical patent/CN108203839A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46142Catalytic coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种g‑C3N4/H‑S‑TiO2基纳米管阵列及其制备方法,属于纳米复合材料技术领域。具体制备方法的步骤为:在含钛金属基体上,通过阳极氧化法制备纳米管有序阵列;对所制备的纳米管有序阵列进行晶化、硫化和氢化处理,得到H‑S‑TiO2基纳米管阵列;对所制备的H‑S‑TiO2基纳米管阵列与g‑C3N4复合,得到g‑C3N4/H‑S‑TiO2基纳米管阵列。该有序纳米管阵列复合材料结构有序规整,比表面积大,量子效率高,吸收利用太阳光的波长范围明显扩展,可以显著提高光电转换效率,在太阳能电池和光催化等方面都有非常广阔的应用。如该有序纳米管阵列复合材料可作为光电极来使用,能充分发挥纳米管有序阵列的优势,从而为高性能光电极的设计、开发和应用提供思路。

Description

g-C3N4/H-S-TiO2基纳米管阵列及其制备方法和应用
技术领域
本发明属于纳米复合材料技术领域,特别是涉及一种g-C3N4/ H-S-TiO2基纳米管阵列及其制备方法和应用。
背景技术
二氧化钛(TiO2)纳米管阵列作为一种具有高度有序纳米结构的半导体材料,以其吸附能力强、光催化特性好、价格低廉等突出优点,在光催化降解污染物、光解水制氢、太阳能电池、敏感器件等领域得到广泛的研究和应用。采用阳极氧化法在含钛金属表面制备的TiO2纳米管阵列具有较大的比表面积,且阵列结构高度有序;但由于TiO2的禁带宽度较宽,只能在紫外光的照射下被激发,对可见光响应较差,光电转换效率低,光生电子和空穴容易复合,光催化效率低,因此需要对TiO2纳米管阵列进行进一步的改性。
目前对TiO2纳米管阵列改性方法主要有过渡金属离子掺杂、非金属掺杂、半导体复合和贵金属沉积等,通过扩展TiO2纳米管阵列的光吸收范围,抑制光生电子和空穴的复合,提高太阳能的利用率。每种改性方法各具优点,又同时存在一定的弊端,对TiO2纳米管阵列性能改善比较局限,因此需要进一步深入研究TiO2纳米管阵列的改性途径和方法。
发明内容
本发明针对传统改性方法的缺陷,通过金属钛或钛合金的电化学阳极氧化法首先制备TiO2基纳米管阵列结构,然后在气氛炉中进行硫化和氢化处理,最后再实现半导体g-C3N4的复合,首次制备了g-C3N4复合的H-S-TiO2纳米管阵列,为高性能光电极的设计、开发和应用提供思路。
具体的,本发明提供的g-C3N4复合改性的g-C3N4/ H-S-TiO2基纳米管阵列的制备方法,具体按照以下步骤实施:
S1:在含钛金属基体上,通过阳极氧化法制备纳米管有序阵列;
S2:对所制备的纳米管有序阵列进行晶化、硫化和氢化处理,得到H-S-TiO2基纳米管阵列;
S3:对所制备的H-S-TiO2基纳米管阵列与g-C3N4复合,制备得到g-C3N4/H-S-TiO2基纳米管阵列。
优选地,所述含钛金属基体为金属钛或钛合金。
优选地,S1的具体步骤为:
S11:选用电解液为含氟的酸性水溶液或含水含氟有机体系;
S12:将含钛金属基体在含氟的酸性水溶液或含水含氟有机体系电解液体系中于15~60V下阳极氧化0.5~24h,在含钛金属基体表面生长出高度有序的纳米管有序阵列。
更优选地,S2的具体步骤为:
将所制备的纳米管有序阵列先经400~550℃热处理2h后,再在设定封闭硫化氢气氛中,于450~600℃处理1~3h,其中升温速度为3℃/min,得到H-S-TiO2基纳米管阵列。
更优选地,S3的具体步骤为:
称取一定量的尿素(或硫脲,或三聚氰胺),将尿素(或硫脲,或三聚氰胺)于马弗炉中480~550℃热处理2~3h,得到淡黄色的g-C3N4粉体;
按照固液比0.1~2:50( g:ml)的比例,分别量取g-C3N4粉体和无水乙醇,充分混合后超声剥离2h,得到纳米g-C3N4悬浮液;
将所述H-S-TiO2基纳米管阵列浸渍于所述纳米g-C3N4悬浮液中,室温下浸渍1~10min 、再在干燥箱中200~250℃下处理1~3h,即可得到所述g-C3N4/ H-S-TiO2基纳米管阵列。
更优选地,S3的具体步骤为:
按照固液比1~15:50( g:ml)的比例,分别量尿素和无水乙醇,并将尿素充分溶解于无水乙醇中,得到尿素悬浮液;
将所述H-S-TiO2基纳米管阵列在所述尿素溶液中浸泡25~30min,然后取出于480~550℃下热处理1~2h,得到所述g-C3N4/ H-S-TiO2基纳米管阵列。
本发明还提供了一种g-C3N4/ H-S-TiO2基纳米管阵列,由上述任一方法制备得到。
优选地,本发明还提供了该g-C3N4/ H-S-TiO2基纳米管阵列,在光电转换中作为光电极的应用。
优选地,本发明还提供了该g-C3N4/ H-S-TiO2基纳米管阵列,作为光解水制氢材料的应用。
优选地,本发明还提供了该g-C3N4/ H-S-TiO2基纳米管阵列,作为光电催化降解污染物材料的应用。
本发明的技术方案具有如下有益效果:
(1)本发明通过金属钛或钛合金的电化学阳极氧化法首先制备TiO2 基纳米管阵列结构,然后在封闭硫化氢气氛中进行处理,最后再实现半导体g-C3N4的复合,首次制备了g-C3N4复合的H-S-TiO2纳米管阵列。通过充分发挥纳米管有序阵列的优势,在不明显改变其形貌结构的同时实现多元改性(硫化、表面氢化处理和g-C3N4半导体复合协同改性),对太阳光的响应吸收范围明显扩展,显著提高光电转换效率,为高性能光电极的设计、开发和应用提供思路。
(2)本发明提供的g-C3N4/ H-S-TiO2基纳米管阵列,结构有序规整,比表面积大,量子效率高,光转换率高,应用范围广阔,不仅在光电转换中可作为光电极,也可以作为光解水制氢材料来使用,还可以作为光电催化降解污染物材料来使用。
附图说明
图1实施例1所制备g-C3N4/ H-S-TiO2纳米管阵列的FESEM照片。
图2 实施例2所制备g-C3N4/ H-S-TiO2纳米管阵列的FESEM照片。
图1和图2可知所制备的均为高度有序的纳米管阵列结构,改性过程对纳米结构的形貌没有大的影响,且在纳米管阵列的表面和管壁处有明显的的片状物质复合,无形成明显覆盖,表明g-C3N4复合较为均匀;同时图1可见较大块状物,均匀一致性方面略差于图2。
具体实施方式
为了使本领域技术人员更好地理解本发明的技术方案能予以实施,下面结合具体实施例对本发明作进一步说明,但所举实施例不作为对本发明的限定。
当实施例给出数值范围时,应理解,除非本发明另有说明,每个数值范围的两个端点以及两个端点之间任何一个数值均可选用。除非另外定义,本发明中使用的所有技术和科学术语与本技术领域技术人员通常理解的意义相同。除实施例中使用的具体方法、设备、材料外,根据本技术领域的技术人员对现有技术的掌握及本发明的记载,还可以使用与本发明实施例中所述的方法、设备、材料相似或等同的现有技术的任何方法、设备和材料来实现本发明。
一种g-C3N4/ H-S-TiO2基纳米管阵列的制备方法,具体按照以下步骤实施:
S1:在含钛金属基体上,通过阳极氧化法制备纳米管有序阵列;
S2:对所制备的纳米管有序阵列进行晶化、硫化和氢化处理,得到H-S-TiO2基纳米管阵列;
S3:对所制备的H-S-TiO2基纳米管阵列与g-C3N4复合,制备得到g-C3N4/H-S-TiO2基纳米管阵列。
下面就本发明的技术方案进行具体的举例说明。
实施例1
一种g-C3N4/H-S-TiO2纳米管阵列的制备方法,具体步骤为:
选用0.2mm厚的钛片,依次在去离子水、丙酮、异丙醇、无水乙醇中各超声清洗3min,干燥箱烘干备用。选用电解液,具体为0.5wt%NH4F+0.3MH3PO4 的水溶液,将金属钛在该电解液体系中于20V下进行电化学阳极氧化1h,在金属钛表面生长出高度有序的纳米管有序阵列,纳米管平均管径约100nm,管壁厚12nm,管长650nm。
将纳米管有序阵列先经500℃热处理2h后,再在一定封闭硫化氢气氛中,于550℃处理1~3h,其中升温速度为3℃/min,得到H-S-TiO2基纳米管阵列。
称取一定量的尿素,将尿素于马弗炉中500℃热处理,得到淡黄色的g-C3N4粉体;按照固液比1g:50ml的比例,分别量取g-C3N4粉体和无水乙醇,充分混合后超声剥离,得到纳米g-C3N4悬浮液;将上述H-S-TiO2纳米管阵列于所述纳米g-C3N4悬浮液中在室温下浸渍5min,取出用无水乙醇反复冲洗2次,于220℃下干燥2h,即得到g-C3N4/H-S-TiO2纳米管阵列。
实施例2
一种g-C3N4/H-S-TiO2纳米管阵列的制备方法,具体步骤为:
选用0.2mm厚的纯钛片,经粗细砂纸分别打磨光亮后,分别用去离子水、丙酮、异丙醇、无水乙醇各超声清洗3min,干燥箱烘干备用。选用电解液,具体为0.5wt%NH4F+0.1MH3PO4 的水溶液,将金属钛在该电解液体系中于20V下进行电化学阳极氧化1h,在金属钛表面生长出高度有序的纳米管有序阵列,纳米管平均管径约90nm,管壁厚15nm,管长600nm。
将纳米管有序阵列先经500℃热处理2h后,再在一定封闭硫化氢气氛中,于550℃下处理3h,其中升温速度为3℃/min,得到H-S-TiO2基纳米管阵列。
分别量取5g尿素和50ml无水乙醇,并将尿素充分溶解于无水乙醇中,得到尿素的乙醇溶液;将上述H-S-TiO2纳米管阵列在所述尿素悬浮液中浸泡20min,然后取出于500℃下热处理2h,得到g-C3N4/H-S-TiO2纳米管阵列。
对实施例1和实施例2制备的g-C3N4/ H-S-TiO2基纳米管阵列进行光电化学性质测试,测试结果表明,实施例1制得的H-S-TiO2基纳米管阵列和实施例2制得的H-S-TiO2基纳米管阵列的光转化率均明显高于未进行硫化氢处理的纳米管阵列;且实施例1制得的g-C3N4/ H-S-TiO2基纳米管阵列和实施例2制得的g-C3N4/ H-S-TiO2基纳米管阵列的光转化率均明显高于相应实施例制得的H-S-TiO2基纳米管阵列,这表明g-C3N4复合与硫化和氢化不同改性手段之间存在一定的协同效应。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,其保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内,本发明的保护范围以权利要求书为准。

Claims (10)

1.一种g-C3N4/H-S-TiO2基纳米管阵列的制备方法,其特征在于,具体按照以下步骤实施:
S1:在含钛金属基体上,通过阳极氧化法制备纳米管有序阵列;
S2:对所制备的纳米管有序阵列进行晶化、硫化和氢化处理,得到H-S-TiO2基纳米管阵列;
S3:对所制备的H-S-TiO2基纳米管阵列与g-C3N4复合,制备得到g-C3N4/H-S-TiO2基纳米管阵列。
2.根据权利要求1所述的g-C3N4/ H-S-TiO2基纳米管阵列的制备方法,其特征在于,所述含钛金属基体为金属钛或钛合金。
3.根据权利要求1所述的g-C3N4/ H-S-TiO2基纳米管阵列的制备方法,其特征在于,S1的具体步骤为:
S11:选用电解液为含氟的酸性水溶液或含水含氟有机体系;
S12:将含钛金属基体在含氟的酸性水溶液或含水含氟有机体系电解液体系中于15~60V下阳极氧化0.5~24h,在含钛金属基体表面生长出高度有序的纳米管有序阵列。
4.根据权利要求3所述的g-C3N4/ H-S-TiO2基纳米管阵列的制备方法,其特征在于,S2的具体步骤为:
将所制备的纳米管有序阵列先经400~550℃热处理2h后,再在设定封闭硫化氢气氛中,于450~600℃处理1~3h,其中升温速度为3℃/min,得到H-S-TiO2基纳米管阵列。
5.根据权利要求4所述的g-C3N4/ H-S-TiO2基纳米管阵列的制备方法,其特征在于,S3的具体步骤为:
称取一定量的尿素(或硫脲,或三聚氰胺),将尿素(或硫脲,或三聚氰胺)于马弗炉中480~550℃热处理2~3h,得到淡黄色的g-C3N4粉体;
按照固液比:0.1~2:50(g:ml)的比例,分别量取g-C3N4粉体和无水乙醇,充分超声剥离2h,得到纳米g-C3N4悬浮液;
将所述H-S-TiO2基纳米管阵列浸渍于所述纳米g-C3N4悬浮液中,室温下浸渍1~10min、再在干燥箱中200~250℃下处理1~3h,得到所述g-C3N4/ H-S-TiO2基纳米管阵列。
6.根据权利要求4所述的g-C3N4/ H-S-TiO2基纳米管阵列的制备方法,其特征在于,S3的具体步骤为:
按照固液比 1~15:50( g:ml)的比例,分别量尿素和无水乙醇,并将尿素充分溶解于无水乙醇中,得到尿素溶液;
将所述H-S-TiO2基纳米管阵列在所述尿素溶液中浸泡15~30min,然后取出于480~550℃下热处理1~2h,得到所述g-C3N4/ H-S-TiO2基纳米管阵列。
7.一种g-C3N4/ H-S-TiO2基纳米管阵列,其特征在于,由权利要求1~6任一所述方法制备得到。
8.根据权利要求7所述的g-C3N4/ H-S-TiO2基纳米管阵列,其特征在于,在光电转换中作为光电极的应用。
9.根据权利要求7所述的g-C3N4/ H-S-TiO2基纳米管阵列,其特征在于,作为光解水制氢材料的应用。
10.根据权利要求7所述的g-C3N4/ H-S-TiO2基纳米管阵列,其特征在于,作为光电催化降解污染物材料的应用。
CN201810051061.9A 2018-01-19 2018-01-19 g-C3N4/H-S-TiO2基纳米管阵列及其制备方法和应用 Pending CN108203839A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810051061.9A CN108203839A (zh) 2018-01-19 2018-01-19 g-C3N4/H-S-TiO2基纳米管阵列及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810051061.9A CN108203839A (zh) 2018-01-19 2018-01-19 g-C3N4/H-S-TiO2基纳米管阵列及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN108203839A true CN108203839A (zh) 2018-06-26

Family

ID=62606280

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810051061.9A Pending CN108203839A (zh) 2018-01-19 2018-01-19 g-C3N4/H-S-TiO2基纳米管阵列及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN108203839A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108767121A (zh) * 2018-05-07 2018-11-06 延安大学 一种介孔结构的电子传输层薄膜的制备方法
CN108940343A (zh) * 2018-07-25 2018-12-07 河北师范大学 Fe-TiO2纳米管/g-C3N4复合材料及其制备方法和应用
CN109594100A (zh) * 2018-12-07 2019-04-09 东华大学 一种C3N4负载Cu/Sn合金材料及其制备和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106653371A (zh) * 2016-12-05 2017-05-10 深圳清华大学研究院 基于TiO2纳米异质结复合光阳极及其制备方法
CN106906508A (zh) * 2017-03-02 2017-06-30 河南工业大学 g‑C3N4/H‑TiO2基纳米管阵列及其制备方法和应用
CN107081166A (zh) * 2017-06-12 2017-08-22 青岛科技大学 一种g‑C3N4/TiO2多级结构及其制备方法
CN107159289A (zh) * 2017-04-20 2017-09-15 西北大学 一种原位制备g‑C3N4‑TiO2纳米异质结光催化薄膜的方法
CN107233908A (zh) * 2017-07-17 2017-10-10 陕西科技大学 一种g‑C3N4/TiO2可见光催化薄膜及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106653371A (zh) * 2016-12-05 2017-05-10 深圳清华大学研究院 基于TiO2纳米异质结复合光阳极及其制备方法
CN106906508A (zh) * 2017-03-02 2017-06-30 河南工业大学 g‑C3N4/H‑TiO2基纳米管阵列及其制备方法和应用
CN107159289A (zh) * 2017-04-20 2017-09-15 西北大学 一种原位制备g‑C3N4‑TiO2纳米异质结光催化薄膜的方法
CN107081166A (zh) * 2017-06-12 2017-08-22 青岛科技大学 一种g‑C3N4/TiO2多级结构及其制备方法
CN107233908A (zh) * 2017-07-17 2017-10-10 陕西科技大学 一种g‑C3N4/TiO2可见光催化薄膜及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108767121A (zh) * 2018-05-07 2018-11-06 延安大学 一种介孔结构的电子传输层薄膜的制备方法
CN108767121B (zh) * 2018-05-07 2021-09-14 延安大学 一种介孔结构的电子传输层薄膜的制备方法
CN108940343A (zh) * 2018-07-25 2018-12-07 河北师范大学 Fe-TiO2纳米管/g-C3N4复合材料及其制备方法和应用
CN108940343B (zh) * 2018-07-25 2021-02-26 河北师范大学 Fe-TiO2纳米管/g-C3N4复合材料及其制备方法和应用
CN109594100A (zh) * 2018-12-07 2019-04-09 东华大学 一种C3N4负载Cu/Sn合金材料及其制备和应用

Similar Documents

Publication Publication Date Title
Xu et al. A Ni (OH) 2-modified Ti-doped α-Fe 2 O 3 photoanode for improved photoelectrochemical oxidation of urea: the role of Ni (OH) 2 as a cocatalyst
Lin et al. A highly efficient ZnS/CdS@ TiO2 photoelectrode for photogenerated cathodic protection of metals
Sun et al. Growth of single-crystalline rutile TiO 2 nanowire array on titanate nanosheet film for dye-sensitized solar cells
CN106555188B (zh) 用于光生阴极保护的Ag/石墨烯/二氧化钛纳米管复合膜光阳极的制备方法
CN103205760B (zh) 用于光生阴极保护的Ag2S/TiO2复合膜光阳极的制备方法
Ge et al. Photocathodic protection of 304 stainless steel by MnS/TiO2 nanotube films under simulated solar light
CN106732738A (zh) 一种石墨烯/g‑C3N4三维网络复合薄膜及其制备和应用
Lin et al. Photoelectrocatalytic activity of a hydrothermally grown branched Zno nanorod-array electrode for paracetamol degradation
CN102002746B (zh) 氧化铁纳米颗粒修饰的二氧化钛纳米管阵列的制备方法
CN108203839A (zh) g-C3N4/H-S-TiO2基纳米管阵列及其制备方法和应用
Yan et al. Design and preparation of CdS/H-3D-TiO2/Pt-wire photocatalysis system with enhanced visible-light driven H2 evolution
CN103952708B (zh) 用于光生阴极保护的Ag/SnO2/TiO2复合膜光阳极的制备方法
CN104357852B (zh) 一种用于光生阴极保护的MnSe/TiO2复合膜及其制备和应用
CN108206094B (zh) 一种钴元素掺杂TiO2纳米管的制备方法
Momeni et al. Chromium-doped titanium oxide nanotubes grown via one-step anodization for efficient photocathodic protection of stainless steel
CN102509625A (zh) 一种原位制备硅钨共掺杂TiO2纳米管薄膜光阳极的方法
CN103151176A (zh) 一种三维球状锐钛矿型TiO2光阳极的制备方法
CN101866753B (zh) 染料敏化太阳能电池光阳极表面的处理方法
CN106906508A (zh) g‑C3N4/H‑TiO2基纳米管阵列及其制备方法和应用
CN104810480A (zh) 一种用于钙钛矿电池的二氧化钛薄层的制备方法
CN108411309B (zh) 一种用于光生阴极保护的氧化铁复合二氧化钛薄膜光阳极的制备方法
CN105789352B (zh) 一种三氧化钨/二氧化钛纳米异质结薄膜及其制备和应用
CN108130711A (zh) 一种基于纤维衬底的TiO2纳米阵列及其制备方法
CN109706505A (zh) 一种g-C3N4/CsPbI3/TiO2纳米管阵列的制备方法
CN105386061A (zh) Bi2S3/TiO2纳米棒复合膜光阳极的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180626