CN1081725C - 内燃机内排气阀轴形或活塞形可动壁构件 - Google Patents

内燃机内排气阀轴形或活塞形可动壁构件 Download PDF

Info

Publication number
CN1081725C
CN1081725C CN97194647A CN97194647A CN1081725C CN 1081725 C CN1081725 C CN 1081725C CN 97194647 A CN97194647 A CN 97194647A CN 97194647 A CN97194647 A CN 97194647A CN 1081725 C CN1081725 C CN 1081725C
Authority
CN
China
Prior art keywords
wall member
content
movable wall
described movable
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN97194647A
Other languages
English (en)
Other versions
CN1218538A (zh
Inventor
哈罗·安德列亚斯·赫格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Energy Solutions Filial af MAN Energy Solutions SE
Original Assignee
MAN B&W Diesel AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN B&W Diesel AS filed Critical MAN B&W Diesel AS
Publication of CN1218538A publication Critical patent/CN1218538A/zh
Application granted granted Critical
Publication of CN1081725C publication Critical patent/CN1081725C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/02Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials
    • F01L3/04Coated valve members or valve-seats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • F02B77/04Cleaning of, preventing corrosion or erosion in, or preventing unwanted deposits in, combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/043Rare earth metals, e.g. Sc, Y
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0433Iron group; Ferrous alloys, e.g. steel
    • F05C2201/0448Steel

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Powder Metallurgy (AREA)
  • Heat Treatment Of Articles (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

一种可动壁构件,具有内燃机内排气阀轴(1)或活塞(7)的形式,对朝向燃烧室的壁构件一侧采用耐热腐蚀材料(5、14),这种材料是用含镍铬合金颗粒状原始材料制成的,这种颗粒状材料是通过热等静压法、基本上不经过熔化原始材料就结合成凝聚性材料的。在将耐腐蚀材料加热到550~850℃温度范围内保持400小时以上后,在约20℃下测得耐腐蚀材料具有低于310HV的硬度。

Description

内燃机内排气阀轴形或活塞形可动壁构件
本发明涉及内燃机内、特别是二冲程十字头型发动机内排气阀轴形或活塞形可动壁构件,对面向燃烧室的壁构件一侧采用耐热腐蚀材料,这种材料是用含镍铬合金颗粒状原始材料制成的,这种颗粒状材料是通过热等静压工艺(HIP工艺)、基本上不经熔化原始材料就结合成凝聚性材料的。
耐热腐蚀材料在本文中是指在操作温度为550-850℃的内燃机燃烧室环境内具有耐腐蚀性的材料。
一种复合式排气阀轴可见之于牌号为MAN B &W Diesel的大型二冲程柴油机的实际结构中,其中,阀盘的下表面和轴基的座区通过热等静压法加有一层80A镍铬钛合金(Nimonic 80A合金)的耐热腐蚀材料,这种合金含有18~21%的铬和约75%的镍。除耐腐蚀性外,这种合金具有约400HV20的硬度,使其可用作阀座材料。通常来说,阀座应具有高硬度以免阀门关闭时燃烧过程中的残剩颗粒挤压在座面之间而在密封面上形成压痕。
EP-A0521821叙述了在阀座区内采用671铬镍铁合金(Inconel 671合金)作为一种表面硬化的合金。这种合金含有0.04~0.05%的C、47~49%的Cr、0.3~0.4%的Ti和余量的Ni。阀座区位于阀盘上表面而成为连续形的环形镶面。如上所述,座区的要求是所用合金应具有高硬度。该EP公报提到,Inconel 671的耐腐蚀性被认为不如也被推荐为表面硬化材料的Inconel 625。
该申请人的国际专利申请WO96/18747叙述了一种带焊敷表面硬化合金的排气阀轴,其成分为40~51%的Cr、0~0.1%的C、少于1.0%的Si、0~5.0%的Mn、少于1.0%的Mo、0.05~0.5%的B、0~1.0%的Al、0~1.5%的Ti、0~0.2%的Zr、0.5~3.0%的Nb、至多5.0%的Co和Fe的总合含量、至多0.2%的O、至多0.3%的N、余量为Ni。这种阀座材料在焊接后通过温度超过550℃的热处理可取得例如550 HV20的高硬度。
一般认为,含铬和镍的耐腐蚀合金在550~850℃范围内会时效硬化,也就是合金会变得更硬更脆。在铸件的情况下,为取得良好的耐腐蚀性,特别是在含有来自重质燃料油燃烧产物的硫和钒的环境中取得良好的耐腐蚀性,已知可用含50%的Cr和50%的Ni这种合金或IN 657这种合金,IN 657含48~52%的Cr、1.4~1.7%的Nb、至多0.1%的C、至多0.16%的Ti、至多0.2%的C和N、至多0.5%的Si、至多1.0%的Fe、至多0.3%的Mg、余量为Ni。铸造后,这种合金具有富镍γ相和富铬α相,根据合金的精确分析此两相都可构成初生树枝状(枝晶)结构。已知这些合金在超过600℃的操作温度下即时效硬化。这是由于合金在冷却时并不在平衡的状态下进行固化。在合金此后的工作温度下由于超稳相比例(over-represented phase proportion)的转变而产生亚稳相比例(under-represented phase proportion)的析出,这就造成了脆性,其特征是延性在室温下低于4%。基于这种相对较低的强度性能,这种合金只是用于低负荷的铸件。
由伦敦海洋工程师学会在1990年发布的技术论文“关于现用阀门材料使用经验的评述”综述了柴油机排气阀的可用镶面合金,并详细叙述了柴油机内热腐蚀的问题。该论文特别针对排气阀轴座面所述条件作了论述。
在阀轴的下表面和活塞的上表面上,耐热腐蚀材料用以限制腐蚀的侵袭,使阀轴和(或)活塞有利地取得很长的使用寿命。活塞上表面和阀盘下表面的面积很大,因而在改变发动机负荷时例如在起动或停止发动机时承受着很大的热应力。热冲击在这些表面的中部最为严重,这部分地是由于燃烧气体在燃烧室的近中部分具有最高的温度,部分地是由于活塞和阀轴在这些表面的近边部分受到了冷却。阀盘在上表面的座区附近也受到了冷却,此表面在阀关闭时与水冷的固定阀座相接触,对于活塞来说,热量通过活塞环向水冷汽缸衬筒引去,此外,活塞的内表面也受到油冷。较冷的周边材料阻止较热的中部材料的热膨胀,这就造成很大的热应力。
众所周知,由所述热效应造成的变化很慢但作用很大的热应力会造成起自阀盘下表面中部的星裂。星裂会作很深的发展,以致穿透耐热腐蚀材料而使下层材料受到腐蚀性侵袭并受到侵蚀,导致排气阀的失效。
本发明的目的在于提供一种排气阀轴或活塞,使其就耐热腐蚀材料而言具有相当长的使用寿命。
为此,本发明提供一种可动壁构件,具有内燃机内、特别是二冲程十字头型发动机内排气阀轴或活塞的形式,对朝向燃烧室的壁构件一侧来用耐热腐蚀材料,这种材料是用含镍铬合金颗粒状原始材料制成的,这种颗粒状材料是通过热等静压工艺、基本上不经过熔化原始材料就结合成凝聚性材料的,按照重量百分比,除通常的杂质和不可避免的除氧成分残余量外,该耐腐蚀材料含有38~75%的Cr和任选的0~0.15%的C、0~1.5%的Si、0~1.0%的Mn、0~0.2%的B、0~5.0%的Fe、0~1.0%的Mg、0~2.5%的Al、0~2.0%的Ti、0~8.0%的Co、0~3.0%的Nb、以及任选的Ta、Zr、Hf、W和Mo成分和余量的Ni、Al和Ti的总合含量至多4.0%、Fe和Co的总合含量至多8.0%、Ni和Co的总合含量至少25%;在将该耐腐蚀材料加热到550~850℃温度范围内保持400小时以上后在约20℃下测得该耐腐蚀材料具有低于310HV的硬度。
令人非常惊异地证实了用热等静压法所生产这种成分的材料在内燃机可动壁构件所处操作温度下并不硬化,这样就可使可动壁构件面的燃烧室一侧的耐热腐蚀材料有利地保持其小于310HV20的低硬度和相应的延性。低硬度减少或防止了材料的星裂,因而壁构件的寿命不会由于材料的疲劳损伤而降低。本发明还可取得另一优点:即使在受到长时间的热效应之后仍保持很好的机械性能。因此,材料保持了与高延性相结合的高抗拉强度,这对一些高铬含量的镍合金来说是相当罕见的。这些性能也使耐腐蚀材料至少可取代部分受通常承载的壁构件材料,以制成比已知壁构件更轻的壁构件,也就是,在要求强度的材料外面将耐腐蚀材料用作覆面层。这样的减重对内燃机是很有利的,因为减重意味着较少用以传动壁构件的能量和较小作用在与壁构件协同操作的发动机构件上的负荷。此外,还产生了节省材料的效果。同时,该高铬含量的材料具有很高的抗热腐蚀性,与具有已知含铬镍材料面层的壁构件相比,材料所受侵蚀分布均匀,其延续时间也会明显地加长。
为防止耐热腐蚀材料在阀或轴的使用过程中过度硬化,重要的是使颗粒状原始(起始)材料在制造壁构件时既不熔化也不作过大的机械变形。热等静压法使颗粒状原始材料由于扩散所造成的颗粒间界的分解而结合成一体,并保持颗粒极密实的树枝状结构,其树枝状分枝彼此紧密相邻。在已知的含铬量在40~52%范围内的镍基硬质面层内,原始材料是通过铸造或焊接得以熔化的,并通过此后超过550℃的加热消除这些材料作高硬度时效硬化或弥散硬化的固有倾向。迄今为止,对在本发明壁构件中用热等静压法所制材料内硬化机制受到抑制的原因还不能从冶金学上给出令人满意的解答,但令人惊异的是实际证明确实如此。
如果材料中铬含量低于38%,就不能取得所需耐热腐蚀性。在壁构件表面上,铬与氧反应而形成Cr2O3表面层,此表面层保护下层使其不受腐蚀性残剩燃烧产物的影响。高于44.5%的铬含量是有利的。如果铬含量超过75%,材料的镍含量就过低了,此外,在热等静压法所用高温下就会产生不应有的局部性纯α相、也就是向无树枝状结构的富铬相的转变。α相是脆性的,加大结构中这一相的百分比对材料的延性产生不利的影响。最好使铬含量高于49%,以便提高耐腐蚀性。
该材料应具有至少25%钴和镍的总合含量,以便取得所需抗裂延性。如果合金不含Co,镍含量就至少应为25%。除铬含量的所述低限外,对镍含量出于结构上的原因并无上限。
如果碳含量超过0.15%,就会在颗粒表面上析出不应有的碳化物边界层,也还会析出NbC、WC或TiC一类提高硬度的碳化物。C还会形成不应有的碳化铬,这取决于材料中其他成分的含量。为高度防止复合碳化物,碳含量最好低于0.02%,但由于C在很多金属中是常见的杂质,出于经济上的原因,限制碳含量至多到0.08%比较合适。
硅含量多至1.5%会有助于改善耐腐蚀性,Si在材料表面上可形成柴油机燃烧室环境内很稳定的氧化硅。如硅含量超过1.5%,就会析出过量提高硬度的硅化物。Si还会在材料基体结构内对富镍γ相产生固溶硬化(强化)作用。为此,将材料中硅含量限制在至多0.95%会是可取的。
与Si相似,铝可通过在壁构件表面上所形成的氧化铝改善耐腐蚀性。此外,可在制造颗粒状原始材料时添加Al、Si和/或Mn,这三种成分具有脱氧作用。由于Mn无助于取得壁构件材料所需性能,其在材料内的残余量要求限制在至多1.0%。
至多0.5%的Y和(或)至多4.0%的Ta有助于稳定材料表面上氧化物的形成,这与加入Al和Si的情况相同。较大量的钇和钽并不能进一步改善耐腐蚀性。
Al可与镍形成提高硬度的金属间化合物(γ’),因此,材料可含有至多2.5%的Al。如果合金还含有至多2.0%较大量的Ti,材料中Al和Ti的总合含量就不可超过4.0%,因为Ti还会形成部分不应有的γ’析出物。为得益于铝的防腐蚀作用,同时取得防止γ’析出的适当安全程度,材料最好含有少于1.0%的Al,同时Al和Ti的总合含量至多2.0%。如果这种合金含钛量接近其上限,铝含量可有利地限制在至多0.15%。为进一步抑制γ’的形成,铝含量最好少于0.4%。
Ti是含铬镍合金中经常出现的成分,因此,很难在材料中完全避免某些钛含量。钛含量最好低于0.6%,以减少提高硬度的碳化钛和硼化钛的析出。由于Al和Ti之间的相互作用,宁愿限制钛含量,使其低于0.09%而增加铝含量,以改善材料的耐热腐蚀性。
材料的铁含量希望限制在至多5%,较高的铁含量会降低耐腐蚀性。还可使用含钴的原始材料,钴本身对耐腐蚀性并无不良影响。钴在材料中出于经济上的原因必要时可部分地替代镍。多至8.0%的钴含量对γ相并无明显的固溶硬化作用。在不需要镍的替代物时,可添加多至8.0%的钴,因为钴可在有利于材料延性的方向上改变α相和γ相的相对含量,这是由于钴促使γ相的形成。这会是很有必要的,特别是在材料含有很多铬,例如大于60%铬的情况下。
硼可有助于使混合相α+γ的颗粒状原始材料具有很密的树枝状结构而使其树枝分支间的间距很小。如硼含量超过0.2%,含硼共晶体和硼化物的析出量会在一定程度上产生不应有的提高硬度的作用。多至0.15%的锆(Zr)量可对树枝状结构具有与硼相同的有利作用,因而可用作硼的替代物或增补物。硼含量最好低于0.09%,以限制会提高硬度的析出量。
颗粒状原始材料会含有残余量的镁(Mg),但这一成分在现在这种使用中似乎并无有利可言,因此希望将镁含量限制在至多1.0%。
在一个优选实施例中,将材料中不可避免的杂质氮和氧限制在至多0.04%的N和(或)至多0.01%的氧。氧含量在原始材料中会在颗粒上造成颗粒的氧化面层而在热等静压过程后这种面层就会在材料中成为杂质(夹杂物),降低其强度。氮量可限制在所述0.04%,以减少会提高硬度的氮化物或碳氮化物的形成。
铌(Nb)可添加在用以制造颗粒状原始材料的合金中。出于经济上的原因,铌含量最好限制在至多0.95%,但如果合金含有较多量的氮和碳而接近上限0.15%,就最好加入多至2.0%的铌以抵消氮和碳在颗粒表面上形成不应有的碳化物和氮化物边界层的倾向。在耐腐蚀材料中多至3.0%的铌含量已经意外地证实对在壁构件作相应温度范围内的长期操作下所产生结构上的转变具有有利的影响。这样,高于0.1%、最好为0.9-1.95%的铌含量有助于材料在长期操作后保持高延性。
钨(W)和钼(Mo)在材料中是不希望有的成分,如果出现,材料最好含有少于1.4%的钨和少于0.9%的钼,钨和钼的总合含量则低于2%。这是由于钨和钼对在材料中会提高硬度的α+γ相基体结构具有固溶硬化的作用。为避免析出基于钨和钼的金属间化合物,钨和钼的总合含量最好低于1.0%。
铪(Hf)在含量为0.1~1.5%时具有改变晶粒间界的作用,这对材料在其550~850℃操作温度范围内的延性具有有利的影响。
众所周知,构件表面上的纯铬面层具有极好的耐腐蚀性,但这种面层很脆而无明显的延性。在本发明中,可以将高于75重量百分比的铬含量颗粒如纯铬颗粒掺入面向燃烧室的表面所用原始材料中。这样,壁构件会具有耐腐蚀性得到进一步改进的表面层。表面层为此降低的延性会导致其产生裂纹。裂纹会使下层材料外露,下层材料如上所述具有很高的延性,这可防止裂纹作更深的发展,下层材料具有耐热腐蚀性,这可限制腐蚀性侵蚀。这样,添加高铬含量的颗粒就会使壁构件具有最佳综合的耐腐蚀性和延性。
在壁构件的使用过程中,在靠近表面的晶粒中铬含量会随着壁构件表面氧化铬的烧损而降低。添加高铬含量的颗粒会抵消这种倾向,因为表面的高温程度使铬从高铬含量颗粒扩散到具有权利要求1所述成分的邻近晶粒中。如果在材料内部还含有高铬含量的颗粒,这些颗粒就不会导致任何明显的材料延性的降低。这是由于在材料更深的内部温度水平是较低的,这会限制使铬扩散到邻近晶粒的倾向。这样,颗粒状原始材料会具有变化着的成分,其高铬含量颗粒的含量随着与壁构件表面距离的加大而降低。
为取得高延性,最好使耐腐蚀性材料在将其加热到权利要求1所述温度并保持所述时间后具有在约20℃下所测低于300Hv的硬度,使其硬度低于285HV更为有利。
在一个实施例中,可使耐腐蚀材料在垂直于壁构件表面的方向上具有大于8mm的厚度。这会加大相对较贵原始材料的消耗,但与此同时壁构件的寿命却与材料的厚度大体上成正比,因为材料无开裂的倾向,此外,侵蚀也相对较均匀。如果耐热腐蚀材料的厚度进一步增大到例如15mm以上,这可取得更进一步的效果,但此材料实际上就成为壁构件的结构部分而不仅仅是腐蚀保护面层了。
现参照简图对本发明的例子作进一步的具体说明如下。
图1为阀盘的中央纵剖面图,阀盘具有按本发明制得的阀轴底部,
图2为按本发明所制活塞的中央纵剖面图。
图1示出阀轴形壁构件1,用作二冲程十字头型发动机内的排气阀。阀轴具有阀盘2和仅示出其下部的阀杆3。位于阀盘上表面的阀座4是用高硬度耐热腐蚀合金制成的,以便减少在座体密封面上形成的压痕,阀盘下表面具有一层耐热腐蚀材料5,用以减少从阀盘下表面6上材料的烧损。如上所述,材料5是按本发明制成而具有高延性和高耐热腐蚀性的综合效果。
图2示出活塞形壁构件7,活塞装在活塞杆8的顶部,对活塞杆仅示出其上部。活塞具有中央空腔9和很多竖孔10,这些孔在空腔9周围的活塞侧缘11内沿活塞周边作均匀分布。通过小孔12,空腔9与垂直孔10连通以便冷却油可从活塞杆内中心管13流进空腔并进一步通过孔12进入竖孔10,再从竖孔通过活塞杆流回去。冷却油的流动通路用箭头示出。油冷却活塞顶部16的下表面,但尽管如此,在活塞顶部的上表面仍有温差,致使在其材料内会产生热应力。
当然,活塞也可具有其他的结构,例如可在活塞底部插入很多喷管,以便将冷却油喷向活塞顶部下表面,也可使中央空腔具有较大直径而使活塞顶部主要通过溅喷来冷却。
活塞顶部在其上表面具有一层耐热腐蚀材料14,用以减少从活塞上表面15烧损的材料,如上所述,材料14按照本发明制取并具有有利的综合的高延性和高耐热腐蚀性。
在发动机运行时,活塞在汽缸衬筒内作往复动运(未示出),而在适当次数的发动机循环下排气阀通过阀轴开闭,阀轴向着固定阀座部分来回移动(未示出),其阀座的环形下密封面在阀关闭状态下与阀轴的上阀座4接触。
可动壁构件1、7连同汽缸衬筒和气缸盖(未示出)构成发动机的燃烧室而呈现在燃烧过程中产生的热腐蚀性环境中。
如果发动机为二冲程十字头型发动机,活塞直径举例来说会在250-1000mm范围内,阀轴盘体直径举例来说会在100-600mm范围内。可见,面向燃烧室的可动壁构件的表面具有较大的面积,这就在材料5、14内造成很大的热应力。
可动壁构件1、7的有利性能也可在较小的发动机例如中、高速四冲程发动机中加以利用,但特别适用于重负荷的大发动机。
现对在可动壁构件1、7上加工出材料5、14的情况说明如下。将由合适材料,如钢、奥氏体钢或如以上英国论文所述的镍铬钛合金构成的基体用一般的方法加工成所需形状而不带耐热腐蚀材料5、14。然后通过已知的热等静压法(HIP法)在基体上加上材料5、14。这种方法采用颗粒状原始材料,例如可使熔化的含镍铬合金的液流射入惰性气体室并雾化,从而使滴状材料激冷并固化而制成具有致密树枝状(枝晶)结构α+γ的颗粒。这种颗粒状材料也可称作粉料。
将颗粒状原始材料装在模型内,将装料量调到与所需材料5、14的厚度相当。同时如上所述在靠近模型底部的区域内掺入高铬含量的颗粒。然后将基体放在颗粒材料的上面,合上模型,接上真空以抽去不必要的气体。然后开始热等静压过程,这时,将颗粒状材料加热到950-1200℃范围内并加上例如900-1200bar的高压。在此条件下,原始粉料变成塑性的并基本上不经过熔化就结合成凝聚性、致密性的材料。然后取出壁构件,必要时将其加工到所需尺寸。
对于阀轴1来说,可以采用不带阀杆3的阀盘2作为基体,然后在热等静压过程完成后再将阀杆装到阀盘上。这种安装例如可通过摩擦焊接来进行。其优点是采用事后装上阀杆时在热等静压过程中对基体就比较容易操作。此外,可以通过热等静压过程用颗粒状材料制造整个阀盘或必要时制造整个阀轴,这时对整体的不同区域采用不同的颗粒成分,不同的颗粒成分适用于各区域所需的材料性能并基于经济上的一些考虑。
现作出一些例子以便说明耐热腐蚀材料的机械性能如下。
例1
基于分析成分为46%的Cr、0.4%的Ti、0.05%的C和余量的Ni的颗粒原始材料,通过热等静压工艺制得了直径为30mm、长为1000mm左右的杆体。在将原始材料放入模型后加温到1150℃,加压到约1000bar、保持约2.5小时,再将杆体返回到室温和常压。从杆体切出厚约8mm的盘形试样。盘体的平均硬度在室温下测定为269HV20。然后对盘体进行温度为700℃、时间为672小时的热处理。热处理后在室温下测得盘体平均硬度为285HV20。这就可以肯定热处理仅使硬度作很有限的提高。
例2
基于分析成分为49.14%的Cr、1.25%的Nb、0.005%的C和余量的Ni的颗粒状原始材料以与例1相同的方法制得了杆体,切成盘形试样的平均硬度测定为292HV20。在对盘体进行温度为700℃时间为672小时的热处理后测得其平均硬度为260HV20。这就可以肯定热处理使硬度降低。
例3
用与例1相同的方法制得了三个杆体,第一杆体的分析成分为46%的Cr、0.4%的Ti、0.05%的C和余量的Ni,第二杆体的分析成分由49.14%的Cr、1.25%的Nb、0.005%的C和余量的Ni,第三杆体的分析成分为54.78%的Cr、1.26%的Nb、0.005%的C、0.1%的Fe和余量的Ni。从三个杆体上各切取长120mm的杆件,用一般的方法加工成抗拉试件。具有46%的Cr的试件具有直径3mm,其他两种合金试件的试验直径为5mm。对试件的平均硬度进行了测定,对第一批试件进行了700℃下48小时的热处理,对第二批试件进行了700℃下336小时的热处理,对第三批试件进行了700℃下672小时的热处理。用最后提及的两种合金制成的第四批试件被加工成试验直径为6mm的试件。对第四批试件进行了700℃下4392小时的热处理。在热处理后测定了试件的室温平均硬度,并进行了室温抗拉试验和冲击试验以测定材料的机械性能。按维氏法(HV20)进行了硬度测试,按摆锤式U形缺口冲击试验法测定了冲击强度,其中试件的最小承截面积定为0.5cm2。试验结果在以下表1、2中予以列出。应该注意到,用星号标示的测试结果表示试件由于加工误差过早地破裂了。
试验结果表明,用热等静压法制得的耐热腐蚀材料并不因其在大型二冲程发动机燃烧室内在可动壁构件的代表性操作温度下受到长期热负荷而降低其延性。
还可看出,材料的其他机械性能良好。在热处理前的抗拉强度实际上大于高铬含量镍合金的一般值。可以看出,热处理使抗拉强度有限地降低到仍很可取的高强度。经热处理的试件一般呈现出高于20%的断裂伸度。在热处理下还可看出断裂伸度和断面收缩率提高了,这表明材料取得更高的延性。还可看出,含铌材料只要经过低于4400小时的热处理就可取得约30%的断裂伸度,在受长期加热影响后断面收缩率约为50%。在672-4392小时的热处理下可以看出断裂伸度提高直至50%。这些结果表明本发明耐热腐蚀材料即使在受长期加热的影响下仍是具有极佳强度性能的有效结构材料。
材料看来还具有极高的冲击强度。与热等静压法所制材料的冲击强度相比,通过模拟着材料的操作条件所作热处理可明显地提高冲击强度。这样,除了屈服应力和抗拉应力有非实质性的降低外,耐热腐蚀材料在550~850℃范围内的操作温度下可取得较好的强度性能。
材料极好的机械性能使其成为很合适的结构材料,而且与此同时还具有出色的耐热腐蚀性。
作为本发明耐热腐蚀材料的另外的例子可列出以下成分的材料:60%的Cr、至多0.02%的C、至多0.2%的Si、至多0.5%的Mn、至多0.5%的Mo、至多0.2%的Cu、至多0.005%的B、至多0.002%的Al、至多0.02%的Ti、至多0.02%的Zr、1.25%的Nb、至多0.5%的Co、至多0.5%的Fe、至多0.05%的N、至多0.02%的O和余量的Ni;还可列出以下成分的材料;45%的Cr、至多0.02%的C、1.5%的Si、至多0.5%的Mn、至多0.5%的Mo、至多0.2%的Cu、至多0.005%的B、至多0.002%的Al、至多0.02%的Ti、至多0.02%的Zr、1.25%的Nb、至多0.5%的Co、至多0.5%的Fe、至多0.05%的N、至多0.02%的O和余量的Ni。
在以上说明中,所有合金成分的百分比都表示为重量百分比。
表1
    热处理温度/时间  抗拉强度RmN/mm2  0.2试验应力RpN/mm2   延伸率Atot  面积收缩率Z%   维氏硬度HV20kp/mm2 U形缺口冲击强度J/cm2
                   46%的Cr,折0.4%的Ti,0.05%的C和余量的Ni
    20℃     988     692    17.8     32.1     272     34
 700℃/48小时     944     597     25     43.4     270     38
 700℃/336小时     978     664     18     40.8     280     34
     同上     976     646     18     46.2     同上
 700℃/672小时     959     644     17     43.3     280
     同上     961     635     15     42.4     同上
                       49.14%的Cr,1.25%的Nb,0.005%的C和余量的Ni
     20℃     1015     636     21     42.2     294     42
     同上     1027     642     22     39.2     同上
 700℃/48小时     916     605     23     50.0     268     50
     同上     923     612     22     51.0     同上
 700℃/336小时     898     598     22     52.8     270     60
     同上     898     586     22     55.5     同上
 700℃/672小时     910     573     22     52.8     264
     同上     848*     586     13*     44.1*     同上
 700℃/4392小时     879     611     30     48.6     263     58
     同上     883     565    31.7     46.2     同上     50
     同上     883     569    26.7     51     同上     50
     同上     891     565    31.7     51     同上     50
表2
      热处理温度/时间   抗拉强度Rm N/mm2  0.2试验应力RpN/mm2   延伸率Atot  面积收缩率Z%   维氏硬度HV20kp/mm2  U形缺口冲击强度J/cm2
                   54.78%的Cr,1.26%的Nb,0.005%的C,0.1%的Fe和余量的Ni
    20℃     1113     740    13     15.4     331     18
    同上     1100     734    11     11.6     同上
 700℃/48小时     954     652    23     34.7     276     46
    同上     960     667    22     44.1     同上
 700℃/336小时     910     617    22     44.1     271     36
    同上     910     611    21     44.1     同上
 700℃/672小时     923     605    18     44.1     276
    同上     929     605    20     45.6     同上
 700℃/4392小时   >777*     560    *       *     265     30
    同上     879     556    30     41.2     同上     24
    同上     883     556   28.3     43.7     同上     24
    同上     874     560   28.3     48.6     同上     30

Claims (13)

1.一种可动壁构件,具有内燃机内、特别是二冲程十字头型发动机内排气阀轴(1)或活塞(7)的形式,对朝向燃烧室的壁构件一侧来用耐热腐蚀材料(5、14),这种材料是用含镍铬合金颗粒状原始材料制成的,这种颗粒状材料是通过热等静压工艺、基本上不经过熔化原始材料就结合成凝聚性材料的,其特征是:按照重量百分比,除通常的杂质和不可避免的除氧成分的残余量外,该腐蚀材料(5、14)包含:38~75%的Cr和任选的0~0.15%的C、0~1.5%的Si、0~1.0%的Mn、0~0.2%的B、0~5.0%的Fe、0~1.0%的Mg、0~2.5%的Al、0~2.0%的Ti、0~8.0%的Co、0~3.0%的Nb以及任选的Ta、Zr、Hf、W和Mo成分、和余量的Ni,Al和Ti的总合含量至多4.0%,Fe和Co的总合含量至多8.0%,Ni和Co的总合含量至少25%;在将材料加热到550~850℃温度范围内保持400小时以上后在约20℃下测得该耐腐蚀材料具有低于310HV的硬度。
2.按权利要求1所述的可动壁构件,其特征是:所述材料(5、14)的C含量低于0.08%,最好低于0.02%。
3.按权利要求1所述的可动壁构件,其特征是:所述材料(5、14)的Al含量低于1.0%,与此同时Al和Ti的总合含量至多2.0%,Al含量以低于0.4%为宜,最好低于0.15%,与此同时Ti含量低于0.6%,最好低于0.09%。
4.按权利要求1所述的可动壁构件,其特征是:所述材料(5、14)的Cr含量高于44.5%,最好高于49%。
5.按权利要求1所述的可动壁构件,其特征是:所述材料(5、14)的N含量至多0.04%,O含量以至多0.01%为宜。
6.按权利要求1所述的可动壁构件,其特征是:所述材料还含有直至0.5%的Y和/或直至4.0%的Ta。
7.按权利要求1-6中任一项所述的可动壁构件,其特征是:所述材料(5、14)的Nb含量至多2%,优选在0.1%到1.95%以内,以至多0.9%为宜。
8.按权利要求1-6中任一项所述的可动壁构件,其特征是:所述材料(5、14)还含有直至0.15%的Zr;所述材料的B含量以低于0.09%为宜。
9.按权利要求1-6中任一项所述的可动壁构件,其特征是:所述材料(5、14)还含有0.1~1.5%的Hf。
10.按权利要求1-6中任一项所述的可动壁构件,其特征是:所述材料(5、14)还含有少于1.4%的W和少于0.9%的Mo;W和Mo的总合含量低于2%,最好低于1.0%。
11.按权利要求1-6中任一项所述的可动壁构件,其特征是:至少在面向燃烧室的表面(6、15)上的所述原始材料内掺入铬含量高于75重量百分比的颗粒。
12.按权利要求1-6中任一项所述的可动壁构件,其特征是:所述耐腐蚀材料(5、14)在将其加热到所述温度保持所述时间后在约20℃下具有低于300HV、最好低于285HV的硬度。
13.按权利要求1-6中任一项所述的可动壁构件,其特征是:所述耐腐蚀材料(5、14)在垂直于壁构件表面(6、15)方向上的厚度大于8mm,以大于15mm为宜。
CN97194647A 1996-05-15 1997-05-13 内燃机内排气阀轴形或活塞形可动壁构件 Expired - Lifetime CN1081725C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DK0580/96 1996-05-15
DK199600580A DK173136B1 (da) 1996-05-15 1996-05-15 Bevægeligt vægelement i form af en udstødsventilspindel eller et stempel i en forbrændingsmotor.

Publications (2)

Publication Number Publication Date
CN1218538A CN1218538A (zh) 1999-06-02
CN1081725C true CN1081725C (zh) 2002-03-27

Family

ID=8095180

Family Applications (1)

Application Number Title Priority Date Filing Date
CN97194647A Expired - Lifetime CN1081725C (zh) 1996-05-15 1997-05-13 内燃机内排气阀轴形或活塞形可动壁构件

Country Status (11)

Country Link
US (1) US6173702B1 (zh)
EP (1) EP0898642B1 (zh)
JP (1) JP3350058B2 (zh)
KR (1) KR100294899B1 (zh)
CN (1) CN1081725C (zh)
AU (1) AU2764597A (zh)
DE (1) DE69701569T2 (zh)
DK (1) DK173136B1 (zh)
NO (1) NO322671B1 (zh)
RU (1) RU2175722C2 (zh)
WO (1) WO1997043525A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103527281A (zh) * 2012-07-06 2014-01-22 曼恩柴油机涡轮股份公司曼恩柴油机涡轮德国分公司 用于内燃机中的排气阀的排气阀芯杆

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2680428A (en) * 1950-01-20 1954-06-08 Tatar Stanley Crankshaft mounting and crankshaft
US2757646A (en) * 1952-07-25 1956-08-07 Tatar Stanley Crankshaft mounting
DE1271459B (de) * 1962-10-06 1968-06-27 Sulzer Ag Einrichtung zum Einfuehren von Schmieroel zum Kurbelwellenlager einer Kolbenbrennkraftmaschine
KR100387488B1 (ko) * 2001-04-25 2003-06-18 현대자동차주식회사 레이저 클래딩 공법을 이용한 밸브 시트 제조방법
US6655369B2 (en) * 2001-08-01 2003-12-02 Diesel Engine Transformations Llc Catalytic combustion surfaces and method for creating catalytic combustion surfaces
DE10217719A1 (de) * 2002-04-20 2003-11-06 Mahle Ventiltrieb Gmbh Beweglicher, heißen Gasen ausgesetzter Verschlusskörper eines Ventiles
EP2000550A1 (de) * 2007-06-08 2008-12-10 Wärtsilä Schweiz AG Werkstoff auf Basis einer CrNi-Legierung, Halbzeug, Komponente für einen Verbrennungsmotor, sowie ein Verfahren zur Herstellung des Werkstoffs und des Halbzeugs
DE102008018875A1 (de) * 2008-04-14 2009-10-15 Märkisches Werk GmbH Auslassventil an einem Hubkolbenmotor
JP4510126B2 (ja) * 2008-05-13 2010-07-21 エムエーエヌ・ディーゼル・フィリアル・アフ・エムエーエヌ・ディーゼル・エスイー・ティスクランド 大型2サイクルディーゼルエンジンのための排気バルブ、このようなエンジンにおけるNOx形成削減のためのプロセス、及びこのようなエンジン
DE102008051014A1 (de) * 2008-10-13 2010-04-22 Schmidt + Clemens Gmbh + Co. Kg Nickel-Chrom-Legierung
JP5036879B2 (ja) * 2009-01-23 2012-09-26 マン・ディーゼル・アンド・ターボ,フィリアル・アフ・マン・ディーゼル・アンド・ターボ・エスイー,ティスクランド 内燃機関のための、排気弁スピンドルまたはピストンの形態にある可動壁部材、および当該部材を製造する方法
DK177071B1 (en) * 2009-10-30 2011-05-30 Man Diesel & Turbo Deutschland Exhaust valve spindle for an internal combustion engine and a method of manufacture thereof
CN102108555B (zh) * 2009-12-23 2012-08-29 中国科学院金属研究所 一种高温完全抗氧化镍基单晶合金及其制备方法
DK2452766T3 (en) 2010-11-10 2018-01-15 Sandvik Intellectual Property Process for manufacturing a component with internal cavities
RU2503842C2 (ru) * 2012-04-20 2014-01-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Брянский государственный технический университет" Поршень двигателя внутреннего сгорания
CN102719723A (zh) * 2012-06-26 2012-10-10 江苏克劳斯重工股份有限公司 Cr38A合金材料的配方
EP2781284A1 (en) * 2013-03-18 2014-09-24 Sandvik Intellectual Property AB A method for manufacturing a valve spindle
JP6132974B2 (ja) * 2014-03-28 2017-05-24 旭化成株式会社 内燃機関の排気弁棒及びその製法
DK177960B1 (en) * 2014-04-08 2015-02-02 Man Diesel & Turbo Deutschland An exhaust valve for an internal combustion engine
BR102014016213A2 (pt) 2014-06-30 2016-02-10 Mahle Int Gmbh válvula para motores de combustão interna e processo para obtenção de uma válvula
CN104178648B (zh) * 2014-09-12 2016-08-03 重庆材料研究院有限公司 无磁耐蚀镍铬基轴承合金的制备方法
KR20160053112A (ko) * 2014-10-30 2016-05-13 현대중공업 주식회사 엔진의 흡기 및 배기밸브 스핀들 제조방법
CN109465451A (zh) * 2018-12-11 2019-03-15 四川航空工业川西机器有限责任公司 一种基于射流驱动的1800℃的快速冷却系统
CN111519070A (zh) * 2020-06-11 2020-08-11 南京中远海运船舶设备配件有限公司 高铬镍基超合金、柴油机气阀与柴油机气阀制造工艺

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0521821A2 (de) * 1991-07-04 1993-01-07 New Sulzer Diesel Ag Auslassventil einer Diesel-Brennkraftmaschine und Verfahren zum Herstellen des Ventils
EP0543353A1 (en) * 1991-11-18 1993-05-26 Sumitomo Light Metal Industries, Ltd. Method for producing an inlet or exhaust valve for internal combustion engine

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2341039A1 (fr) 1976-02-11 1977-09-09 Dervaux Ets Procede de fabrication d'organes mecaniques tels que des soupapes pour moteurs thermiques
DE3207276A1 (de) 1981-03-16 1982-10-07 BBC Aktiengesellschaft Brown, Boveri & Cie., 5401 Baden, Aargau Turbinenschaufelwerkstoff hoher festigkeit gegen korrosionsermuedung, verfahren zu dessen herstellung und seine verwendung
EP0246092A3 (en) 1986-05-15 1989-05-03 Exxon Research And Engineering Company Alloys resistant to stress corrosion cracking
GB2193786B (en) * 1986-07-31 1990-10-31 Honda Motor Co Ltd Internal combustion engine
US4774149A (en) 1987-03-17 1988-09-27 General Electric Company Oxidation-and hot corrosion-resistant nickel-base alloy coatings and claddings for industrial and marine gas turbine hot section components and resulting composite articles
JP2526947B2 (ja) * 1987-12-14 1996-08-21 いすゞ自動車株式会社 断熱エンジンの構造
US5071054A (en) 1990-12-18 1991-12-10 General Electric Company Fabrication of cast articles from high melting temperature superalloy compositions
DK172987B1 (da) 1994-12-13 1999-11-01 Man B & W Diesel As Cylinderelement, nikkelbaseret pålægningslegering og anvendelse af legeringen
DE19508069C1 (de) 1995-02-27 1996-05-23 Nu Tech Gmbh Auslaßventil für eine Diesel-Hubkolben-Brennkraftmaschine
DE19542944C2 (de) * 1995-11-17 1998-01-22 Daimler Benz Ag Brennkraftmaschine und Verfahren zum Aufbringen einer Wärmedämmschicht

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0521821A2 (de) * 1991-07-04 1993-01-07 New Sulzer Diesel Ag Auslassventil einer Diesel-Brennkraftmaschine und Verfahren zum Herstellen des Ventils
EP0543353A1 (en) * 1991-11-18 1993-05-26 Sumitomo Light Metal Industries, Ltd. Method for producing an inlet or exhaust valve for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103527281A (zh) * 2012-07-06 2014-01-22 曼恩柴油机涡轮股份公司曼恩柴油机涡轮德国分公司 用于内燃机中的排气阀的排气阀芯杆

Also Published As

Publication number Publication date
US6173702B1 (en) 2001-01-16
JP3350058B2 (ja) 2002-11-25
DK58096A (da) 1997-11-16
NO322671B1 (no) 2006-11-20
DK173136B1 (da) 2000-02-07
KR100294899B1 (ko) 2001-09-29
EP0898642A1 (en) 1999-03-03
JP2000511983A (ja) 2000-09-12
NO985334D0 (no) 1998-11-16
CN1218538A (zh) 1999-06-02
NO985334L (no) 1998-11-16
WO1997043525A1 (en) 1997-11-20
KR20000010970A (ko) 2000-02-25
RU2175722C2 (ru) 2001-11-10
DE69701569T2 (de) 2000-12-14
DE69701569D1 (de) 2000-05-04
EP0898642B1 (en) 2000-03-29
AU2764597A (en) 1997-12-05

Similar Documents

Publication Publication Date Title
CN1081725C (zh) 内燃机内排气阀轴形或活塞形可动壁构件
EP1601801B1 (en) Corrosion and wear resistant alloy
US7754143B2 (en) Cobalt-rich wear resistant alloy and method of making and use thereof
JP5551413B2 (ja) 粉末金属弁座インサート
JP4584158B2 (ja) 内燃機関用鉄基焼結合金製バルブシート材
CN101970811B (zh) 用于内燃机的排气门杆或活塞形式的可运动的壁构件及制造这种构件的方法
WO2008005243A2 (en) Nickel-rich wear resistant alloy and method of making and use thereof
JPWO2009122985A1 (ja) バルブシート用鉄基焼結合金及び内燃機関用バルブシート
FR2765269A1 (fr) Siege de soupape pour moteur a combustion interne
CN1044131A (zh) 铬钼钒稀土系耐热耐磨铸铁
US4761344A (en) Vehicle component part
JP3434527B2 (ja) バルブシート用焼結合金
US11566299B2 (en) Martensitic wear resistant alloy strengthened through aluminum nitrides
JPH0313546A (ja) バルブシート用鉄系焼結合金
US11530460B1 (en) Low-carbon iron-based alloy useful for valve seat inserts
Maki et al. Development of a high-performance TiA1 exhaust valve
JP2594505B2 (ja) ロッカアーム
KR890003408B1 (ko) 밸브 시이트용 내마모성 철계소결합금의 제조방법
KR970001323B1 (ko) 내마모성이 우수한 밸브시트용 소결합금
JP3883656B2 (ja) 耐摩環およびそれを装着したピストン
JPH116040A (ja) 耐摩耗性鉄基焼結合金
JPS61286670A (ja) 焼結合金製バルブシ−ト
JPH076027B2 (ja) 耐摩耗性鉄基焼結合金の製造方法
JPS6152347A (ja) 耐摩耗高密度鉄基焼結合金製摺動部品の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1033055

Country of ref document: HK

ASS Succession or assignment of patent right

Owner name: MAN DIESEL AS

Free format text: FORMER OWNER: MAN DIESEL AS

Effective date: 20101229

Owner name: MAN DIESEL AS

Free format text: FORMER OWNER: MAN B + W DIESEL A/S

Effective date: 20101229

C41 Transfer of patent application or patent right or utility model
C56 Change in the name or address of the patentee

Owner name: GERMANY SUBSIDIARY OF MAN DIESEL ENGINE AND TURBIN

Free format text: FORMER NAME: MAN DIESEL AS

CP01 Change in the name or title of a patent holder

Address after: Copenhagen

Patentee after: MAN DIESEL & TURBO FILIAL AF MAN DIESEL & TURBO SE TYSKLAND

Address before: Copenhagen

Patentee before: MAN DIESEL & TURBO FILIAL AF MAN DIESEL & TURBO SE TYSKLAND

TR01 Transfer of patent right

Effective date of registration: 20101229

Address after: Copenhagen

Patentee after: MAN DIESEL & TURBO FILIAL AF MAN DIESEL & TURBO SE TYSKLAND

Address before: Copenhagen

Patentee before: MAN DIESEL filial af MAN Diesel SE Tyskland

Effective date of registration: 20101229

Address after: Copenhagen

Patentee after: MAN DIESEL filial af MAN Diesel SE Tyskland

Address before: Copenhagen

Patentee before: Man B & W Diesel A/s

CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20020327