CN108165566A - 沙棘gpd1基因的构建方法 - Google Patents

沙棘gpd1基因的构建方法 Download PDF

Info

Publication number
CN108165566A
CN108165566A CN201711423900.7A CN201711423900A CN108165566A CN 108165566 A CN108165566 A CN 108165566A CN 201711423900 A CN201711423900 A CN 201711423900A CN 108165566 A CN108165566 A CN 108165566A
Authority
CN
China
Prior art keywords
sea
gpd1
buckthorn
tobacco
agrobacterium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711423900.7A
Other languages
English (en)
Other versions
CN108165566B (zh
Inventor
丁健
阮成江
李景滨
杜维
关莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Minzu University
Original Assignee
Dalian Nationalities University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Nationalities University filed Critical Dalian Nationalities University
Priority to CN201711423900.7A priority Critical patent/CN108165566B/zh
Publication of CN108165566A publication Critical patent/CN108165566A/zh
Application granted granted Critical
Publication of CN108165566B publication Critical patent/CN108165566B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8247Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified lipid metabolism, e.g. seed oil composition
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/05Oxidoreductases acting on the CH-OH group of donors (1.1) with a quinone or similar compound as acceptor (1.1.5)
    • C12Y101/05003Glycerol-3-phosphate dehydrogenase (1.1.5.3)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Nutrition Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明涉及沙棘GPD1基因的构建方法,属于生物工程技术领域。该基因的构建和鉴定方法如下:(1)提取沙棘果肉RNA,并获得GPD1基因cDNA;(2)构建沙棘GPD1基因过表达载体;(3)利用沙棘GPD1基因过表达载体转化农杆菌;(4)利用pBI121‑T‑GPD1重组表达载体转化烟草;(5)转化烟草的分子检测;(6)测定烟草叶片含油率。本发明首次从沙棘果肉中分离获得GPD1基因,并通过构建过表达载体及农杆菌介导法成功转化烟草,使烟草叶片油脂含量提高28%。为沙棘果肉以及植物非种子组织油脂合成积累机制研究提供技术依据。

Description

沙棘GPD1基因的构建方法
技术领域
本发明涉及生物工程技术领域,具体涉及沙棘GPD1基因的构建方法。
背景技术
木本油料的开发利用是缓解当前食用油供应不足且耕地逐渐减少的有效途径。沙棘是重要的生态经济树种,果实油脂中富含omega-3、omega-6和omega-7脂肪酸,在预防和治疗癌症、冠心病和胃肠疾病等方面具有显著疗效,但较低的含油率(种子为7~11%,鲜果肉为1~5%)制约了沙棘油的高效开发和利用。
沙棘油脂的主要成分是甘油三脂(Triacylglycerols,TAG),TAG合成的关键原料是3-磷酸甘油(glycerol-3-phosphate,G3P),而G3P是由糖酵解的中间产物磷酸二羟丙酮被3-磷酸甘油脱氢酶(glycerol-3-phosphatedehydrogenase,GPD1)还原而来,例如Vigeolas等从酵母中分离GPD1基因,通过调控种子特殊启动子活性,使GPD1活性增加2倍,油菜种子中的G3P水平增加3~4倍,种子含油量提高40%(PlantBiotechnologyJournal.2007,5:431-441)。目前,GPD1的功能研究多基于酵母、菌类和草本植物等试验材料,而在木本植物,尤其沙棘中的研究罕见,如沙棘GPD1基因序列、载体构建、遗传转化和功能分析均未见报道,而且种子油脂合成和积累机制也仍存在许多未知,如油脂合成关键基因在相对贡献、代谢流调节及代谢物在不同组织间转运等。
发明内容
为弥补现有技术的不足,本发明提供沙棘的GPD1基因的构建方法如下:
(1)提取沙棘果肉RNA,并获得GPD1基因cDNA;
(2)构建沙棘GPD1基因过表达载体;
(3)利用沙棘GPD1基因过表达载体转化农杆菌;
(4)利用pBI121-T-GPD1重组表达载体转化烟草;
(5)转化烟草的分子检测;
(6)测定烟草叶片含油率。
进一步的,步骤(3):农杆菌感受态细胞制备过程中,采用含有100mg/L链霉素和100mg/L利福平的发根农杆菌培养基,在冻融法转化农杆菌过程中,采用含有100mg/L链霉素(Str)、100mg/L利福平(Rif)和50mg/L卡那霉素(Kan)的发根农杆菌培养基(YEB)。
进一步的,步骤(4)转化烟草过程中使用的MS预培养固体培养基组成为:4.74g/LMS培养基粉末、30g/L蔗糖、8g/L琼脂粉、0.5mg/L6-苄氨基腺嘌呤(6-BA)、0.1mg/Lα.萘乙酸(NAA),pH6.0。
进一步的,步骤(4)转化烟草过程中使用的分化培养基组成为:4.74g/LMS培养基粉末、30g/L蔗糖、8g/L琼脂粉、0.5mg/L 6-苄氨基腺嘌呤(6-BA)、0.1mg/Lα/萘乙酸(NAA)、50mg/L卡那霉素(Kan)、500mg/L羧苄青霉素(Car),pH6.0。
沙棘GPD1基因的序列如下:ATGGCTCCAGAAGCCTTCGAGTCTCACCAGGAGGAAGGTACTTTGTCCCTCTACAATGAAGTTGTTGTTGAAAAATCCAAAGTCACTGTTGTGGGTAGTGGCAATTGGGGTAGCGTGGCTGCCAAGCTTATTGCTTCCAATACCCTCAGGCTCAGCTCTTTTCATGATGAGGTGAGAATGTGGGTATTTGAGGAAACATTGCCAAGTGGAGAGAAACTCACAGATGTAATCAACCGGACCAATGAAAATGTCAAATATCTTCCAGGTATAAAGCTTGGTAAAAATGTTGTTGCTGATCCAAACCTTGAAAATGCAGCAAAGGATGCAAACATGTTGGTATTCGTAACCCCGCATCAGTTTATGGAGGATATTTGTAAAAGGCTGTTAGGGAAGATAAAAAGAGGCGTGGATGCTATATCCCTTGTTAAAGGAATGGAGGTCAAGATGGAAGGTCCTTGCATGATCTCTACTCTAATCTCCCAGCAACTGGGTGTTAATTGCTGTGTTCTAATGGGGGCAAATATAGCAAATGAGATTGCTGTGGAGAAATTTAGTGAAGCAACTGTCGGATACAGAGCAAATAGAGAGGTTGCAGAGAAATGGGTTCACCTGTTTAGTACTCCCTATTTCATTGTCACACCTGTCCAAGATGTGGAAGGAGTAGAACTATGTGGAACCCTGAAAAATGTTGTAGCTATAGCAGCAGGTTTTGTGGATGGGTTGGATATGGGAAATAACACAAAGGCTGCAATTATGAGAATTGGTCTCAGAGAGATGAAGGCATTTTCCAAATTGTTGTTTCCATCGGTCAAAGACAACACGTTCTTTGAGAGCTGTGGTGTTGCTGATCTCATTACAACATGCTTGGGAGGACGAAACAGGAAAGTTGCTGAAGCTTTTGCAAAGAATGGGGGGAATAGATCATTTGATGAGCTTGAAGCAGAAATGCTGCAAGGCCAGAAATTACAGGGTGTCTCCACAGCAAAAGAAGTTTATGAGGTTTTAACTCATCGTGGATGGCTAGAAATGTTTCCACTTTTCGCAACAGTGCAGGAGATCTGCATTGGCCGTCTCCCACCACCCGCAATAGTTCAACATGCTGAGCACAAGCTTAAATTTTCTGTGCTAGAAGGCTCTTCA。
本发明的有益效果如下:
(1)沙棘是自然界中罕有的在非种子组织中高积累油脂的植物,其果肉油脂约占干重的30%。本发明首次发现高低油品种的果肉含油率比值3.9与果肉GPD1基因表达量峰值的比值3.4相近。
(2)本发明首次从沙棘果肉中分离获得GPD1基因,并通过构建过表达载体及农杆菌介导法成功转化烟草,使烟草叶片油脂含量提高28%。这为沙棘果肉以及植物非种子组织油脂合成积累机制研究提供技术依据。
(2)农杆菌感受态细胞制备过程中,采用了含有100mg/L Str和100mg/L Rif的YEB液体培养基,在冻融法转化农杆菌过程中,采用了含有100mg/L Str、100mg/L Rif和50mg/LKan的YEB固体培养基,这样有效的抑制其他杂菌,减少污染,提高转化效率。
(3)烟草转化过程中,应用叶片预培养、共培养、筛选分化培养和继代生根培养过程中所使用的经过改进的MS培养基,提高了转化烟草的分化和生根效率。
附图说明
图1为重组表达载体的构建示意图;
图2转化烟草叶片的PCR检测图。
具体实施方式
下面结合实施例对本发明做进一步的说明,但不限制本发明的保护范围。
实施例1提取沙棘果肉RNA,并获得GPD1基因cDNA
收集高果肉油品系‘TF2-36’(由黑龙江省农业科学院浆果研究所培育)的成熟期果实,采摘后液氮速冻,将完好的果实剔除种子后用液氮研磨。参照上海生工公司柱式植物总RNA抽提纯化试剂盒推荐方法进行沙棘果肉总RNA提取和纯化。参照大连宝生物(TaKaRa)公司Prime Script TMII 1st Strand Cdna Synthesis Kit试剂盒方法,以Oligo(dT)为引物反转录合成cDNA。以上述cDNA为模板,分别以ATGGCTCCAGAAGCCTTCGA和TGAAGAGCCTTCTAGCACAGAA为上下游引物进行PCR扩增。PCR反应体系如下:
反应程序为:94℃5min预变性;94℃变性30s,55℃退火30s,72℃延伸1min,35个循环;72℃延伸10min;4℃保存。
用1%琼脂糖凝胶电泳检测PCR产物,利用紫外凝胶成像仪上切取目的片段(大小约为1140bp)。参照TaKaRaMiniBESTAgaroseGelDNAExtraction试剂盒方法回收纯化DNA片段,并连接目的片段与克隆载体pMD18-T,测序验证获得沙棘GPD1全长cDNA。
实施例2构建沙棘GPD1基因过表达载体
根据沙棘GPD1基因序列,设计5’端分别带有BamHI和SacI限制性酶切位点的上下游引物cgGGATCCATGGCTCCAGAAGCCTTCGA和cGAGCTCTGAAGAGCCTTCTAGCACAGAA。以pMD18-T-GPD1质粒为模板,扩增含有酶切位点的目的片段。将pBI121空载体质粒以及重组质粒pMD18-T-GPD1分别用BamHI和SacI进行酶切。利用T4连接酶连接pBI121载体框架和pMD18-T-GPD1,反应体系如下:
反应程序为:16℃条件下反应6-8h。将连接产物转化大肠杆菌DH5α,在Kan抗性培养基上筛选转化子,挑取阳性克隆提取质粒进行酶切鉴定,载体图见图1所示。
实施例3利用沙棘GPD1基因过表达载体转化农杆菌
在YEB固体培养基平板上划线培养农杆菌GV3101菌株,28℃条件下倒置培养18-20h;将单菌落置于YEB液体培养基(含有100mg/L Str和100mg/L Rif),28℃条件下振荡培养18-20h;100倍体积的不含抗生素的菌液加入菌液中,28℃条件下振荡培养OD600至0.3-0.5;冰上冷却后,4℃条件下4000r/min离心5min,弃上清;加入20mmol/L的CaCl2溶液使沉淀悬浮,4℃条件下4000r/min离心5min,弃上清;加入20mmol/L的CaCl2溶液再次使菌体沉淀悬浮备用。
采用冻融法,将含有重组过表达载体pBI121-T-GPD1的质粒加入到农杆菌感受态细胞GV3101中,先置于冰上10min,然后液氮速冻5min,最后37℃水浴5min。反应液与YEB液体培养基在28℃条件下培养2-3h后5000r/min离心2min,弃一部分上清,重新悬浮菌体,将其涂布于YEB固体培养基(含有100mg/L Str、100mg/L Rif和50mg/L Kan)平板上倒置培养36-48h。以阳性单菌落的菌液为模板,用GPD1基因特异性引物进行PCR检测,产物片段与目的基因大小一致,表明成功获得了含重组表达载体pBI121-GPD1的农杆菌菌株。
实施例4pBI121-T-GPD1重组表达载体转化烟草
将消毒后的烟草种子播种于MS固体培养基上,25±3℃条件下16h光照/8h黑暗培养5周。剪取烟草叶片,近轴面朝上置于MS预培养固体培养基上(4.74g/LMS培养基粉末+30g/L蔗糖+8g/L琼脂粉+0.5mg/L 6-BA+0.1mg/L NAA,pH6.0),25±3℃条件下黑暗培养2天。将烟草叶片置于含有pBI121-T-GPD1重组表达载体的农杆菌菌液中浸泡5min,然后吸干叶片表面菌液,再将其近轴面朝上重新放回培养基,25±3℃条件下黑暗共培养2天。将共培养2天的烟草叶片用含500mg/LCar的无菌水清洗两遍,无菌滤纸吸干表面液体后置于含有抗生素的MS固体筛选分化培养基上(4.74g/L MS培养基粉末+30g/L蔗糖+8g/L琼脂粉+0.5mg/L 6-BA+0.1mg/L NAA+50mg/L Kan+500mg/L Car,pH6.0),25±3℃条件下16h光照/8h黑暗进行筛选和分化培养,直到外植体切口处形成愈伤并分化出小苗。选取带有生长点且发育状态良好的抗性苗,将其切下后转移到1/2MS培养基中(2.47g/L1/2MS培养基粉末+20g/L蔗糖+8g/L琼脂条+50mg/L Kan+250mg/L Car,pH5.8)进行继代增殖和生根培养。
实施例5转化烟草的分子检测
参照天根生化科技有限公司的基因组DNA提取试剂盒方法提取未转化的野生型烟草(WT)和Kan筛选后的转化烟草的叶片基因组DNA,以上述基因组DNA为模板,利用沙棘GPD1特异性引物进行PCR扩增,反应体系及扩增条件如实施例1所述,用1%琼脂糖凝胶电泳验证目的条带大小,有5个转基因株系扩增出与目的基因大小相同的条带,而WT植株无扩增条带,如图2所示,表明GPD1基因已成功地转入烟草。
实施例6测定烟草叶片含油率
采用氯仿甲醇法,冷冻干燥的叶片粉末转移至玻璃试管中,加入甲醇和氯仿(体积浓度百分比2:1),漩涡混匀后超声30min,上清液转移到新试管中,残渣用氯仿甲醇溶液再次提取,合并的上清液,加入上清液1/4体积的氯化钾溶液(质量浓度0.88%),收集下层液至玻璃样品瓶中,挥发至恒重。含油率(%)=(m1-m2)/m×100;m1为油脂和玻璃样品瓶的质量(g);m2为玻璃样品瓶的质量(g);m为干燥样品粉末的质量(g),3次重复。
未转化的野生烟草叶片含油率约为5.02%,转化GPD1基因的烟草叶片含油率为6.43%,可见,转化沙棘GPD1基因可使烟草叶片油脂含量提高28%。
<110>大连民族大学
<120>沙棘GPD1基因的构建方法
<160>1
<210>1
<211>1140
<212>DNA
<400>1
ATGGCTCCAGAAGCCTTCGAGTCTCACCAGGAGGAAGGTACTTTGTCCCTCTACAATGAAGTTGTTGTTGAAAAATCCAAAGTCACTGTTGTGGGTAGTGGCAATTGGGGTAGCGTGGCTGCCAAGCTTATTGCTTCCAATACCCTCAGGCTCAGCTCTTTTCATGATGAGGTGAGAATGTGGGTATTTGAGGAAACATTGCCAAGTGGAGAGAAACTCACAGATGTAATCAACCGGACCAATGAAAATGTCAAATATCTTCCAGGTATAAAGCTTGGTAAAAATGTTGTTGCTGATCCAAACCTTGAAAATGCAGCAAAGGATGCAAACATGTTGGTATTCGTAACCCCGCATCAGTTTATGGAGGATATTTGTAAAAGGCTGTTAGGGAAGATAAAAAGAGGCGTGGATGCTATATCCCTTGTTAAAGGAATGGAGGTCAAGATGGAAGGTCCTTGCATGATCTCTACTCTAATCTCCCAGCAACTGGGTGTTAATTGCTGTGTTCTAATGGGGGCAAATATAGCAAATGAGATTGCTGTGGAGAAATTTAGTGAAGCAACTGTCGGATACAGAGCAAATAGAGAGGTTGCAGAGAAATGGGTTCACCTGTTTAGTACTCCCTATTTCATTGTCACACCTGTCCAAGATGTGGAAGGAGTAGAACTATGTGGAACCCTGAAAAATGTTGTAGCTATAGCAGCAGGTTTTGTGGATGGGTTGGATATGGGAAATAACACAAAGGCTGCAATTATGAGAATTGGTCTCAGAGAGATGAAGGCATTTTCCAAATTGTTGTTTCCATCGGTCAAAGACAACACGTTCTTTGAGAGCTGTGGTGTTGCTGATCTCATTACAACATGCTTGGGAGGACGAAACAGGAAAGTTGCTGAAGCTTTTGCAAAGAATGGGGGGAATAGATCATTTGATGAGCTTGAAGCAGAAATGCTGCAAGGCCAGAAATTACAGGGTGTCTCCACAGCAAAAGAAGTTTATGAGGTTTTAACTCATCGTGGATGGCTAGAAATGTTTCCACTTTTCGCAACAGTGCAGGAGATCTGCATTGGCCGTCTCCCACCACCCGCAATAGTTCAACATGCTGAGCACAAGCTTAAATTTTCTGTGCTAGAAGGCTCTTCA。

Claims (4)

1.沙棘GPD1基因的构建方法,其特征在于,包括如下步骤:
(1)提取沙棘果肉RNA,并获得GPD1基因cDNA;
(2)构建沙棘GPD1基因过表达载体;
(3)利用沙棘GPD1基因过表达载体转化农杆菌;
(4)利用pBI121-T-GPD1重组表达载体转化烟草;
(5)转化烟草的分子检测;
(6)测定烟草叶片含油率。
2.如权利要求1所述的沙棘GPD1基因的构建方法,其特征在于,步骤(3):农杆菌感受态细胞制备过程中,采用含有100mg/L链霉素和100mg/L利福平的发根农杆菌培养基;在冻融法转化农杆菌过程中,采用含有100mg/L链霉素、100mg/L利福平和50mg/L卡那霉素的发根农杆菌培养基。
3.如权利要求1所述的沙棘GPD1基因的构建方法,其特征在于,步骤(4)转化烟草过程中使用的MS预培养固体培养基组成为:4.74g/LMS培养基粉末、30g/L蔗糖、8g/L琼脂粉、0.5mg/L6-苄氨基腺嘌呤、0.1mg/Lα-萘乙酸,pH6.0。
4.如权利要求1所述的沙棘GPD1基因的构建方法,其特征在于,步骤(4)转化烟草过程中使用的分化培养基组成为:4.74g/LMS培养基粉末、30g/L蔗糖、8g/L琼脂粉、0.5mg/L6-苄氨基腺嘌呤、0.1mg/Lα-萘乙酸、50mg/L卡那霉素、500mg/L羧苄青霉素,pH6.0。
CN201711423900.7A 2017-12-25 2017-12-25 沙棘gpd1基因的构建方法 Active CN108165566B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711423900.7A CN108165566B (zh) 2017-12-25 2017-12-25 沙棘gpd1基因的构建方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711423900.7A CN108165566B (zh) 2017-12-25 2017-12-25 沙棘gpd1基因的构建方法

Publications (2)

Publication Number Publication Date
CN108165566A true CN108165566A (zh) 2018-06-15
CN108165566B CN108165566B (zh) 2021-05-04

Family

ID=62520689

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711423900.7A Active CN108165566B (zh) 2017-12-25 2017-12-25 沙棘gpd1基因的构建方法

Country Status (1)

Country Link
CN (1) CN108165566B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6103520A (en) * 1993-09-03 2000-08-15 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Plant DNA encoding glycerol-3-phosphate dehydrogenase (GPDH)
CN101037699A (zh) * 2006-03-01 2007-09-19 三得利株式会社 3-磷酸甘油脱氢酶基因及其用途
CN102060930A (zh) * 2010-11-30 2011-05-18 上海交通大学 hHscFv-Rcr基因序列及转基因烟草的制备方法
CN104357415A (zh) * 2014-10-16 2015-02-18 中国科学院遗传与发育生物学研究所 CemGPDH基因及其应用
CN106479989A (zh) * 2016-09-12 2017-03-08 中国科学院遗传与发育生物学研究所 CectGPDH2基因及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6103520A (en) * 1993-09-03 2000-08-15 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Plant DNA encoding glycerol-3-phosphate dehydrogenase (GPDH)
CN101037699A (zh) * 2006-03-01 2007-09-19 三得利株式会社 3-磷酸甘油脱氢酶基因及其用途
CN102060930A (zh) * 2010-11-30 2011-05-18 上海交通大学 hHscFv-Rcr基因序列及转基因烟草的制备方法
CN104357415A (zh) * 2014-10-16 2015-02-18 中国科学院遗传与发育生物学研究所 CemGPDH基因及其应用
CN106479989A (zh) * 2016-09-12 2017-03-08 中国科学院遗传与发育生物学研究所 CectGPDH2基因及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FATIMA T等: "Fatty Acid Composition of Developing Sea Buckthorn (Hippophae rhamnoides L.) Berry and the Transcriptome of the Mature Seed", 《PLOS ONE》 *
丁健: "沙棘果肉和种子油脂合成积累及转录表达差异研究", 《中国博士学位论文全文数据库 农业科技辑》 *

Also Published As

Publication number Publication date
CN108165566B (zh) 2021-05-04

Similar Documents

Publication Publication Date Title
BRPI1015564B1 (pt) método de produção de tecido da cana-de-açúcar transformado ou célula derivada do mesmo
CN102802405A (zh) 原位核酸短暂表达的一种方法
CN101910404A (zh) 提高植物淀粉含量的方法
CN102712929B (zh) 植物根特异表达启动子的鉴定和应用
CN106399326A (zh) 大豆bHLH转录因子基因GmFER及其编码蛋白和应用
CN104593380B (zh) 用于提高植物耐盐性的编码玉米HKT转运蛋白的基因ZmHKT1;1a及其应用
CN102876680B (zh) 一种大豆来源的油体蛋白基因种子特异性启动子及其应用
CN104593381A (zh) 一种玉米耐盐基因及其应用
CN108034666A (zh) 沙棘gpd1基因
US20210395764A1 (en) Method for obtaining ricin/rca-free castor-oil plant seeds, ricin/rca-free castor-oil plants, method for identifying ricin/rca-free castor-oil plants, polynucleotides, constructs and uses thereof
CN102533804B (zh) 白沙蒿Δ12脂肪酸脱氢酶(As FAD2)基因及用途
CN108165566A (zh) 沙棘gpd1基因的构建方法
CN108728481A (zh) 一种怀山药遗传转化的方法
CN106632627B (zh) Lnsm蛋白及其编码基因在植物转基因中的应用
CN1263766C (zh) 从大豆中分离到的种子特异性启动子序列及其应用
CN102021181B (zh) 一个水稻基因kt488在提高植物耐逆性能上的应用
CN105063046B (zh) 一种籽粒苋的绿色组织特异启动子及其应用
CN103789325A (zh) 棉花细胞壁伸展蛋白基因GbEXPATR及应用
CN114149993B (zh) 一种调控植物可溶性糖含量的lncRNA及其应用
CN116426536B (zh) 橡胶延长因子HbREF258基因、蛋白及应用
KR101509032B1 (ko) 시아노박테리아 유래 유전자를 이용한 광호흡 억제 및 스트레스 내성이 증진된 형질전환 식물체의 제조방법 및 그에 따른 식물체
CN106754932A (zh) 一种DNA分子STTM‑miR482a及其应用
CN115927278A (zh) 一种与甘薯γ-氨基丁酸代谢相关的蛋白及其编码基因和应用
CN107338249A (zh) 种子特异表达启动子的分离及其应用
US9441234B2 (en) Compositions and methods for increased expression in sugar cane

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant