CN108164718B - 纤维素纳米晶体诱导壳聚糖手性自组装体制备方法及其应用 - Google Patents

纤维素纳米晶体诱导壳聚糖手性自组装体制备方法及其应用 Download PDF

Info

Publication number
CN108164718B
CN108164718B CN201711439169.7A CN201711439169A CN108164718B CN 108164718 B CN108164718 B CN 108164718B CN 201711439169 A CN201711439169 A CN 201711439169A CN 108164718 B CN108164718 B CN 108164718B
Authority
CN
China
Prior art keywords
chitosan
ncc
tryptophan
chiral
cellulose nanocrystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711439169.7A
Other languages
English (en)
Other versions
CN108164718A (zh
Inventor
陶永新
吕泳其
彭勇刚
储富强
孔泳
秦勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN201711439169.7A priority Critical patent/CN108164718B/zh
Publication of CN108164718A publication Critical patent/CN108164718A/zh
Application granted granted Critical
Publication of CN108164718B publication Critical patent/CN108164718B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/005Processes for mixing polymers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/04Oxycellulose; Hydrocellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/02Cellulose; Modified cellulose
    • C08J2401/04Oxycellulose; Hydrocellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Nanotechnology (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

本发明提供了纤维素纳米晶体诱导壳聚糖手性自组装体的制备方法,壳聚糖自组装在纤维素纳米晶体外围,壳聚糖与纤维素纳米晶体形成新的结晶体,该制备过程简单无污染。本发明所得的手性纳米复合材料,可实现色氨酸对映体的电化学高效识别和紫外光谱识别。

Description

纤维素纳米晶体诱导壳聚糖手性自组装体制备方法及其应用
技术领域
本发明属于手性高分子材料领域,具体涉及纤维素纳米晶体诱导壳聚糖手性自组装体及其氨基酸手性识别。
背景技术
纤维素纳米晶体(NCC)是一种螺旋型棒状结构的纤维素纳米晶须,长度在5~300nm,直径1~20之间,通过硫酸水解牛皮纸,去除纤维素无定型区域,保留剩余的结晶区获得的。纤维素纳米晶体作为天然的、可再生的绿色纳米材料还具有高机械强度、高结晶度和手性等卓越优势。
壳聚糖(CS)是自然界最为丰富的天然多糖之一,也是一种存在大量手性位点的双螺旋链状手性材料,具有良好的生物相容性和成膜性,已经被应用于手性识别与分离。由于一级结构中的双螺旋受到分子内氢键的影响,需要化学修饰和改性才能应用于手性识别。
发明内容
本发明所要解决的技术问题是借助NCC右手螺旋结构,利用静电引力、氢键和范德华力等物理作用,在NCC表面构建CS高分子的二级螺旋手性结构,并利用这种特定手性结构实现高效手性识别。
为解决上述技术问题,本发明采用的技术方案是:利用纤维素纳米晶体诱导壳聚糖手性自组装。
上述手性自组装的具体步骤如下:
将10~200mg壳聚糖溶于0.1~1M的柠檬酸溶液中,搅拌。将5~200mg纤维素纳米晶体超声分散于水中30分钟,搅拌。将壳聚糖酸溶液逐滴加入纤维素纳米晶体水分散液中,搅拌3~12小时,温度为15~50℃。水洗,离心分离获得固体产物,真空冷冻干燥后,冷冻保存于冰箱。
壳聚糖分子具有双螺旋结构(一级结构),受固有的分子内氢键束缚,直接用于手性识别效果不理想。本发明选用纤维素纳米晶体作为手性模板,多种作用力诱导壳聚糖螺旋缠绕,形成二级螺旋手性结构,避免了壳聚糖一级螺旋结构的内在缺陷,同时赋予CS-NCC纳米材料的高效手性识别能力。
本发明的有益效果是:
CS是无定形结构,NCC是结晶体,CS-NCC纳米材料是新的结晶体,有很好的机械强度,具有高效手性识别能力,对色氨酸对映体能高效电化学识别和紫外光谱识别。
附图说明
图1NCC(A)和CS-NCC(B)的SEM图
图2 D,L-Trp在CS-NCC修饰玻碳电极上的差分脉冲图
图3不同温度下D,L-Trp在CS-NCC修饰玻碳电极上的差分脉冲电流和电流比
图4CS-NCC的形成示意图
图5CS,NCC和CS-NCC的XRD图
图6CS-NCC吸附前后色氨酸对映体的紫外光谱图
具体实施方式
下面结合具体的实施例,进一步详细地描述本发明。应理解,这些实施例只是为了举例说明本发明,而非以任何方式限制本发明的范围。
实施例1
将100mg壳聚糖溶于0.1M的柠檬酸溶液中,搅拌。将10mg纤维素纳米晶体超声分散于水中20分钟,搅拌。将壳聚糖酸溶液逐滴加入纤维素纳米晶体水分散液中,搅拌3小时,温度为30℃。水洗,离心分离获得固体产物,冷冻干燥后冷冻保存于冰箱。
实施例2
将100mg壳聚糖溶于0.5M的柠檬酸溶液中,搅拌。将100mg纤维素纳米晶体超声分散于水中40分钟,搅拌。将壳聚糖酸溶液逐滴加入纤维素纳米晶体水分散液中,搅拌6小时,温度为30℃。水洗,离心分离获得固体产物,冷冻干燥后冷冻保存于冰箱。
实施例3
将100mg壳聚糖溶于0.2M的柠檬酸溶液中,搅拌。将50mg纤维素纳米晶体超声分散于水中30分钟,搅拌。将壳聚糖酸溶液逐滴加入纤维素纳米晶体水分散液中,搅拌4小时,温度为30℃。水洗,离心分离获得固体产物,冷冻干燥后冷冻保存于冰箱。
实施例4
将实施例1~3所得复合材料配成2mg/mL的水溶液,取5μL滴涂于玻碳电极表面,自然风干。所得修饰电极静置在20~30mL不同温度(5~40℃)L/D-色氨酸(Trp)溶液中(静置时间30s~40s),以0.1~0.5V/s的扫速在0.4V~1.2V(vs.SCE)的电化学窗范围内进行差分脉冲伏安法(DPV)测试,每次测完后修饰电极在20~30mL 0.1~0.3M磷酸缓冲溶液中进行反复电位扫描至稳定,恢复电极活性。测试3次,取平均值。
实施例5
将实施例1所得复合材料分别加入0.05mM的D/L-Trp溶液,比较加入前后的紫外吸收光谱。

Claims (1)

1.纤维素纳米晶体诱导壳聚糖手性自组装体(CS-NCC)在氨基酸手性识别中的应用,其特征在于:相同浓度的色氨酸对映体溶液分别加入相同量的CS-NCC,比较CS-NCC加入前后,色氨酸对映体紫外吸收;加入前,色氨酸对映体紫外吸收是一致的,加入后,D-色氨酸紫外吸收明显比L-色氨酸要低;或者将CS-NCC配成悬浮水溶液,滴涂于玻碳电极表面,自然风干;所得修饰电极分别静置在L-或D-色氨酸溶液中,以0.1~0.5V/s的扫速在相对饱和甘汞电极电位0.4V~1.2V的范围内进行差分脉冲伏安法测试,L-色氨酸的差分脉冲电流明显高于D-色氨酸;CS-NCC的制备是利用纤维素纳米晶体(NCC)与壳聚糖(CS)之间静电引力、氢键和范德华力的自组装,使壳聚糖缠绕在晶须状纤维素纳米晶体表面,形成CS-NCC;具体制备步骤如下:将10~200mg壳聚糖溶于0.1~1M的柠檬酸溶液中,搅拌;将5~200mg纤维素纳米晶体超声分散于水中10~60分钟,搅拌;将壳聚糖酸溶液逐滴加入纤维素纳米晶体水分散液中,搅拌1~12小时,温度为15~50℃;离心分离,水洗,再离心分离,获得固体产物,冷冻干燥,冷冻保存于冰箱备用。
CN201711439169.7A 2017-12-27 2017-12-27 纤维素纳米晶体诱导壳聚糖手性自组装体制备方法及其应用 Active CN108164718B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711439169.7A CN108164718B (zh) 2017-12-27 2017-12-27 纤维素纳米晶体诱导壳聚糖手性自组装体制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711439169.7A CN108164718B (zh) 2017-12-27 2017-12-27 纤维素纳米晶体诱导壳聚糖手性自组装体制备方法及其应用

Publications (2)

Publication Number Publication Date
CN108164718A CN108164718A (zh) 2018-06-15
CN108164718B true CN108164718B (zh) 2021-01-29

Family

ID=62521855

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711439169.7A Active CN108164718B (zh) 2017-12-27 2017-12-27 纤维素纳米晶体诱导壳聚糖手性自组装体制备方法及其应用

Country Status (1)

Country Link
CN (1) CN108164718B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112745532A (zh) * 2021-01-14 2021-05-04 江南大学 一种基于不同分子量多糖的高强度湿度响应纳米纤维素膜
CN114618011A (zh) * 2022-02-16 2022-06-14 上海长征医院 一种超分子水凝胶在制备治疗细菌感染的敷料中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2285888A1 (en) * 2008-06-13 2011-02-23 Universita' Degli Studi di Salerno Polymer and carbon nanotubes composite materials as low-cost temperature sensors
CN105758915A (zh) * 2016-03-02 2016-07-13 常州大学 一种羧甲基纤维素-壳聚糖复合材料的制备及其修饰电极电化学法识别色氨酸对映体
CA2918904A1 (en) * 2015-03-20 2016-09-20 Queen's University At Kingston Switchable polysaccharides, methods and uses thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2285888A1 (en) * 2008-06-13 2011-02-23 Universita' Degli Studi di Salerno Polymer and carbon nanotubes composite materials as low-cost temperature sensors
CA2918904A1 (en) * 2015-03-20 2016-09-20 Queen's University At Kingston Switchable polysaccharides, methods and uses thereof
CN105758915A (zh) * 2016-03-02 2016-07-13 常州大学 一种羧甲基纤维素-壳聚糖复合材料的制备及其修饰电极电化学法识别色氨酸对映体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
An electrochemical sensor based on cellulose nanocrystal for the enantioselective discrimination of chiral amino acids;Bi, Qing et al.;《ANALYTICAL BIOCHEMISTRY》;20160901;第508卷;摘要 *

Also Published As

Publication number Publication date
CN108164718A (zh) 2018-06-15

Similar Documents

Publication Publication Date Title
Zhuang et al. Polyaniline-mediated coupling of Mn3O4 nanoparticles on activated carbon for high-performance asymmetric supercapacitors
CN108164718B (zh) 纤维素纳米晶体诱导壳聚糖手性自组装体制备方法及其应用
Xu et al. Surface functional carbon dots: chemical engineering applications beyond optical properties
CN112265981B (zh) 一种木质素纳米胶束制备碳纳米管的方法
CN103588886B (zh) 一种易水分散纳米微晶纤维素及其制备方法
Kim et al. Synthesis of microsphere silicon carbide/nanoneedle manganese oxide composites and their electrochemical properties as supercapacitors
CN105111507A (zh) 一种细菌纤维素/聚苯胺/碳纳米管导电膜材料的制备方法及其应用
CN102924718A (zh) 一种具有纳米结构的聚吡咯的制备方法
CN109961962B (zh) 负载镍锰氧化物和二硫化镍的埃洛石电极材料的制备方法
CN111253597B (zh) 一种甲壳素纳米纤维/聚苯胺复合凝胶膜及其制备方法
CN108130552A (zh) 一种聚苯胺氧化亚铜复合材料及其制备方法和应用
Ramesh et al. Ultrasound-accelerated covalent-functionalization of reduced graphene oxide with imidazolium-based poly (ionic liquid) s by Diels-Alder click reaction for supercapacitors
CN109913887A (zh) 一种基于静电纺丝技术的氮掺杂碳包覆铂纳米颗粒的柔性电极催化剂及其制备方法和应用
Tatrari et al. Quantum dots based materials for new generation supercapacitors application: a recent overview
CN111048324A (zh) 一种二氧化锰—多孔碳复合材料及其制备方法和应用
Zhang et al. Advances in multi-dimensional cellulose-based fluorescent carbon dot composites
Balu et al. A cost effective, facile hydrothermal approach of zinc sulfide decorated on graphene nanocomposite for supercapacitor applications
CN111440351A (zh) 一种3d超分子自组装导电生物质气凝胶及其制备方法和在超级电容器中的应用
CN110093683A (zh) 一种壳聚糖纳米纤维的制备方法
Dai et al. Hollow carbon spheres anchored with nitrogen-doped carbon dots for high-performance supercapacitors
CN110391400A (zh) 一种柔性自支撑硅/超长二氧化钛纳米管电极的制备方法
Wang et al. Controllable synthesis of Fe3C-reinforced petal-like lignin microspheres with boosted electrochemical performance and its application in high performance supercapacitors
Zhang et al. Fabrication of solid-state high capacitance supercapacitor from N-doped biomass porous carbon
CN109449012A (zh) 一种羧基化碳纳米管/石墨烯气凝胶/泡沫镍复合电极材料的制备方法
WO2015069226A1 (en) Graphene oxide and carbon nanotube ink and methods for producing the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant