CN108164393B - 一种全氘代叔丁醇的制备方法 - Google Patents
一种全氘代叔丁醇的制备方法 Download PDFInfo
- Publication number
- CN108164393B CN108164393B CN201810159464.5A CN201810159464A CN108164393B CN 108164393 B CN108164393 B CN 108164393B CN 201810159464 A CN201810159464 A CN 201810159464A CN 108164393 B CN108164393 B CN 108164393B
- Authority
- CN
- China
- Prior art keywords
- deuterated
- deuterium
- tert
- butyl alcohol
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/09—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F3/00—Compounds containing elements of Groups 2 or 12 of the Periodic Table
- C07F3/02—Magnesium compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B2200/00—Indexing scheme relating to specific properties of organic compounds
- C07B2200/05—Isotopically modified compounds, e.g. labelled
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
本发明公开了一种全氘代叔丁醇的制备方法,其包括如下步骤:首先使氘甲基碘化镁与氘代丙酮在无水四氢呋喃中、无水氯化锰的存在下进行格氏反应,然后使前述反应产物在酸性条件下水解生成所述全氘代叔丁醇,所述酸性条件通过加入氘代酸的重水溶液形成;本发明的全氘代叔丁醇的制备方法,其具有反应条件温和,反应收率高,可获得高丰度的全氘代叔丁醇,工艺操作简单等优点。
Description
技术领域
本发明属于有机合成领域,具体涉及一种全氘代叔丁醇的制备方法。
背景技术
全氘代叔丁醇是一种重要的化学原料和氘代药物中间体,是合成氘代阿扎那韦等氘代药物的关键起始物料,全氘代叔丁醇的结构如下:
氘代药物是把药物中的一个或多个氢元素用氘置换。由于氘和氢结构上只相差一个中子,因此和原研药相比有类似的理化性质,又由于同位素效应,氘代药物有独特的生物稳定性和疗效。
现有技术中,虽然可见氘代叔丁醇的合成方法,但未见高丰度全氘代叔丁醇的合成方法。而现有技术的合成氘代叔丁醇的方法中,有的采用的乙醚作为反应溶剂,由于乙醚的闪点低存在严重安全隐患,因此并不适合大规模制备全氘代叔丁醇,而有的方法采用四氢呋喃替代乙醚作为反应溶剂,反应的收率很低,完全没有实用价值。
发明内容
本发明所要解决的技术问题是克服现有技术的不足,提供一种全氘代叔丁醇的制备方法,其具有反应条件温和,反应收率高,可获得高丰度的全氘代叔丁醇,工艺操作简单等优点。
为解决以上技术问题,本发明采取的一种技术方案如下:
一种全氘代叔丁醇的制备方法,其包括如下步骤:首先使氘甲基碘化镁与氘代丙酮在无水四氢呋喃中、无水氯化锰的存在下进行格氏反应,然后使前述反应产物在酸性条件下水解生成全氘代叔丁醇,所述酸性条件通过加入氘代酸的重水溶液形成。
根据本发明的一些优选方面,所述氘甲基碘化镁、所述氘代丙酮和所述无水氯化锰的投料摩尔比为15-22︰14-20︰1。
更优选地,所述氘甲基碘化镁、所述氘代丙酮和所述无水氯化锰的投料摩尔比为16-20︰15-18︰1。
根据本发明的一些优选方面,所述反应在-10-20℃下进行。
根据本发明的一些优选方面,所述反应进行的时间为4-6小时。
根据本发明的一些具体且优选的方面,所述氘代酸为氯化氘和/或氘代硫酸。
根据本发明的一些优选方面,所述氘甲基碘化镁和所述无水四氢呋喃的投料摩尔比为1︰8-15。
根据本发明的一些具体且优选的方面,所述氘甲基碘化镁和所述无水四氢呋喃的投料摩尔比为1︰10-14。
由于以上技术方案的采用,本发明与现有技术相比具有如下优点:
本发明通过使用特定的催化剂,简化了全氘代叔丁醇的生产工艺,能够获得高丰度的全氘代叔丁醇,提高了操作便利性、产品质量稳定性,提高了原料的转化率和产品的收率,反应条件较温和,安全环保,适宜于工业化大生产。
具体实施方式
基于现有技术中氘代药物得到越来越多的应用,诸如氘代阿扎那韦等氘代药物,而全氘代叔丁醇正是合成氘代阿扎那韦等氘代药物的关键起始原料。然而按照目前类似产品的制备方法,有的存在环境保护的问题以及安全隐患,有的反应条件较安全环保,但是收率却太低,因此基本难以适应工业化大生产。
本申请的发明人意外发现,采用氘甲基碘化镁为格氏试剂,且采用无水氯化锰作为催化剂时,为能够获得非常理想的收率,且获得的全氘代叔丁醇的丰度高。为此,本发明提供了一种全氘代叔丁醇的制备方法,其包括如下步骤:使氘甲基碘化镁和氘代丙酮在无水四氢呋喃中、在无水氯化锰的存在下进行格氏反应,然后进行水解,即得全氘代叔丁醇。
具体反应过程如下;
以下结合具体实施例对上述方案做进一步说明。应理解,这些实施例是用于说明本发明的基本原理、主要特征和优点,而本发明不受以下实施例的范围限制;实施例中采用的实施条件可以根据具体要求做进一步调整,未注明的实施条件通常为常规实验中的条件。
以下实施例中,所有的原料均来自于商购或者通过本领域的常规方法制备而得。
实施例1
本实施例提供一种全氘代叔丁醇的制备方法,具体为:在配有温度计、冷凝管的2000mL三口烧瓶中,加入185g氘甲基碘化镁、1000mL无水四氢呋喃、8g无水氯化锰,然后滴加64g氘代丙酮,在10±2℃下反应4-6小时,之后向上述烧瓶中,加入溶有氯化氘的重水溶液淬灭反应,分离得到全氘代叔丁醇反应液,经过精馏,即得高丰度的全氘代叔丁醇产品:67g,收率80%,检测全氘代叔丁醇产品,GC纯度为99.9%,质谱检测同位素丰度为99.8%(atom%D)。元素分析理论值:C 57.07%、D23.92%、O19.00%;测量值:C 57.05%、D23.91%、O19.02%。
实施例2
本实施例提供一种全氘代叔丁醇的制备方法,具体为:在配有温度计、冷凝管的2000mL三口烧瓶中,加入185g氘甲基碘化镁、1000mL无水四氢呋喃、8g无水氯化锰,然后滴加64g氘代丙酮,在-10±2℃下反应4-6小时,之后向上述烧瓶中,加入溶有氘代硫酸的重水溶液淬灭反应,分离得到全氘代叔丁醇反应液,经过精馏,即得高丰度的全氘代叔丁醇产品:69g,收率82%,检测全氘代叔丁醇产品,GC纯度为99.9%,质谱检测同位素丰度为99.7%(atom%D)。元素分析理论值:C 57.07%、D23.92%、O19.00%;测量值:C 57.06%、D23.91%、O19.01%。
实施例3
本实施例提供一种全氘代叔丁醇的制备方法,具体为:在配有温度计、冷凝管的2000mL三口烧瓶中,加入160g氘甲基碘化镁、1000mL无水四氢呋喃、7g无水氯化锰,然后滴加64g氘代丙酮,在0±2℃下反应4-6小时,之后向上上述烧瓶中,加入溶有氯化氘的重水溶液淬灭反应,分离得到全氘代叔丁醇反应液,经过精馏,即得高丰度的全氘代叔丁醇产品:64g。检测全氘代叔丁醇产品,GC纯度99.8%,质谱检测同位素丰度为99.3%(atom%D)。元素分析理论值:C 57.07%、D23.92%、O19.00%;测量值:C 57.03%、D23.89%、O19.06%。
实施例4
本实施例提供一种全氘代叔丁醇的制备方法,具体为:在配有温度计、冷凝管的2000mL三口烧瓶中,加入185g氘甲基碘化镁、1000mL无水四氢呋喃、7g无水氯化锰,然后滴加55g氘代丙酮,在0±2℃下反应4-6小时,之后向上述烧瓶中,加入溶有氘代硫酸的重水溶液淬灭反应,分离得到全氘代叔丁醇反应液,经过精馏,即可得高丰度的全氘代叔丁醇产品:54g,收率75%。检测全氘代叔丁醇产品,GC纯度99.7%,质谱检测同位素丰度为99.3%(atom%D)。元素分析理论值:C 57.07%、D23.92%、O19.00%;测量值:C 57.09%、D23.90%、O19.0%。
对比例1
基本同实施例1,区别仅在于,不加无水氯化锰;制得全氘代叔丁醇:7.6g,收率9%,GC纯度99.5%,质谱检测同位素丰度为98.1%(atom%D)。元素分析理论值:C57.07%、D23.92%、O19.00%;测量值:C 57.34%、D23.51%、O19.14%。
对比例2
基本同实施例1,区别仅在于,采用的催化剂为无水氯化锂;制得全氘代叔丁醇:11.7g收率14%,GC纯度99.4%,质谱检测同位素丰度为98.2%(atom%D)。元素分析理论值:C 57.07%、D23.92%、O19.00%;测量值:C 57.29%、D23.61%、O19.09%。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围,凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。
Claims (8)
1.一种全氘代叔丁醇的制备方法,其特征在于,所述制备方法包括如下步骤:首先使氘甲基碘化镁与氘代丙酮在无水四氢呋喃中、无水氯化锰的存在下进行格氏反应,然后使前述反应产物在酸性条件下水解生成所述全氘代叔丁醇,所述酸性条件通过加入氘代酸的重水溶液形成,所述氘甲基碘化镁、所述氘代丙酮和所述无水氯化锰的投料摩尔比为15-22︰14-20︰1。
2.根据权利要求1所述的全氘代叔丁醇的制备方法,其特征在于,所述氘甲基碘化镁、所述氘代丙酮和所述无水氯化锰的投料摩尔比为16-20︰15-18︰1。
3.根据权利要求1所述的全氘代叔丁醇的制备方法,其特征在于,使所述格氏反应在温度-10-20℃下进行。
4.根据权利要求1或3所述的全氘代叔丁醇的制备方法,其特征在于,控制所述格氏反应的时间为4-6小时。
5.根据权利要求1所述的全氘代叔丁醇的制备方法,其特征在于,所述氘代酸为氯化氘和/或氘代硫酸。
6.根据权利要求1所述的全氘代叔丁醇的制备方法,其特征在于,所述氘甲基碘化镁和所述无水四氢呋喃的投料摩尔比为1︰8-15。
7.根据权利要求6所述的全氘代叔丁醇的制备方法,其特征在于,所述氘甲基碘化镁和所述无水四氢呋喃的投料摩尔比为1︰10-14。
8.根据权利要求1所述的全氘代叔丁醇的制备方法,其特征在于,所述制备方法还包括后处理步骤,所述后处理步骤包括精馏步骤。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810159464.5A CN108164393B (zh) | 2018-02-26 | 2018-02-26 | 一种全氘代叔丁醇的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810159464.5A CN108164393B (zh) | 2018-02-26 | 2018-02-26 | 一种全氘代叔丁醇的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108164393A CN108164393A (zh) | 2018-06-15 |
CN108164393B true CN108164393B (zh) | 2021-01-15 |
Family
ID=62510639
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810159464.5A Active CN108164393B (zh) | 2018-02-26 | 2018-02-26 | 一种全氘代叔丁醇的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108164393B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115572211A (zh) * | 2022-09-22 | 2023-01-06 | 华南理工大学 | 一种一氘代乙醇的制备方法 |
CN115784159B (zh) * | 2022-11-30 | 2024-07-19 | 派瑞科技有限公司 | 一种制备氯化氘的方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103130634A (zh) * | 2013-03-20 | 2013-06-05 | 福建三泰生物医药有限公司 | 烷烃基叔酸的制备方法 |
-
2018
- 2018-02-26 CN CN201810159464.5A patent/CN108164393B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103130634A (zh) * | 2013-03-20 | 2013-06-05 | 福建三泰生物医药有限公司 | 烷烃基叔酸的制备方法 |
Non-Patent Citations (5)
Title |
---|
Lewis酸介导的有机金属试剂与醛反应的研究;马宪真;《中国优秀硕士学位论文全文数据库》;20160415;第B014-85页 * |
格林尼亚反应合成全氘代-α-苯乙醇;张林等;《精细化工》;20011030;第18卷(第10期);第614页右栏1.2 * |
格氏试剂与酮反应的一个重要途径——单电子转移;龚跃法等;《有机化学》;19881226(第8期);第481页右栏第3段 * |
氘代苯乙酮-d_8的合成与还原反应;张林等;《应用化学》;19990220(第01期);第115-116页 * |
锌、镁格氏试剂与卤代酮、酯的反应研究;张敏;《中国优秀硕士学位论文全文数据库》;20110115;第B014-485页 * |
Also Published As
Publication number | Publication date |
---|---|
CN108164393A (zh) | 2018-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108164393B (zh) | 一种全氘代叔丁醇的制备方法 | |
CN106188116A (zh) | 一种合成吡唑‑4‑硼酸频那醇酯的方法 | |
WO2011004980A3 (ko) | 트리사이클릭 유도체의 제조방법 | |
CN104030886B (zh) | 以2,2-二氟-1-卤代乙烷为原料制备2,2-二氟乙醇的方法 | |
CN112321388A (zh) | 一种高转化率的氘代甲醇的制备方法 | |
CN110342486B (zh) | 一种二氟磷酸锂的制备方法 | |
CN103254058B (zh) | 一种2,3,3,3-四氟丙酸的合成方法 | |
CN114874080A (zh) | 一种4,4’-二氟二苯甲酮的制备方法 | |
CN107011151B (zh) | 甲苯液相催化氧化过程中提高苯甲醛选择性的方法 | |
CN107868053B (zh) | 一种硫酸一烃基酯盐的制备方法 | |
CN107540531B (zh) | 一种利用环己酮副产轻质油制备邻氯环己酮的方法 | |
CN111170846B (zh) | 一种制备3,3-二甲基-2-氧-丁酸的方法 | |
EP3196183B1 (en) | Method for producing 2'-trifluoromethyl group-substituted aromatic ketone | |
CN105669730A (zh) | 一种有机硼酸类化合物的纯化方法 | |
CN109678651B (zh) | 一种高纯度α,α-二氯乙基环丙烷的制备方法 | |
CN111620876B (zh) | 瑞德西韦关键中间体的合成方法 | |
CN113773175A (zh) | 一种2,4,6-三溴苯酚的合成方法 | |
CN101805315A (zh) | 乙基四氢糠基醚合成方法 | |
CN102120726B (zh) | 一种制备(2e)-2-氰基-3-(3,4-二羟基-5-硝基苯)-n,n-二乙基-2-丙烯酰胺的新方法 | |
CN106810423B (zh) | 一种五氟苯酚的制备方法 | |
CN107879944B (zh) | 一种制备丁基甜菜碱的方法 | |
CN111099958A (zh) | 一种环丙基溴合成的新方法 | |
CN117402044B (zh) | 一种1-(4-氯苯基)-2-环丙基-1-丙酮的合成方法 | |
CN113493401B (zh) | 一种对甲砜基苯甲酸的制备方法 | |
CN109678652B (zh) | 一种离子液体促进的α,α-二氯乙基环丙烷的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |