CN108149017B - 一种煲模液代替碱蚀液并回收氢氧化铝的系统 - Google Patents

一种煲模液代替碱蚀液并回收氢氧化铝的系统 Download PDF

Info

Publication number
CN108149017B
CN108149017B CN201711471646.8A CN201711471646A CN108149017B CN 108149017 B CN108149017 B CN 108149017B CN 201711471646 A CN201711471646 A CN 201711471646A CN 108149017 B CN108149017 B CN 108149017B
Authority
CN
China
Prior art keywords
valves
pumps
alkaline
alkaline etchant
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711471646.8A
Other languages
English (en)
Other versions
CN108149017A (zh
Inventor
熊映明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FOSHAN SANSHUI XIONGYING INNOVATIVE CENTER FOR ALUMINUM SURFACE TECHNOLOGIES Co Ltd
Original Assignee
FOSHAN SANSHUI XIONGYING INNOVATIVE CENTER FOR ALUMINUM SURFACE TECHNOLOGIES Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FOSHAN SANSHUI XIONGYING INNOVATIVE CENTER FOR ALUMINUM SURFACE TECHNOLOGIES Co Ltd filed Critical FOSHAN SANSHUI XIONGYING INNOVATIVE CENTER FOR ALUMINUM SURFACE TECHNOLOGIES Co Ltd
Priority to CN201711471646.8A priority Critical patent/CN108149017B/zh
Publication of CN108149017A publication Critical patent/CN108149017A/zh
Application granted granted Critical
Publication of CN108149017B publication Critical patent/CN108149017B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/04Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/14Aluminium oxide or hydroxide from alkali metal aluminates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

本发明涉及一种煲模液代替碱蚀液并回收氢氧化铝的系统,包括煲模液生成系统、碱蚀液产生系统、碱蚀液收集系统、碱蚀液处理系统和碱蚀液分离系统;所述煲模液生成系统包括多个煲模槽、废水导流沟、水池、六号泵和煲模液回收罐;所述碱蚀液产生系统包括除油槽、一号流动水洗槽、二号流动水洗槽、碱蚀槽、一号碱蚀液截留槽、二号碱蚀液截留槽、喷淋槽、四号泵和五号泵;所述碱蚀液收集系统包括碱蚀液回收罐和一号泵;所述碱蚀液处理系统包括反应罐、二号泵和氢氧化铝晶种罐;所述碱蚀液分离系统包括回收罐和离心机;本发明能够将煲模液转换为碱蚀液进行生产,回收氢氧化铝并解决除垢问题。

Description

一种煲模液代替碱蚀液并回收氢氧化铝的系统
技术领域
本发明涉及铝加工技术领域,具体涉及一种煲模液代替碱蚀液并回收氢氧化铝的系统。
背景技术
铝及铝合金具有加工性能优良、耐蚀性好、表面美观、回收率高等优点,在建筑、交通运输、机械、电力等行业获得了广泛应用,近年来以铝代钢扩大铝应用趋势更加明显。铝加工业是传统产业,更是充满勃勃生机的朝阳产业。据统计,欧美发达国家人均年消费铝材32kg以上,而我国人均只有13kg左右,只是发达国家的三分之一左右,国内铝材消费还有巨大的增长空间,但在经济新常态下,能源消耗高、排污总量大、资源回收利用率低的问题也成为行业发展的瓶颈和障碍。
铝行业生产包括电解、熔铸、压力加工、表面处理等工序,生产时各工序均会不同程度产生废水、废渣。电解及熔铸时产生大量的铝灰,挤压工序有煲模碱性废液,表面处理过程产生各类含有酸、碱、处理药剂及铬、镍重金属离子等成分复杂的废水废渣。
一、铝业废渣来源
1、电解熔铸铝灰
铝灰产生于铝及铝合金的电解、熔炼及铸造工序,因铝灰造成的铝总损失量在1-12%。每加工一吨原铝,约产生20-40kg铝灰,铝液直接熔铸时产生量较少,铝锭重熔时量较多,而再生一吨废铝约产生100-250kg铝灰。铝灰可分为两种:一种是一次铝灰,是在电解原铝及铸造等不添加盐熔剂过程中产生的浮渣及撇渣,主要成分为金属铝和铝氧化物,铝含量可达15%-70%不等,颜色为白色;另一种是二次铝灰,是一次铝灰提铝回收后的废弃物,铝含量较一次铝灰低,一般呈灰黑色。二次铝灰成分复杂,含有金属铝(5-30%)、氧化铝(30-70%)、二氧化硅和三氧化二铁(5-15%)、钾钠钙镁的氯化物(10-30%)以及氮氟砷等有毒有害成分。
2016年全国电解铝产量3250万吨,挤压及压延加工铝材产量超过2000万吨,每年全国的铝灰量保守估计在200万吨以上,更有数据认为铝灰总量在600-850万吨。铝灰是一种可再生的资源,具有较高的综合回收利用价值,但一直没得到足够的重视,造成了巨大的资源浪费。同时因铝灰渣中含有氟化物、氨氮、砷等有毒有害物质,被列为危险废弃物,在2016年版《国家危险废物名录》中铝灰的废物类别为HW48,危险特性T(Toxicity)-毒性危险废物。随着经济的发展,废铝灰积蓄量将逐年大幅度增加,如果不寻找经济有效、无害化的方法加以处理,将越来越凸显其对环境的严重威胁。目前我国铝灰的回收尚处于起步阶段,缺乏技术成熟可靠、经济性好的回收方法,铝灰处理回收率低、能源消耗和浪费大,利用途径不多。即便处理后的铝灰内仍含有大量有害物质,还是只能堆场堆存或掩埋处理,具有极大的环境危害性,同时厂家承担着巨大的违法风险。2018年1月1日起施行的《中华人民共和国环境保护税法》规定,铝灰排放企业将要交纳1000元/吨的环境保护税。
2、挤压表面处理废水废渣
铝加工制品的生产要消耗大量的水,每生产1吨铝材至少消耗15吨水,全行业年生产挤压材1000万吨,排放废水近3亿吨,废水处理后产生废渣约300万吨,数量极为惊人。
2.1、挤压煲模废液废水废渣
铝型材挤压模具使用后要放入高浓度碱液中进行煲模,将模腔内的铝反应腐蚀掉。煲模液中氢氧化钠的浓度达250-350g/L,随着反应的进行,铝离子含量不断升高,当达到60-70g/L以上,反应速度明显降低时,就必须将煲模液排掉。排掉的废液中含有大量的铝离子及氢氧化钠,潜在的经济价值非常大。煲模废液的处理一般采取“以废治废”的方式:跟氧化工序产生的废酸中和,这种处理方式产生的废渣量非常大,煲模废渣就能占到企业总渣量的30%左右。企业不但没有利用其经济价值,反而增加了成本,废水、废渣的处理成为沉重的环保负担。
2.2、表面处理废水废渣
铝材为增强防腐性和装饰性能,要进行表面处理。常用的表面处理方式有阳极氧化着色、电泳涂漆、粉末喷涂、氟碳漆喷涂等。表面处理过程产生大量成分复杂的废水。
按工序划分,阳极氧化及电泳涂漆工序的废水废渣有:碱蚀液产生的碱性废水废渣,占总渣量的20%;氧化液产生的酸性废水废渣,占总渣量的30%;喷涂工序产生的酸性废水废渣,占总渣量的20%。铝加工企业废水中心铝渣来源细分为:煲模液碱渣占总渣量的30%,碱蚀液碱渣占总渣量的20%,氧化液酸渣占总渣量的30%,喷涂酸性废渣占总渣量的20%。
废水中含有Al3+、Na+、NH4+、Ni2+、Sn2+、Cr6+等阳离子,SO42-、F-、NO3-、NO2-、S2-、Cl-等阴离子,以及有机酚、表面活性剂和丙烯酸树脂等有机物等。酸性废水、碱性废水通常混合后处理,而含铬废水、含镍废水必须单独处理。近年来氧化电泳材比例下降,但大多数铝材厂还是酸性废水多于碱性废水,酸碱水全部混在一起处理,废水混合后呈酸性,需要投入大量的片碱、石灰及PAC、PAM,产生了大量废渣。
2016年8月1日起施行的最新版《国家危险废物名录》已将酸性及碱性废水废渣列入名录管理,废物类别分别是HW34、HW35。从2018年1月1日起施行的《中华人民共和国环境保护税法》规定,企业必须缴纳废水处理污泥环保税1000元/吨。
当前铝加工行业水的重复利用率不到30%,废水处理后产生大量废渣。一方面废渣中的大量金属铝、酸、碱等有用资源没有得到利用,造成巨大资源浪费。废渣属于危险废物,具有极大的环境危害性。当前形势逼迫企业要向节能减排及资源循环利用方向转型发展,但缺乏成熟可靠的技术。实现废水零排放、废渣零产出、资源利用价值最大化,具有重大的环境效益、社会效益和经济效益。
二、铝业废渣处理及利用现状
1、电解熔铸铝灰处理及利用现状
国内外相继开发了不少铝灰回收及资源化利用的方法,近年来关于铝灰回收利用的专利也呈上升趋势,但大多数处于试验研究阶段,技术局限于高温条件提取金属铝,制备氧化铝、氯化铝、硫酸铝等无机材料以及炼钢辅料等方面,离产业化、规模化还有一定距离。
1.1、铝灰回收
目前回收铝灰的方法可分为热处理法和冷处理法,都只是回收了铝灰内的金属铝。国内大型再生铝厂多采用倾动回转窑处理法:把铝灰和添加剂盐类(通常是氯化钠、氯化钾以及少量氟化钙的混合物)放在倾动回转窑中加热后分离金属铝,但回收过程有烟气产生,金属回收率较低,铝灰中残留铝量较高,仍有进一步回收空间。小作坊式的人工炒灰法也在大量采用,此法为敞开式作业,产生大量灰尘烟雾。其它方法还有压榨回收法、等离子速溶法、电选法、MRM法、ALUREC法等。
1.2、铝灰综合利用
因铝灰的成分与铝土矿基本一致,用铝土矿能够生产的产品,都有人用铝灰进行过试验研究。当前铝灰的资源化利用方面主要有三条路线:(1)回收氧化铝返电解,回收氯盐作为熔铸精炼剂使用,但铝灰中的主要成分为α-Al2O3,活性差,将其电离需消耗更多能量,导致槽电压升高。(2)酸法或碱法处理除杂,生产合成棕刚玉、Sialon陶瓷及耐火材料等无机材料,生产聚合氯化铝和硫酸铝等净水材料,生产炼钢用造渣脱硫剂,但因成本比现有的还高,未能实现工业化生产。(3)生产建材或筑路材料,如铝酸盐水泥、铝酸钙粉、清水砖,以及筑路材料等,但含有的氟化物、氯盐对性能有影响,同时产品附加值低,限制了实际应用。以上三个方面的应用均存在产品纯度低、附加值低、废弃物二次污染等缺点。铝灰回收利用后的废弃物仍含有大量可溶性盐类和氟化物,还是危废,只能填埋或堆存,环境危害性并没有降低。
由于铝灰中含有一定量氯盐(NaCl、KCl等)和氟化物等耐高温、耐腐蚀性、毒害性等组分,常规方法难以实现全成分的回收利用,增加了铝灰资源化的成本及技术难度,使得铝灰处理的产业化进展缓慢。另外,对于铝灰处理过程氟及重金属等有害元素的迁移转化机理缺乏更为深入的探讨。
在资源紧缺、环境污染日益严重的情况下,铝加工业发展面临资源与环境的巨大压力,节能减排、资源循环利用,是未来的发展方向和唯一出路。要做到铝灰资源的“零废弃”,必须转变资源利用思路,充分利用铝灰中的各种成分,进行无害化处理、资源最大化化利用。此项工作十分迫切,需要明确方向、规范引导、多方协作,力争早日取得实时性突破。
2、挤压表面处理废水废渣处理及利用现状
1.废水废渣回收处理,综合利用包含两方面内容:一是水的重复利用;二是对废渣的资源综合利用。
1.1、挤压煲模液及氧化前处理碱蚀液回收
挤压煲模液含有大量的氢氧化钠及铝离子,煲模液回收方面有不少的的研究报道和专利,例如意大利的Crystalfix碱回收系统,但因流程复杂、综合效益不高,实际应用的不多。铝加工企业处理煲模废液的通行做法是:煲模废水跟氧化工序产生的废酸中和沉淀后处理制渣,仅煲模液产生的废渣就占到企业总渣量的30%左右。企业不但没有回收利用煲模液中的氢氧化钠、铝离子等有用资源,反而增加了成本,废水、废渣的处理成为沉重的环保负担。
氧化预处理碱蚀液的回收一般采用晶析法,回收氢氧化钠,但氢氧化钠粒度较细、纯度不高、经济价值低。此外,晶析法将铝离子保持在较低浓度(小于30g/L),易造成型材粗晶、粗砂、过腐蚀等缺陷,且铝耗太高。晶析法对运行及工艺要求较高,管理不好就会沉淀结垢,此时只能停产人工清理,耗时耗力。有少量厂家投用了在线碱回收装置,因回收效果不佳、成本高,大多已弃之不用。加入了缓蚀剂、络合剂的碱蚀槽液不适用碱回收装置,也限制了该技术的应用。
1.2、氧化液铝离子和硫酸回收
铝合金阳极氧化液中的铝离子,直接影响槽液的导电性能和膜层质量,最佳控制浓度应在3-10g/L范围之间。铝离子随着生产量的增加不断积累升高,膜层质量变差、电耗升高,但考虑到药剂成本和环保压力,企业实际生产中铝离子浓度一般控制在15-20g/L区间。达到上限后,必须降低铝离子含量。降低铝离子的通常做法是排掉一半槽液,补充硫酸后继续生产。此法简单,但存在以下不足:一是损失了硫酸,浪费了铝离子,硫酸消耗达到60kg/t以上;二是处理废酸增加了相当大的成本;三是巨量废渣造成环境危害。
采用扩散渗析原理的硫酸回收机曾是被广泛使用的控制铝离子的手段。硫酸回收机是铝离子的稳定装置,采用扩散渗析离子交换膜达到回收硫酸、除去铝离子的目的。在实际运行中,存在回收效果差、能耗高、效率低、渣量没有减少等不足。鉴于硫酸回收机上述糟糕的使用效果,大部分铝加工企业,已逐步停用该装置,恢复了倒一半氧化槽液的传统方法。
1.3、喷涂预处理废水回收
粉末喷涂铝合金产品的市场份额近年来明显增加,现已占铝合金表面处理产品的60%以上。喷涂表面预处理的目的是在铝材表面生成一层致密的转化膜,将基材和喷涂层牢固结合在一起。为保证转化膜的质量,工艺控制要求非常严格,超标的槽液及漂洗水必须排掉。废水呈酸性,含有大量的六价铬、氟钛酸、氟锆酸根及氟离子。大量的废酸处理既增加了企业成本,又浪费了资源,还具有环境危害性。喷涂预处理及废水处理技术无明显进展,仍采用传统的方法,中和、沉淀、压滤脱水后形成大量废渣。废渣属于严格管控的危险废物,必须转移至有资质的第三方进行规范化无害处理。
1.4、含铬及含镍废水
铬、镍属于一类污染物,含铬或含镍废水必须单独分开处理,铬渣(HW21)和镍渣(HW17)属危险废物。
六价铬离子的回收仍然是个难题,现无法实现在线回收含铬药剂。含铬废水现在的处理方法是:加入焦亚硫酸钠或亚硫酸氢钠等还原剂,将六价铬还原成毒性更低的三价铬,然后再加入碱、PAM进行反应沉淀,污泥脱水压滤后得到铬渣。
镍离子回收仅限于着色槽,封孔废水中的镍离子因含量低直接排放了。镍离子回收采用RO回收装置,原理与酸回收相同,部分厂家在使用,但效率低、而且产生大量浓缩水,效果同样不尽理想。含镍废水的处理采用沉淀法,加入氢氧化钠及PAM,调节pH,反应生成氢氧化镍沉淀,污泥脱水压滤后得到镍渣。
1.5、挤压表面处理废水废渣综合处理
不少铝型材厂家在节水和废水治理方面进行了多方面积极探索和有效实践,取得了一定成效。目前铝加工行业废水仍然普遍采用中和调节及混凝沉淀法处理,处理流程是:酸碱废水互相中和,调节pH至中性,阳离子Al3+等形成氢氧化物沉淀。经中和沉淀的废水打入混凝槽中,加入絮凝剂PAC、PAM,絮凝后进入沉淀槽,清液达标排放或回用,含水污泥经压滤机压滤后形成含铝废渣。废渣含水率80%左右,数量非常大。
传统废水废渣处理方式有以下不足:一是废水处理后可达标排放,但中水回用率低;二是废水处理成本高,增加人工、药剂、动力消耗;三是大量的酸碱、金属铝、化学药剂等有用资源被浪费掉;四是废渣属于危废,处置费用高,需交纳环保税。
2、挤压表面处理废水废渣综合利用
综合利用包含两方面内容:一是水的重复利用;二是对废渣的资源综合利用。回收利用现状非常不理想,前已述及,水的重复利用率不到30%,铝渣、铬渣、镍渣综合利用的途径及方法有限。
2.1、铝渣的综合利用
对含铝废渣的资源利用研究已进行多年,有相当多的文章和专利技术,资源化利用的技术路径与铝灰基本相同,主要有以下几方面:(1)直接回收氢氧化铝或氧化铝;(2)合成莫来石、堇青石、陶瓷熔块、人造树脂大理石等陶瓷或耐火材料;(3)生产净水材料,如铝酸钙、聚合氯化铝(铁)、聚合硫酸铝等;(4)反应制取冰晶石、铵明矾等化工产品,如中国专利CN 1350065A公开了一种利用碱渣制取硫酸铝铵、硫酸铝、氢氧化铝的方法,中国专利CN101186282B公开了一种硬质氧化硫酸槽液降低铝离子并制取铵矾的方法,中国专利CN1319302C公开了一种利用含氟酸渣制取冰晶石的方法,此专利技术已在数家厂家实际应用,取得了极好的经济效益,同时解决了酸渣的处理难题。
除利用酸渣制取冰晶石的的技术得到成功应用外,其它大部分方法没有规模化应用,铝渣的综合利用率很低,主要原因还是技术不成熟、产品附加值低、成本较高。绝大部分废渣都是铝材厂花钱付费处理掉的,现在很多铝材厂的废渣堆积如山,成了铝材厂的一个烫手山药。
2.2、铬渣及镍渣综合利用
据公开资料,铬渣可以用做玻璃着色剂和结晶促进剂,但实际应用情况不详。未见有镍渣资源化利用的公开资料。铬渣、镍渣通行做法是转到第三方机构进行无害化掩埋处理。
3、挤压表面处理废水废渣处理存在问题
一是水耗高,缺乏成熟的节水技术,水的回用率低;二是在线分类废水未能成为前置程序,导致废渣产生量大;三是废渣的综合利用成效不大,废渣处理成为企业负担和环保风险。
当前,废渣处理存在三方面突出矛盾和问题:一是国家实行企业污染物排放许可证管理,控制企业的污染物排放总量,而企业的实际废水废渣量远大于允许排放量;二是废渣必须合法转移到有资质的第三方处置,但处置能力明显不够,无法合法处理如此巨量的废渣;三是按危废规范处理废渣,流程复杂、效率低、成本高。
综上所述,目前国内的铝加工业废水废渣处理矛盾突出,综合处理难度较大、成本高、回收利用率低,既造成资源的大量浪费,又严重污染环境。因此对铝加工业来说,废水零排放和资源综合利用技术的研究开发与推广应用有着广阔前景和巨大的环境效益、社会效益和经济效益。
三、铝业铝灰铝渣减量化资源化方向
1、遵循的原则:减量化控制、无害化处理、资源化利用,必须政府推动、企业主导、第三方市场化配置资源,三力合一,才能取得积极进展;
2、源头控制,对各药剂槽分类截留,在线转化,资源化利用,降低废水废渣排放量;
3、推广应用环境友好型的表面处理技术。针对氧化线的污染问题,推广应用无添加剂碱蚀、无镍无氟封孔等工艺;
4、加强产学研联合,拓展废渣综合利用的思路和领域,实现综合利用价值最大化。
发明内容
本发明的目的在于针对现有技术中的不足之处,提供一种能转换煲模液为碱蚀液进行生产,从废液中提取氢氧化铝并解决除垢问题的煲模液代替碱蚀液并回收氢氧化铝的系统。
为达此目的,本发明采用以下技术方案:
一种煲模液代替碱蚀液并回收氢氧化铝的系统,包括煲模液生成系统、碱蚀液产生系统、碱蚀液收集系统、碱蚀液处理系统和碱蚀液分离系统;
所述煲模液生成系统包括多个煲模槽、废水导流沟、水池、六号泵和煲模液回收罐;所述煲模液生成系统用于处理模具并将煲模液引流至所述碱蚀液产生系统系统;
所述碱蚀液产生系统包括除油槽、一号流动水洗槽、二号流动水洗槽、碱蚀槽、一号碱蚀液截留槽、二号碱蚀液截留槽、喷淋槽、四号泵和五号泵;所述碱蚀液产生系统用于加工铝材,生成碱蚀液;
所述碱蚀液收集系统包括碱蚀液回收罐和一号泵;所述碱蚀液收集系统用于收集碱蚀液;
所述碱蚀液处理系统包括反应罐、二号泵和氢氧化铝晶种罐;所述碱蚀液处理系统用于进行碱蚀液的化学反应并生产氢氧化铝;
所述碱蚀液分离系统包括回收罐和离心机;所述碱蚀液分离系统用于将生产出的氢氧化铝固液分离;
所述煲模槽、废水导流沟、煲模液回收罐、七号泵、和碱蚀槽通过管道顺次连通;所述六号泵与所述水池通过管道连通,并设有高压雾化水枪,用于对所述煲模槽注水及冲洗模具;所述煲模槽与所述废水导流沟之间的管道上设有若干阀门;
所述一号流动水洗槽与出水口相连通;所述二号流动水洗槽与进水口相连通;所述一号流动水洗槽和二号流动水洗槽之间连通;所述二号碱蚀液截留槽与一号碱蚀液截留槽之间设有二十五号阀;所述一号碱蚀液截留槽与所述碱蚀槽之间设有二十四号阀;所述一号碱蚀液截留槽、四号泵及所述碱蚀液回收罐顺次通过管道连接,所述一号碱蚀液截留槽与所述四号泵之间设有二十三号阀;所述喷淋槽、五号泵和二号碱蚀液截留槽顺次通过管道连接,所述喷淋槽和五号泵之间设有二十七号阀,所述五号泵和二号碱蚀液截留槽之间设有二十六号阀;
所述碱蚀液回收罐、一号泵、反应罐、二号泵和回收罐通过管路顺次连通;所述二号泵的出口通过另一条管道与所述反应罐顶部相连通;通过所述回收罐的出口与所述离心机连通;所述碱蚀液回收罐与所述一号泵之间设有二十二号阀;所述反应罐与所述二号泵之间设有九号阀;所述回收罐的入口处设有十六号阀;所述回收罐和所述离心机之间设有十七号阀;所述氢氧化铝晶种罐通过设有十号阀的管道与所述二号泵相连通。
更进一步的说明,还包括碱蚀液用水再反应回收系统;
所述反应罐包括一号反应罐和二号反应罐;所述一号泵分别通过设有一号阀的管道和设有二号阀的管道与所述一号反应罐和二号反应罐相连通;
所述碱蚀液用水再反应回收系统包括废水回收罐和三号泵;所述废水回收罐的入口通过管道与所述离心机相连通;所述废水回收罐的底部通过设有十九号阀的管道与所述三号泵相连通;所述废水回收罐的中部通过设有十八号阀的管道与所述三号泵相连通;所述三号泵通过设有二十一号阀的管道与所述一号反应罐相连通;所述三号泵通过另一条设有二十号阀的管道与所述煲模槽相连通;所述一号反应罐和二号反应罐底部通过管道与所述二号泵相连通;所述一号反应罐的底部设有七号阀;所述二号反应罐的底部设有八号阀;所述九号阀设于靠近所述二号泵处;所述一号反应罐分别通过设有三号阀和设有五号阀的管道与所述二号泵相连通;所述二号反应罐分别通过设有四号阀的管道和设有六号阀的管道与所述二号泵相连通;所述二号泵通过管道与所述废水回收罐相连通,并在靠近所述二号泵处设有十二号阀,在靠近所述废水回收罐处设有十五号阀;所述二号泵通过另一条管道分别与所述一号反应罐和二号反应罐相连通,并在靠近所述二号泵处设有十一号阀,在靠近所述一号反应罐处设有十三号阀,在靠近所述二号反应罐处设有十四号阀。
更进一步的说明,所述一号反应罐、二号反应罐、回收罐和废水回收罐中均设有搅拌器。
更进一步的说明,所述一号反应罐和二号反应罐的上方均设有防止煲模液溢出的溢流管;所述溢流管与所述废水回收罐相连通。
煲模液代替碱蚀液并回收氢氧化铝的工艺,包括如下步骤:
步骤一:关闭与所述煲模槽连通的阀门,打开五十三号阀、六号泵,用高压雾化水枪给煲模槽注水;按300g/L氢氧化钠,给煲模液开槽;将模具吊入煲模槽,开始煲模;煲模完成后,吊出模具,用高压雾化水枪清洗模具,模具晾干回收,清洗水经导流沟流入煲模液回收罐,回收废液;当煲模液铝离子达到60g/L以上时,煲模速度越来越慢,打开煲模槽与废水导流沟之间的阀门,排放煲模废液,经导流沟流入煲模液回收罐,完成煲模液生成系统操作;
步骤二:检测煲模液回收罐4中的煲模废液,添加氢氧化钠对煲模液进行改造;打开二十八号阀,开启七号泵,将改造好的煲模废液泵入碱蚀槽;铝材经2-5分钟除油后、经一号流动水洗槽和二号流动水洗槽清洗,然后进入碱蚀槽,在50-60℃的温度下碱蚀5-15分钟;再经一号碱蚀液截留槽、二号碱蚀液截留槽清洗、然后经喷淋槽喷淋,完成铝材的碱蚀处理。开启五号泵,收集喷淋液进二号碱蚀液截留槽;打开二十三号阀,开启四号泵,将一号碱蚀液截留槽的废液泵入碱蚀液回收罐,完成碱蚀液产生系统操作;
步骤三:打开所述二十二号阀、一号阀、二号阀,关闭所述三号阀、四号阀、五号阀、六号阀、七号阀、八号阀,开启所述一号泵,将待处理碱蚀液泵入所述一号反应罐和二号反应罐中,完成碱蚀液收集系统操作;
步骤四:关闭所述三号阀、四号阀、五号阀、六号阀、八号阀、十号阀、十二号阀、十四号阀;打开所述七号阀、九号阀、十一号阀、十三号阀,开启二号泵,循环待处理碱蚀液;在二号泵保持大循环待处理碱蚀液的条件下,打开十号阀,将氢氧化铝晶种利用负压吸入所述一号反应罐进行反应;调整阀门开关,以同样的方式将氢氧化铝晶种利用负压吸入所述二号反应罐进行反应;
步骤五:打开三号阀或五号阀,打开九号阀、十二号阀、十五号阀,将一号反应罐中的上清液放入所述废水回收罐;关闭十一号阀、十五号阀、十七号阀;打开七号阀、十六号阀;开启二号泵,将所述一号反应罐中的固液混合物泵入所述回收罐;开启电离心机;打开十七号阀,固液分离氢氧化铝,并将回收液输送至废水回收罐;调整阀门开关,以同样的方式分离所述二号反应罐中的氢氧化铝和回收液;
步骤六:关闭十五号阀、十八号阀、十九号阀,将回收液回收至所述废水回收罐中;关闭三号阀、五号阀、七号阀、十一号阀、十六号阀;打开四号阀或六号阀,打开九号阀、十二号阀、十五号阀,将二号反应罐中的回收液放入废水回收罐;当反应液中铝过量,停止添加回收液;关闭十五号阀、十九号阀、二十一号阀,打开十八号阀、二十号阀,开启三号泵,将上清液送回煲模槽;关闭十八号阀、二十号阀;打开十九号阀、二十一号阀;开启三号泵,将含羟基氢氧化铝的固液混合物送回一号反应罐循环回收;
步骤七:将90-100°的煲模液放入所述煲模液回收罐1中,令煲模液依次经过所述碱蚀液产生系统、碱蚀液收集系统、碱蚀液处理系统、碱蚀液分离系统和碱蚀液用水再反应回收系统,溶解各系统中的铝垢,完成对整个系统的除垢。
更进一步的说明,步骤四中添加氢氧化铝晶种,当反应液中铝离子浓度降低至30g/L以下时,停止添加氢氧化铝晶种。
更进一步的说明,步骤二中添加氢氧化钠对煲模液进行改造时,添加氢氧化钠使溶液中的游离碱浓度与铝离子浓度的比值在3.25-3.75之间。
更进一步的说明,铝材进入碱蚀槽时,碱蚀槽中的游离碱浓度与铝离子浓度的比值控制在3.00-3.50之间。
更进一步的说明,所述步骤七中所添加的90-100°的煲模液中游离碱浓度与铝离子的浓度比值大于4.00。
更进一步的说明,所述一号反应罐、二号反应罐、回收罐和废水回收罐中均设有搅拌器,在添加氢氧化铝晶种时以及进行固液分离时均进行搅拌;停止添加氢氧化铝晶种后还继续搅拌不少于60分钟。
本发明的有益效果:
1、将煲模液改造为碱蚀液进行生产,合理利用废水进行铝业生产;
2、充分回收煲模废液中的铝离子,将铝离子转化为工业用的氢氧化铝,变废为宝,实现了废铝的高价值资源化利用;
3、本发明首次将煲模液的游离碱浓度与铝离子的浓度比值控制在3.00-3.50之间时,煲模液部分分解,析出氢氧化铝,器壁很少结垢;
4、本发明首次利用热煲模液(煲模液的游离碱浓度与铝离子的浓度比值>4.00、90-100℃),完全溶解设备器壁的铝垢,省去人工清理的麻烦,利用化学方法恢复设备的生产能力;
5、利用负压的方式将氢氧化铝晶种吸入反应罐,实现低位添加氢氧化铝晶种,避免在反应罐上方高位添加,既杜绝了氢氧化铝晶种从煲模液上表面添加、危险作业的风险,又降低了劳动强度。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是本发明的一个实施例的煲模液生成系统的示意图;
图2是本发明的一个实施例的碱蚀液产生系统的示意图;
图3是本发明的一个实施例的碱蚀液收集系统、碱蚀液处理系统、碱蚀液分离系统和碱蚀液用水再反应回收系统的示意图;
其中:煲模槽1、废水导流沟2、水池3、煲模液回收罐4、除油槽51、一号流动水洗槽52、二号流动水洗槽53、碱蚀槽54、一号碱蚀液截留槽55、二号碱蚀液截留槽56、喷淋槽57、碱蚀液回收罐6、反应罐7、一号反应罐71、二号反应罐72、氢氟酸罐73、回收罐8、离心机9、废水回收罐10、一号泵01、二号泵02、三号泵03、四号泵04、五号泵05、六号泵06、七号泵07、搅拌器08、溢流管09、高压雾化水枪010、一号阀0001、二号阀0002、三号阀0003、四号阀0004、五号阀0005、六号阀0006、七号阀0007、八号阀0008、九号阀0009、十号阀0010、十一号阀0011、十二号阀0012、十三号阀0013、十四号阀0014、十六号阀0016、十八号阀0018、十九号阀0019、二十号阀0020、二十一号阀0021、二十二号阀0022、二十三号阀0023、二十四号阀0024、二十五号阀0025、二十六号阀0026、二十七号阀0027、二十八号阀0028和五十三号阀0053。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
煲模与碱蚀废液回收铝离子生产氢氧化铝的理论依据:
煲模(碱蚀同理)时,磨具中的铝料头在碱蚀液中发生如下化学反应:
Al2O3+2NaOH=2NaAlO2+H2O(去自然氧化膜) (1)
2Al+2NaOH+2H2O=2NaAlO2+3H2↑(溶铝) (2)
NaAlO2+2H2O=Al(OH)3↓+NaOH(槽液分解,再生碱液) (3)
2Al(OH)3=Al2O3.3H2O(槽壁结垢、堵塞管道) (4)
按(1)(2)两式,碱浓度越高,溶铝速度越快;按(3)(4)两式,煲模液不稳定,易分解,并结垢。按(3)式,为了回收氢氧化铝,可适当减少氢氧化钠浓度,偏铝酸钠分解成氢氧化铝和氢氧化钠,可固液分离氢氧化铝,回用氢氧化钠。按(4)式,氢氧化铝不稳定,易分解成Al2O3.3H2O,形成铝垢,粘附在槽壁、管道、阀门、泵、搅拌器、罐壁等一切槽液接触的地方,维护非常麻烦。为了防止回收设备结垢,需要适当提高氢氧化钠浓度,使反应式(3)可以继续,反应式(4)难以进行。
煲模废液回收铝离子生产氢氧化铝的实验结果:
煲模液按氢氧化钠100g/L开槽,开始煲模,槽液迅速升温达到沸点,铝离子和游离碱浓度均上升。煲模过程中每间隔20分钟,各取一份煲模液存放一星期,然后观察槽液外观、沉淀和结垢等指标,结果如下:
试样1:取游离碱110g/L,Al3+20g/L的废液,R=游离碱浓度/Al3+浓度=5.50,槽液不分解,无氢氧化铝析出;
试样2:取游离碱121g/L,Al3+34g/L的废液,R=游离碱浓度/Al3+浓度=4.0,槽液不分解,无氢氧化铝析出;
试样3:取游离碱121g/L,Al3+34g/L的废液,R=游离碱浓度/Al3+浓度=3.56,槽液不分解,无氢氧化铝析出;
试样4:取游离碱125g/L,Al3+38.5g/L的废液,R=游离碱浓度/Al3+浓度=3.50,槽液分解,有微量氢氧化铝析出,容器壁无垢;
试样5:取游离碱125g/L,Al3+38.5g/L的废液,R=游离碱浓度/Al3+浓度=3.25,槽液分解,有少量氢氧化铝析出,容器壁无垢;加氢氧化铝晶种,搅拌均匀,静置2小时,氢氧化铝明显增加;再过滤、漂洗结晶物,110±5℃下烘干2小时,得氢氧化铝样品,然后送检。参照氢氧化铝国标(表0),样品委托中科院广州化学所检测测试中心测试,结果如表1所示,所得氢氧化铝产品完全符合国标要求;
试样6:取游离碱128g/L,Al3+42.7g/L的废液,R=游离碱浓度/Al3+浓度=3.00,槽液分解,氢氧化铝析出增加,容器壁无垢;
试样7:取游离碱131g/L,Al3+47.6g/L的废液,R=游离碱浓度/Al3+浓度=2.95,槽液分解,氢氧化铝析出增加,容器壁略结垢;回收氢氧化铝样品后,调整煲模废液的R=游离碱浓度/Al3+浓度>4.00,且温度为90-100℃,30分钟后,铝垢完全溶解,器壁干净。
试样8:取游离碱134g/L,Al3+53.6g/L的废液,R=游离碱浓度/Al3+浓度=2.50,槽液分解,氢氧化铝析出增加,容器壁结垢增加;
试样9:取游离碱143g/L,Al3+71.5g/L的废液,R=游离碱浓度/Al3+浓度=2.00,槽液分解,氢氧化铝析出增加,容器壁结垢增加。
表0氢氧化铝国家标准
表1实施例5的氢氧化铝样品检测结果
如图1-图3所示,
一种煲模液代替碱蚀液并回收氢氧化铝的系统,包括煲模液生成系统、碱蚀液产生系统、碱蚀液收集系统、碱蚀液处理系统和碱蚀液分离系统;
所述煲模液生成系统包括多个煲模槽1、废水导流沟2、水池3、六号泵06和煲模液回收罐4;所述煲模液生成系统用于处理模具并将煲模液引流至所述碱蚀液产生系统;
所述碱蚀液产生系统包括除油槽51、一号流动水洗槽52、二号流动水洗槽53、碱蚀槽54、一号碱蚀液截留槽55、二号碱蚀液截留槽56、喷淋槽57、四号泵04和五号泵05;所述碱蚀液产生系统用于加工铝材,生成碱蚀液;
所述碱蚀液收集系统包括碱蚀液回收罐6和一号泵01;所述碱蚀液收集系统用于收集碱蚀液;
所述碱蚀液处理系统包括反应罐7、二号泵02和氢氧化铝晶种罐73;所述碱蚀液处理系统用于进行碱蚀液的化学反应并生产氢氧化铝;
所述碱蚀液分离系统包括回收罐8和离心机9;所述碱蚀液分离系统用于将生产出的氢氧化铝固液分离;
所述煲模槽1、废水导流沟2、煲模液回收罐4、七号泵07、和碱蚀槽54通过管道顺次连通;所述六号泵06与所述水池3通过管道连通,并设有高压雾化水枪010,用于对所述煲模槽1注水及冲洗模具;所述煲模槽1与所述废水导流沟2之间的管道上设有若干阀门;
所述一号流动水洗槽52与出水口相连通;所述二号流动水洗槽53与进水口相连通;所述一号流动水洗槽52和二号流动水洗槽53之间连通;所述二号碱蚀液截留槽56与一号碱蚀液截留槽55之间设有二十五号阀0025;所述一号碱蚀液截留槽55与所述碱蚀槽54之间设有二十四号阀0024;所述一号碱蚀液截留槽55、四号泵04及所述碱蚀液回收罐6顺次通过管道连接,所述一号碱蚀液截留槽55与所述四号泵04之间设有二十三号阀0023;所述喷淋槽57、五号泵05和二号碱蚀液截留槽56顺次通过管道连接,所述喷淋槽57和五号泵05之间设有二十七号阀0027,所述五号泵05和二号碱蚀液截留槽56之间设有二十六号阀0026;
所述碱蚀液回收罐6、一号泵01、反应罐7、二号泵02和回收罐8通过管路顺次连通;所述二号泵02的出口通过另一条管道与所述反应罐7顶部相连通;通过所述回收罐8的出口与所述离心机9连通;所述碱蚀液回收罐6与所述一号泵01之间设有二十二号阀0022;所述反应罐7与所述二号泵02之间设有九号阀0009;所述回收罐8的入口处设有十六号阀0016;所述回收罐8和所述离心机9之间设有十七号阀;所述氢氧化铝晶种罐73通过设有十号阀0010的管道与所述二号泵02相连通。
铝材经过在碱蚀槽54中经过碱蚀后,在一号碱蚀液截留槽55、二号碱蚀液截留槽56中经过清洗,再经过喷淋槽57的喷淋,完成铝材的碱蚀处理。一号碱蚀液截留槽55、二号碱蚀液截留槽56和喷淋槽57中的废液汇集到一号碱蚀液截留槽55中再输送至碱蚀液回收罐6中,用于回收其中的铝离子。逐级的废液汇总收集,简化了管道的排布。在碱蚀液从反应罐通过管道经由二号泵02再回到反应罐中,形成一个大循环,在大循环进行的同时打开十号阀,氢氧化铝晶种罐73中的氢氧化铝晶种就会借由负压被输送至碱蚀液的大循环中,参与与碱蚀液的反应,大循环液体不停的流动下,氢氧化铝晶种可以和碱蚀液可以更加混合的更加均匀,反应更快。氢氧化铝晶种在二号泵02处与碱性碱蚀液充分混合、反应,不挥发,生成氢氧化铝;本添加方法实现低位添加氢氧化铝晶种,避免在反应罐上方高位添加,既杜绝了氢氧化铝晶种从碱蚀液上表面添加、高温下严重挥发、危害工人健康、污染环境的风险,又降低了劳动强度。
更进一步的说明,还包括碱蚀液用水再反应回收系统;
所述反应罐7包括一号反应罐71和二号反应罐72;所述一号泵01分别通过设有一号阀0001的管道和设有二号阀0002的管道与所述一号反应罐71和二号反应罐72相连通;
所述碱蚀液用水再反应回收系统包括废水回收罐10和三号泵03;所述废水回收罐10的入口通过管道与所述离心机9相连通;所述废水回收罐10的底部通过设有十九号阀0019的管道与所述三号泵03相连通;所述废水回收罐10的中部通过设有十八号阀0018的管道与所述三号泵03相连通;所述三号泵03通过设有二十一号阀0021的管道与所述一号反应罐71相连通;所述三号泵03通过另一条设有二十号阀0020的管道与所述煲模槽1相连通;所述一号反应罐71和二号反应罐72底部通过管道与所述二号泵02相连通;所述一号反应罐71的底部设有七号阀0007;所述二号反应罐72的底部设有八号阀0008;所述九号阀0009设于靠近所述二号泵02处;所述一号反应罐71分别通过设有三号阀0003和设有五号阀0005的管道与所述二号泵02相连通;所述二号反应罐72分别通过设有四号阀0004的管道和设有六号阀0006的管道与所述二号泵02相连通;所述二号泵02通过管道与所述废水回收罐10相连通,并在靠近所述二号泵02处设有十二号阀0012,在靠近所述废水回收罐10处设有十五号阀;所述二号泵02通过另一条管道分别与所述一号反应罐71和二号反应罐72相连通,并在靠近所述二号泵02处设有十一号阀0011,在靠近所述一号反应罐71处设有十三号阀0013,在靠近所述二号反应罐72处设有十四号阀0014。
从离心机9固液分离出氢氧化铝后,剩余的废水中残余大量的游离氟,利用煲模液中的铝回收废水回收罐10中的氟,将反应后的上清液送回煲模槽1,实现废水回用;将剩余固液混合物送回一号反应罐71,循环回收游离氟;废水全部重复回用,实现煲模液废水废渣零排放。
更进一步的说明,所述一号反应罐71、二号反应罐72、回收罐8和废水回收罐10中均设有搅拌器08。
在一号反应罐71、二号反应罐72和和废水回收罐10中存在液体的化学反应,充分搅拌可以使各种试剂混合更加均匀,加快反应的速度,使反应更加充分。在回收罐8中,先进行充分的搅拌,令氢氧化铝在反应液中均匀分散,离心机9进行固液分离时效果才好。
更进一步的说明,所述一号反应罐71和二号反应罐72的上方均设有防止煲模液溢出的溢流管09;所述溢流管09与所述废水回收罐10相连通。
溢流管09是安全性的防护措施,防止液体过量溢出反应罐。如果反应液超过溢流管09设置的高度,就会从溢流管09流至废水回收罐10,重新进行废水的回收利用过程。
煲模液代替碱蚀液并回收氢氧化铝的工艺,包括如下步骤:
步骤一:关闭与所述煲模槽1连通的阀门,打开五十三号阀0053、六号泵06,用高压雾化水枪010给煲模槽1注水;按300g/L氢氧化钠,给煲模液开槽;将模具吊入煲模槽1,开始煲模;煲模完成后,吊出模具,用高压雾化水枪010清洗模具,模具晾干回收,清洗水经导流沟流入煲模液回收罐4,回收废液;当煲模液铝离子达到60g/L以上时,煲模速度越来越慢,打开煲模槽1与废水导流沟2之间的阀门,排放煲模废液,经导流沟流入煲模液回收罐4,完成煲模液生成系统操作;
步骤二:检测煲模液回收罐4中的煲模废液,添加氢氧化钠对煲模液进行改造;打开二十八号阀0028,开启七号泵07,将改造好的煲模废液泵入碱蚀槽54;铝材经2-5分钟除油后、经一号流动水洗槽53和二号流动水洗槽清洗,然后进入碱蚀槽54,在50-60℃的温度下碱蚀5-15分钟;再经一号碱蚀液截留槽55、二号碱蚀液截留槽56清洗、然后经喷淋槽57喷淋,完成铝材的碱蚀处理。开启五号泵05,收集喷淋液进二号碱蚀液截留槽56;打开二十三号阀0023,开启四号泵04,将一号碱蚀液截留槽55的废液泵入碱蚀液回收罐6,完成碱蚀液产生系统操作;
步骤三:打开所述二十二号阀0022、一号阀0001、二号阀0002,关闭所述三号阀0003、四号阀0004、五号阀0005、六号阀0006、七号阀0007、八号阀0008,开启所述一号泵01,将待处理碱蚀液泵入所述一号反应罐71和二号反应罐72中,完成碱蚀液收集系统操作;
步骤四:关闭所述三号阀0003、四号阀0004、五号阀0005、六号阀0006、八号阀0008、十号阀0010、十二号阀0012、十四号阀0014;打开所述七号阀0007、九号阀0009、十一号阀0011、十三号阀0013,开启二号泵02,循环待处理碱蚀液;在二号泵02保持大循环待处理碱蚀液的条件下,打开十号阀0010,将氢氧化铝晶种利用负压吸入所述一号反应罐71进行反应;调整阀门开关,以同样的方式将氢氧化铝晶种利用负压吸入所述二号反应罐72进行反应;
步骤五:打开三号阀0003或五号阀0005,打开九号阀0009、十二号阀0012、十五号阀,将一号反应罐71中的上清液放入所述废水回收罐10;关闭十一号阀0011、十五号阀、十七号阀;打开七号阀0007、十六号阀0016;开启二号泵02,将所述一号反应罐71中的固液混合物泵入所述回收罐8;开启电离心机9;打开十七号阀,固液分离氢氧化铝,并将回收液输送至废水回收罐10;调整阀门开关,以同样的方式分离所述二号反应罐72中的氢氧化铝和回收液;
步骤六:关闭十五号阀、十八号阀0018、十九号阀0019,将回收液回收至所述废水回收罐10中;关闭三号阀0003、五号阀0005、七号阀0007、十一号阀0011、十六号阀0016;打开四号阀0004或六号阀0006,打开九号阀0009、十二号阀0012、十五号阀,将二号反应罐72中的回收液放入废水回收罐10;当反应液中铝过量,停止添加回收液;关闭十五号阀、十九号阀0019、二十一号阀0021,打开十八号阀0018、二十号阀0020,开启三号泵03,将上清液送回煲模槽1;关闭十八号阀0018、二十号阀0020;打开十九号阀0019、二十一号阀0021;开启三号泵03,将含羟基氢氧化铝的固液混合物送回一号反应罐71循环回收;
步骤七:将90-100°的煲模液放入所述煲模液回收罐1中,令煲模液依次经过所述碱蚀液产生系统、碱蚀液收集系统、碱蚀液处理系统、碱蚀液分离系统和碱蚀液用水再反应回收系统,溶解各系统中的铝垢,完成对整个系统的除垢。
更进一步的说明,步骤四中添加氢氧化铝晶种,当反应液中铝离子浓度降低至30g/L以下时,停止添加氢氧化铝晶种。
化学反应中反应物浓度下降会使反应速度降低。当反应液中的铝离子浓度降低到30g/L以下时,反应液中的铝离子浓度已经很低,继续添加氢氧化铝晶种反应速率和反应效率会继续变低,此时为保证生产效率不再添加氢氧化铝晶种。
更进一步的说明,步骤二中添加氢氧化钠对煲模液进行改造时,添加氢氧化钠使溶液中的游离碱浓度与铝离子浓度的比值在3.25-3.75之间。
更进一步的说明,铝材进入碱蚀槽54时,碱蚀槽54中的游离碱浓度与铝离子浓度的比值控制在3.00-3.50之间。
更进一步的说明,所述步骤七中所添加的90-100°的煲模液中游离碱浓度与铝离子的浓度比值大于4.00。
此条件下的煲模液可完全溶解设备器壁的铝垢,省去人工清理的麻烦,利用化学方法恢复设备的生产能力,快速高效。
更进一步的说明,所述一号反应罐71、二号反应罐72、回收罐8和废水回收罐10中均设有搅拌器08,在添加氢氧化铝晶种时以及进行固液分离时均进行搅拌;停止添加氢氧化铝晶种后还继续搅拌不少于60分钟。
以上内容仅为本发明的较佳实施例,对于本领域的普通技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,本说明书内容不应理解为对本发明的限制。

Claims (4)

1.一种煲模液代替碱蚀液并回收氢氧化铝的系统,其特征在于:包括煲模液生成系统、碱蚀液产生系统、碱蚀液收集系统、碱蚀液处理系统和碱蚀液分离系统;
所述煲模液生成系统包括多个煲模槽、废水导流沟、水池、六号泵和煲模液回收罐;所述煲模液生成系统用于处理模具并将煲模液引流至所述碱蚀液产生系统;
所述碱蚀液产生系统包括除油槽、一号流动水洗槽、二号流动水洗槽、碱蚀槽、一号碱蚀液截留槽、二号碱蚀液截留槽、喷淋槽、四号泵和五号泵;所述碱蚀液产生系统用于加工铝材,生成碱蚀液;
所述碱蚀液收集系统包括碱蚀液回收罐和一号泵;所述碱蚀液收集系统用于收集碱蚀液;
所述碱蚀液处理系统包括反应罐、二号泵和氢氧化铝晶种罐;所述碱蚀液处理系统用于进行碱蚀液的化学反应并生产氢氧化铝;
所述碱蚀液分离系统包括回收罐和离心机;所述碱蚀液分离系统用于将生产出的氢氧化铝固液分离;
所述煲模槽、废水导流沟、煲模液回收罐、七号泵、和碱蚀槽通过管道顺次连通;所述六号泵与所述水池通过管道连通,并设有高压雾化水枪,用于对所述煲模槽注水及冲洗模具;所述煲模槽与所述废水导流沟之间的管道上设有若干阀门;
所述一号流动水洗槽与出水口相连通;所述二号流动水洗槽与进水口相连通;所述一号流动水洗槽和二号流动水洗槽之间连通;所述二号碱蚀液截留槽与一号碱蚀液截留槽之间设有二十五号阀;所述一号碱蚀液截留槽与所述碱蚀槽之间设有二十四号阀;所述一号碱蚀液截留槽、四号泵及所述碱蚀液回收罐顺次通过管道连接,所述一号碱蚀液截留槽与所述四号泵之间设有二十三号阀;所述喷淋槽、五号泵和二号碱蚀液截留槽顺次通过管道连接,所述喷淋槽和五号泵之间设有二十七号阀,所述五号泵和二号碱蚀液截留槽之间设有二十六号阀;
所述碱蚀液回收罐、一号泵、反应罐、二号泵和回收罐通过管路顺次连通;所述二号泵的出口通过另一条管道与所述反应罐顶部相连通;通过所述回收罐的出口与所述离心机连通;所述碱蚀液回收罐与所述一号泵之间设有二十二号阀;所述反应罐与所述二号泵之间设有九号阀;所述回收罐的入口处设有十六号阀;所述回收罐和所述离心机之间设有十七号阀;所述氢氧化铝晶种罐通过设有十号阀的管道与所述二号泵相连通。
2.根据权利要求1所述的煲模液代替碱蚀液并回收氢氧化铝的系统,其特征在于:还包括碱蚀液用水再反应回收系统;
所述反应罐包括一号反应罐和二号反应罐;所述一号泵分别通过设有一号阀的管道和设有二号阀的管道与所述一号反应罐和二号反应罐相连通;
所述碱蚀液用水再反应回收系统包括废水回收罐和三号泵;所述废水回收罐的入口通过管道与所述离心机相连通;所述废水回收罐的底部通过设有十九号阀的管道与所述三号泵相连通;所述废水回收罐的中部通过设有十八号阀的管道与所述三号泵相连通;所述三号泵通过设有二十一号阀的管道与所述一号反应罐相连通;所述三号泵通过另一条设有二十号阀的管道与所述煲模槽相连通;所述一号反应罐和二号反应罐底部通过管道与所述二号泵相连通;所述一号反应罐的底部设有七号阀;所述二号反应罐的底部设有八号阀;所述九号阀设于靠近所述二号泵处;所述一号反应罐分别通过设有三号阀和设有五号阀的管道与所述二号泵相连通;所述二号反应罐分别通过设有四号阀的管道和设有六号阀的管道与所述二号泵相连通;所述二号泵通过管道与所述废水回收罐相连通,并在靠近所述二号泵处设有十二号阀,在靠近所述废水回收罐处设有十五号阀;所述二号泵通过另一条管道分别与所述一号反应罐和二号反应罐相连通,并在靠近所述二号泵处设有十一号阀,在靠近所述一号反应罐处设有十三号阀,在靠近所述二号反应罐处设有十四号阀。
3.根据权利要求2所述的煲模液代替碱蚀液并回收氢氧化铝的系统,其特征在于:所述一号反应罐、二号反应罐、回收罐和废水回收罐中均设有搅拌器。
4.根据权利要求2所述的煲模液代替碱蚀液并回收氢氧化铝的系统,其特征在于:所述一号反应罐和二号反应罐的上方均设有防止煲模液溢出的溢流管;所述溢流管与所述废水回收罐相连通。
CN201711471646.8A 2017-12-29 2017-12-29 一种煲模液代替碱蚀液并回收氢氧化铝的系统 Active CN108149017B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711471646.8A CN108149017B (zh) 2017-12-29 2017-12-29 一种煲模液代替碱蚀液并回收氢氧化铝的系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711471646.8A CN108149017B (zh) 2017-12-29 2017-12-29 一种煲模液代替碱蚀液并回收氢氧化铝的系统

Publications (2)

Publication Number Publication Date
CN108149017A CN108149017A (zh) 2018-06-12
CN108149017B true CN108149017B (zh) 2019-05-24

Family

ID=62462374

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711471646.8A Active CN108149017B (zh) 2017-12-29 2017-12-29 一种煲模液代替碱蚀液并回收氢氧化铝的系统

Country Status (1)

Country Link
CN (1) CN108149017B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109112546B (zh) * 2018-07-27 2021-04-20 佛山市三水雄鹰铝表面技术创新中心有限公司 煲模液回收氢氧化铝和硫酸钠的氧化线系统及工艺
CN109133131B (zh) * 2018-07-27 2021-01-12 佛山市三水雄鹰铝表面技术创新中心有限公司 氧化液与煲模液中和回收氢氧化铝和硫酸钠的系统与方法
CN109112537B (zh) * 2018-07-27 2021-08-03 佛山市三水雄鹰铝表面技术创新中心有限公司 氧化液及除油中和液回收氢氧化铝和硫酸钠的装置及工艺
CN112553470B (zh) * 2020-12-08 2022-08-23 广西博世科环保科技股份有限公司 一种利用钛白废酸和二次铝灰回收氢氧化铝粉的方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827984A (ja) * 1981-08-10 1983-02-18 Kurisutaru Eng Kk アルミニウム及びその合金のアルカリエツチング液の再生方法
JPH0723600B2 (ja) * 1989-12-14 1995-03-15 伯東株式会社 紙パルプ製造工程におけるケイ酸アルミニウムを主成分とするスケールの洗浄方法
CN1121539A (zh) * 1994-06-21 1996-05-01 日本轻金属株式会社 铝材的浸蚀处理方法
JP5016973B2 (ja) * 2007-05-21 2012-09-05 株式会社野坂電機 アルカリエッチング液のアルカリ回収方法及び装置
CN101928948A (zh) * 2010-09-02 2010-12-29 吉林麦达斯铝业有限公司 铝型材挤压模具碱洗残液的回收工艺
CN102923873A (zh) * 2011-08-08 2013-02-13 曹健 一种铝型材表面处理在线水循环净化系统
CN103451436B (zh) * 2013-09-02 2015-04-29 佛山市三水雄鹰铝表面技术创新中心有限公司 铝加工厂煲模废液与阳极氧化废液中和处理和铝离子的回收系统
CN104045186B (zh) * 2014-06-20 2015-12-16 江阴苏铝铝业有限公司 铝氧化污水处理装置及铝氧化污水处理工艺
CN204074790U (zh) * 2014-09-08 2015-01-07 南南铝业股份有限公司 铝合金挤压模具清洗设备
CN107055573A (zh) * 2017-06-19 2017-08-18 江苏佳铝实业股份有限公司 一种模具蚀洗溶液氢氧化钠的回收系统

Also Published As

Publication number Publication date
CN108149017A (zh) 2018-06-12

Similar Documents

Publication Publication Date Title
CN108069449A (zh) 铝业减渣之废液回收氢氧化铝和氢氧化钠的方法
CN108149017B (zh) 一种煲模液代替碱蚀液并回收氢氧化铝的系统
CN108083305B (zh) 一种煲模液回收氢氧化铝的系统与工艺
CN101209873B (zh) 含六价铬废渣的铬分离回收法
CN108191107A (zh) 铝加工中单镍盐着色和中温封孔药剂的回收系统与方法
CN108193251B (zh) 铝加工中镍锡盐着色和中温封孔的药剂回收系统与方法
CN101816829B (zh) 一种铬渣解毒工艺
CN107986308B (zh) 一种煲模液生产氢氧化铝的车间系统与工艺
CN103601322A (zh) 铝型材生产废水处理循环利用及废渣综合利用的一体化工艺
CN102358645B (zh) 电解金属锰生产用水全闭路循环处理方法
CN102603098A (zh) 一种不锈钢酸洗废液循环处理方法
CN106277486A (zh) 一种钢铁行业盐酸酸洗废液的处理回收方法及其系统
CN108059178A (zh) 一种铝业减渣之废液生产冰晶石的方法
CN108147444B (zh) 一种碱蚀液生产冰晶石的系统及工艺
CN104711428B (zh) 一种用于酸洗污泥制备回收金属的方法
CN109183118B (zh) 镍锡盐着色封孔回收着色剂和中水利用方法与在线配置
CN208632118U (zh) 一种含铝废水以氨为沉淀剂回收氢氧化铝的装置
CN109112537B (zh) 氧化液及除油中和液回收氢氧化铝和硫酸钠的装置及工艺
CN107337228B (zh) 一种含铝废渣综合处理回收方法
CN108179421B (zh) 一种煲模液代替碱蚀液并回收冰晶石的工艺
CN106367791B (zh) 铝前处理和氢氧化铝在线回收与碱性三合一磨砂工艺
CN102757141A (zh) 一种不锈钢酸洗混合废酸中重金属镍的处理方法
CN108083309B (zh) 一种煲模液生产冰晶石的车间系统
CN109097807A (zh) 单镍盐着色回收封孔剂与中水利用的方法
CN108128790B (zh) 一种煲模液生产冰晶石的系统与工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant