CN108129147B - 具室温交换偏置的单相稀土氧化物陶瓷材料及其制备方法 - Google Patents

具室温交换偏置的单相稀土氧化物陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN108129147B
CN108129147B CN201711468592.XA CN201711468592A CN108129147B CN 108129147 B CN108129147 B CN 108129147B CN 201711468592 A CN201711468592 A CN 201711468592A CN 108129147 B CN108129147 B CN 108129147B
Authority
CN
China
Prior art keywords
phase
ceramic material
exchange bias
temperature
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711468592.XA
Other languages
English (en)
Other versions
CN108129147A (zh
Inventor
王磊
张莉丽
钟震晨
钟明龙
熊厚冬
谭秋兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi University of Science and Technology
Original Assignee
Jiangxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi University of Science and Technology filed Critical Jiangxi University of Science and Technology
Priority to CN201711468592.XA priority Critical patent/CN108129147B/zh
Publication of CN108129147A publication Critical patent/CN108129147A/zh
Application granted granted Critical
Publication of CN108129147B publication Critical patent/CN108129147B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明属于稀土磁性功能材料领域,具体涉及一种具室温交换偏置的单相稀土氧化物陶瓷材料及其制备方法。本发明的单相稀土氧化物陶瓷材料,分子式:YbCr0.4Fe0.6O3。其制备方法包括:将粉末状镱源化合物、铬源化合物和铁源化合物按金属原子百分比混合均匀;将均匀混合后的粉末压坯;将得到的压坯进行预烧和高温固相烧结,然后冷却;通过X射线衍射检测所得产物的单相性,固相反应充分,形成钙钛矿型Yb(Cr·Fe)O3单相,即得目标产物YbCr0.9Fe0.1O3。本发明的单相氧化物陶瓷材料,在50K至350K温度段表现出明显交换偏置效应,尤其在室温300K附近具有交换偏置效应,为实际应用带来了极大便利。

Description

具室温交换偏置的单相稀土氧化物陶瓷材料及其制备方法
技术领域
本发明属于稀土磁性功能材料领域,具体涉及一种具室温交换偏置的单相稀土氧化物陶瓷材料及其制备方法。
背景技术
一般认为,交换偏置效应来源于异质结构中铁磁/反铁磁结构体系中界面的交换耦合作用。由于从高于反铁磁有序温度以上施加磁场降温,反铁磁层率先有序,其最外层磁矩将会驱使铁磁层最外层磁矩平行于其排列,从而形成界面处反铁磁层钉扎铁磁层的效果,因此体系的磁滞回线将沿磁场方向偏离原点,即交换偏置效应,例如在薄膜和核-壳结构的纳米颗粒等体系中都发现了交换偏置现象。
从交换偏置的定义以及最早被发现的体系可以看出,交换偏置效应通常存在于异质结构之中,但是异质结构材料有制备工艺流程繁复、缺陷较多、性质不稳定等缺点。最新的研究表明,在一些单相合金和化合物中也相继发现了交换偏置效应。例如,Nd0.75Ho0.25Al2、YbFe2O4、NdMnO3、TmCrO3、YbCrO3等合金和氧化物中都发现了交换偏置效应,但是这些合金和氧化物体系的交换偏置截止温度分别仅为28K、60K、79K、88K和105K,都远低于室温,因此目前直接付诸实际应用仍有一定的距离。
发明内容
本发明的目的是提供一种具室温交换偏置的单相稀土氧化物陶瓷材料及其制备方法,所述的单相稀土氧化物陶瓷材料,具有交换偏置效应的温区宽的特点,尤其在室温附近具有交换偏置效应。
本发明的技术方案:
一种具室温交换偏置的单相稀土氧化物陶瓷材料,其分子式为:YbCr0.4Fe0.6O3
一种具室温交换偏置的单相稀土氧化物陶瓷材料的制备方法,包括以下步骤:
步骤1,将粉末状镱源化合物、铬源化合物和铁源化合物按金属原子百分比Yb:Cr:Fe=50:20:30混合均匀;
步骤2,将步骤1中均匀混合后的粉末压坯;
步骤3,将步骤2中得到的压坯进行预烧和高温固相烧结,然后冷却;
步骤4,通过X射线衍射(XRD)检测步骤3所得产物的单相性,固相反应充分,形成钙钛矿型Yb(Cr·Fe)O3单相,即得目标产物YbCr0.9Fe0.1O3;若未形成单相陶瓷材料,则需要打碎重新研磨成粉末,再次进入步骤2压坯和步骤3烧结,直至形成所需的单相陶瓷材料;
步骤2中所述压坯的压强为5-20Mpa;
步骤3中所述预烧温度为400~900℃,保温时间为1~3小时;
步骤3中所述高温烧结的温度为1200~1500℃,保温时间为24~72小时。
步骤1中所述镱源化合物为三氧化二镱、水合碳酸镱或水合硝酸镱中的一种;铬源化合物为三氧化二铬、水合碳酸铬或水合硝酸铬中的一种;铁源化合物为三氧化二铁、水合碳酸铁或水合硝酸铁中的一种。
步骤1中所述粉末状镱源化合物、铬源化合物和铁源化合物的粒径范围为1~10微米。
步骤3中预烧阶段的升温速率为5℃/分钟。
步骤3中高温固相烧结阶段的升温速率:1100℃以下为5℃/分钟,1100℃以上为2℃/分钟。
步骤3中冷却阶段的降温速率:500℃以上为5℃/分钟,500℃以下随炉自然冷却至室温。
需要特别指出的,步骤4可能会重复进行多次才可得到单相陶瓷材料。
本发明公开的YbCr0.4Fe0.6O3单相氧化物陶瓷材料,在50K至350K温度段都表现出明显的交换偏置效应,尤其是在室温300K附近具有交换偏置效应,为其实际应用带来了极大的便利。相对于具有交换偏置效应的异质结构材料,单相氧化物陶瓷材料具有晶体结构缺陷少、弹性应变小、应力耦合小,因此其付诸应用更有益于能耗的降低,绿色环保,所以具有室温交换偏置效应的YbCr0.4Fe0.6O3功能陶瓷材料会在磁记录、自旋阀器件、传感器等电子元器件等领域具有可以预见的应用前景和实用价值。
附图说明
图1是本发明的单相陶瓷材料的X射线衍射图。
图2是本发明的单相陶瓷材料的晶体结构图。
图3是本发明的单相陶瓷材料的磁化强度随温度变化图。
图4是本发明的单相陶瓷材料经过10kOe冷却场后,在300K、200K、150K和50K时磁滞回线图。
具体实施方式
为了更加清楚地说明本发明,以下结合附图进一步说明本发明,实施例所描述的内容仅用于说明本发明,而非限制本发明。
实施例1
步骤1:以分析纯度三氧化二镱(Yb2O3)、三氧化二铬(Cr2O3)和三氧化二铁(Fe2O3)粒径10微米的粉末为原料,按照Yb:Cr:Fe=50:20:30(原子百分比)的比例配料,并混合均匀。
步骤2:采用冷压模将步骤1所得均匀混合的粉末压成直径为12mm、厚度为2~3mm的圆柱片,所施加的压强为18Mpa。
步骤3:将步骤2所得圆柱片放入箱式电阻炉中烧结,首先从室温(25℃)以5℃/分钟升至450℃,在450℃的条件下保温1小时,即预烧;然后以5℃/分钟升至1100℃,随即以2℃/分钟升至1350℃,在1350℃的条件下保温48小时,即高温固相烧结;接下来以5℃/分钟降温至500℃,然后随炉自然冷却至室温。
步骤4:将步骤3烧结得到的圆片放入玛瑙研钵中研磨成粒径范围为10~100微米粉末,然后采用荷兰帕纳科公司生产的PANalytical-Empyrean型X射线衍射仪,Cu靶收集得到的化合物的X射线衍射数据,如图1所示。固相反应充分,形成钙钛矿型Yb(Cr·Fe)O3单相(其晶体结构图如图2所示),即得目标产物YbCr0.4Fe0.6O3
以下为对实施例1目标产物YbCr0.4Fe0.6O3单相稀土氧化物陶瓷材料的室温交换偏置效应等磁学特性的详细表征过程。
采用美国Quantum Design公司生产的Dynacool型综合物性测试系统(PPMS)表征目标化合物的磁化强度随温度变化情况,实验结果如图3所示。从图3中可见,YbCr0.4Fe0.6O3的奈尔温度约为350K,说明在室温下该氧化物陶瓷材料仍然处于磁有序状态,从而为其室温条件下具备交换偏置效应奠定了基础。
采用美国Quantum Design公司生产的Dynacool型综合物性测试系统(PPMS)测试目标化合物在为10kOe条件下,从400K冷却场至300K后的磁滞回线。实验结果如图4(a)所示,从图4(a)中可见磁滞回线向H轴负方向发生偏移,即负交换偏置效应,交换偏置场HE=-316Oe。
采用美国Quantum Design公司生产的Dynacool型综合物性测试系统(PPMS)测试目标化合物在为10kOe条件下,从400K冷却场至200K后的磁滞回线。实验结果如图4(b)所示,从图4(b)中可见磁滞回线向H轴负方向发生偏移,即负交换偏置效应,交换偏置场HE=-4543Oe。
采用美国Quantum Design公司生产的Dynacool型综合物性测试系统(PPMS)测试目标化合物在为10kOe条件下,从400K冷却场至150K后的磁滞回线。实验结果如图4(c)所示,从图4(c中可见磁滞回线向H轴负方向发生偏移,即负交换偏置效应,交换偏置场HE=-5470Oe。
采用美国Quantum Design公司生产的Dynacool型综合物性测试系统(PPMS)测试目标化合物在为10kOe条件下,从400K冷却场至50K后的磁滞回线。实验结果如图4(d)所示,从图4(d)中可见磁滞回线向H轴负方向发生偏移,即负交换偏置效应,交换偏置场HE=-1500Oe。
采用美国Quantum Design公司生产的Dynacool型综合物性测试系统(PPMS)测试目标化合物在为10kOe条件下,从400K冷却场至不同的指定温度后的磁滞回线,从磁滞回线得到不同温度点的交换偏置场,可得交换偏置场随温度变化的情况,结果如表1所示,从表中可见该氧化物陶瓷在50K-350K的温区内都具有交换偏置效应,说明其具有广泛的应用价值。
表1:实施例1中稀土氧化物陶瓷在不同温度点的交换偏置场和矫顽力
温度(K) 冷却场(Oe) 交换偏置场H<sub>E</sub>(Oe) 矫顽力H<sub>C</sub>(Oe)
50 10kOe 1500 4293
100 10kOe 5169 1657
150 10kOe 5470 238
200 10kOe 4543 68
250 10kOe 3115 731
300 10kOe 316 2641
350 10KOe 18 440
实施例2
步骤1:以分析纯度水合碳酸镱(Yb2(CO3)3·nH2O)、水合碳酸铬(Cr2(CO3)3·nH2O)和水合碳酸铁(Fe2(CO3)3·nH2O)粒径范3微米的粉末为原料,按照Yb:Cr:Fe=50:20:30(原子百分比)的比例配料,并混合均匀。
步骤2:采用冷压模将步骤1所得均匀混合的粉末压成直径为12mm、厚度为2~3mm的圆柱片,所施加的压强为6Mpa。
步骤3:将步骤2所得圆柱片放入箱式电阻炉中烧结,首先从室温以5℃/分钟升至900℃,在900℃的条件下保温3小时,即预烧;然后以5℃/分钟升至1100℃,随即以2℃/分钟升至1350℃,在1350℃的条件下保温48小时,即高温固相烧结;接下来以5℃/分钟降温至500℃,然后随炉自然冷却至室温。
步骤4:将步骤3烧结的模压圆柱片放入玛瑙研钵中研磨成粒径范围为10~100微米粉末,然后采用荷兰帕纳科公司生产的PANalytical-Empyrean型X射线衍射仪,Cu靶收集得到的化合物的X射线衍射数据,未形成单相陶瓷材料。重新打碎研磨成粉末,再次进入步骤2压坯和步骤3烧结,这次形成所需的单相陶瓷材料,如图1所示。固相反应充分,形成钙钛矿型Yb(Cr·Fe)O3单相(其晶体结构图如图2所示),即得目标产物YbCr0.4Fe0.6O3
对目标产物YbCr0.4Fe0.6O3单相稀土氧化物陶瓷材料的室温交换偏置效应等磁学特性的详细表征过程与实施例1相同。
实施例3
步骤1:以分析纯度水合硝酸镱(Yb(NO3)3·nH2O)、水合硝酸铬(Cr(NO3)3·nH2O)和水合硝酸铁(Fe(NO3)3·nH2O)粒径7微米的粉末为原料,按照Yb:Cr:Fe=50:20:30(原子百分比)的比例配料,并混合均匀。
步骤2、步骤3、步骤4与实施例1相同。
对目标产物YbCr0.4Fe0.6O3单相稀土氧化物陶瓷材料的室温交换偏置效应等磁学特性的详细表征过程与实施例1相同。
以上所述仅为本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰(例如溶胶凝胶燃烧合成法亦可制得本发明中同样的稀土氧化物陶瓷材料),这些改进和润饰也应视为本发明的保护范畴。

Claims (8)

1.一种具室温交换偏置的单相稀土氧化物陶瓷材料,其特征是,分子式为:
YbCr0.4Fe0.6O3,其交换偏置效应温度为150K至350K。
2.根据权利要求1所述的一种具室温交换偏置的单相稀土氧化物陶瓷材料,其特征是:交换偏置效应温度优选300K。
3.制备权利要求1所述的具室温交换偏置的单相稀土氧化物陶瓷材料的方法,其特征是,包括以下步骤:
步骤1,将粉末状镱源化合物、铬源化合物和铁源化合物按金属原子百分比Yb:Cr:Fe=50:20:30混合均匀;
步骤2,将步骤1中均匀混合后的粉末压坯;
步骤3,将步骤2中得到的压坯进行预烧和高温固相烧结,然后冷却;
步骤4,通过X射线衍射(XRD)检测步骤3所得产物的单相性,固相反应充分,形成钙钛矿型Yb(Cr·Fe)O3单相,即得目标产物YbCr0.4Fe0.6O3;若未形成单相陶瓷材料,则需要打碎重新研磨成粉末,再次进入步骤2压坯和步骤3烧结,直至形成所需的单相陶瓷材料;
步骤2中所述压坯的压强为5-20Mpa;
步骤3中所述预烧温度为400~900℃,保温时间为1~3小时;
步骤3中所述高温烧结的温度为1200~1500℃,保温时间为24~72小时。
4.根据权利要求3所述的制备具室温交换偏置的单相稀土氧化物陶瓷材料的方法,其特征是:步骤1中所述镱源化合物为三氧化二镱、水合碳酸镱或水合硝酸镱中的一种;铬源化合物为三氧化二铬、水合碳酸铬或水合硝酸铬中的一种;铁源化合物为三氧化二铁、水合碳酸铁或水合硝酸铁中的一种。
5.根据权利要求3所述的制备具室温交换偏置的单相稀土氧化物陶瓷材料的方法,其特征是:粉末状镱源化合物、铬源化合物和铁源化合物的粒径范围为1~10微米。
6.根据权利要求3所述的制备具室温交换偏置的单相稀土氧化物陶瓷材料的方法,其特征是:步骤3中预烧阶段的升温速率为5℃/分钟。
7.根据权利要求3所述的制备具室温交换偏置的单相稀土氧化物陶瓷材料的方法,其特征是:步骤3中高温固相烧结阶段的升温速率:1100℃以下为5℃/分钟,1100℃以上为2℃/分钟。
8.根据权利要求3所述的制备具室温交换偏置的单相稀土氧化物陶瓷材料的方法,其特征是:步骤3中冷却阶段的降温速率:500℃以上为5℃/分钟,500℃以下随炉自然冷却至室温。
CN201711468592.XA 2017-12-29 2017-12-29 具室温交换偏置的单相稀土氧化物陶瓷材料及其制备方法 Active CN108129147B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711468592.XA CN108129147B (zh) 2017-12-29 2017-12-29 具室温交换偏置的单相稀土氧化物陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711468592.XA CN108129147B (zh) 2017-12-29 2017-12-29 具室温交换偏置的单相稀土氧化物陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN108129147A CN108129147A (zh) 2018-06-08
CN108129147B true CN108129147B (zh) 2021-01-08

Family

ID=62393918

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711468592.XA Active CN108129147B (zh) 2017-12-29 2017-12-29 具室温交换偏置的单相稀土氧化物陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN108129147B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114988861B (zh) * 2022-06-09 2023-04-07 江西理工大学 六角稀土铁氧化物单相多铁性材料及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101286396A (zh) * 2008-01-25 2008-10-15 华中科技大学 一种铁氧体纳米颗粒嵌入反铁磁氧化物母体的复合材料及制备方法
CN104761252A (zh) * 2015-03-27 2015-07-08 中国科学技术大学 一种具有交换偏置效应的单相氧化物多铁陶瓷及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3737986B2 (ja) * 2001-07-25 2006-01-25 アルプス電気株式会社 交換結合膜と前記交換結合膜を用いた磁気検出素子

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101286396A (zh) * 2008-01-25 2008-10-15 华中科技大学 一种铁氧体纳米颗粒嵌入反铁磁氧化物母体的复合材料及制备方法
CN104761252A (zh) * 2015-03-27 2015-07-08 中国科学技术大学 一种具有交换偏置效应的单相氧化物多铁陶瓷及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Fernando Pomiro, et al.Spin reorientation, magnetization reversal, and negative thermal expansion observed in RFe0.5Cr0.5O3 perovskites(R=Lu, Yb, Tm).《Physical Review B》.2016,第94卷(第13期),第134402页. *
Hydrothermal synthesis and magnetic properties of REFe0.5Cr0.5O3 (RE = La, Tb, Ho, Er, Yb, Lu and Y) perovskite;Long Yuan et al.;《New Journal of Chemistry》;20131127;第38卷(第3期);实验部分 *
Reversals of magnetization and exchange-bias in perovskite chromite YbCrO3;L. Wang, et al;《Journal of Alloys and Compounds》;20151212;第662卷;第2部分 *
Spin reorientation, magnetization reversal, and negative thermal expansion observed in RFe0.5Cr0.5O3 perovskites(R=Lu, Yb, Tm);Fernando Pomiro, et al;《Physical Review B》;20161003;第94卷(第13期);摘要和第2部分 *

Also Published As

Publication number Publication date
CN108129147A (zh) 2018-06-08

Similar Documents

Publication Publication Date Title
Shirsath et al. Enhanced magnetic properties of Dy3+ substituted Ni-Cu-Zn ferrite nanoparticles
Kumar et al. Effect of La3+ doping on the electric, dielectric and magnetic properties of cobalt ferrite processed by co-precipitation technique
Puli et al. Chemical bonding and magnetic properties of gadolinium (Gd) substituted cobalt ferrite
Xia et al. Hexagonal SrFe12O19 ferrites: Hydrothermal synthesis and their sintering properties
Bai et al. Complex Y-type hexagonal ferrites: an ideal material for high-frequency chip magnetic components
JP5831866B2 (ja) 強磁性粒子粉末及びその製造方法、並びに異方性磁石、ボンド磁石及び圧粉磁石
WO2011049080A1 (ja) 強磁性粒子粉末及びその製造法、異方性磁石及びボンド磁石
Waqas et al. Low temperature sintering study of nanosized Mn–Zn ferrites synthesized by sol–gel auto combustion process
EP3690071A1 (en) Magnetic material and method for producing same
CN104761252B (zh) 一种具有交换偏置效应的单相氧化物多铁陶瓷及其制备方法
Hessien et al. Enhancement of magnetic properties for the barium hexaferrite prepared through ceramic route
Wang et al. FeSiCrB amorphous soft magnetic composites filled with Co2Z hexaferrites for enhanced effective permeability
Coey et al. New bonded magnet materials
CN108129147B (zh) 具室温交换偏置的单相稀土氧化物陶瓷材料及其制备方法
Barman et al. Magnetization reversal and tunable exchange bias behavior in Mn-substituted NiCr 2 O 4
CN109279888B (zh) 一种自旋阀型磁阻复合材料CoFe2O4-Fe3O4的简易合成方法
CN108117390B (zh) 具有交换偏置反转的稀土氧化物陶瓷材料及其制备方法
Morales et al. Exchange bias in large three dimensional iron oxide nanocomposites
Deka et al. Study of exchange bias in Mn-doped YFeO 3 compound
CN115938771A (zh) 一种SmFexM12-x纳米晶永磁材料的制备方法
Zeng et al. Magnetocaloric effect in bulk nanocrystalline Gd metals by spark plasma sintering
CN113161096B (zh) Co基合金TM-M/ML非晶稀土复合型磁性材料及其制备方法
Suryanarayana et al. Synthesis and magnetic studies of Ni-Cu-Zn ferrite nanocrystals
Hossain et al. Structure-based magnetic, electrical and transport properties of Ni–Zn–Co ferrite by V5+ substitution
CN115784733B (zh) 一种高性能钙镧钴铁氧体材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant