CN109279888B - 一种自旋阀型磁阻复合材料CoFe2O4-Fe3O4的简易合成方法 - Google Patents
一种自旋阀型磁阻复合材料CoFe2O4-Fe3O4的简易合成方法 Download PDFInfo
- Publication number
- CN109279888B CN109279888B CN201811228707.2A CN201811228707A CN109279888B CN 109279888 B CN109279888 B CN 109279888B CN 201811228707 A CN201811228707 A CN 201811228707A CN 109279888 B CN109279888 B CN 109279888B
- Authority
- CN
- China
- Prior art keywords
- powder
- composite material
- iron oxide
- spin valve
- drying
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/26—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
- C04B35/2666—Other ferrites containing nickel, copper or cobalt
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/10—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/327—Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3275—Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Power Engineering (AREA)
- Soft Magnetic Materials (AREA)
- Compounds Of Iron (AREA)
Abstract
本发明公开了一种自旋阀型磁阻复合材料CoFe2O4‑Fe3O4的简易合成方法,使用纳米磁性氧化铁γ‑Fe2O3和CoO为原料,将干燥后的纳米磁性氧化铁γ‑Fe2O3加入酒精后球磨,再将干燥后的CoO与纳米磁性氧化铁γ‑Fe2O3混合,球磨、压片,并在氩气气氛下烧结成型,最后随炉冷却至室温即制得一系列自旋阀型磁阻复合材料CoFe2O4‑Fe3O4。本发明所需的设备和制备过程简易,重复性较高且自旋阀型磁阻性能优越。
Description
技术领域
本发明属于磁阻复合材料的合成技术领域,具体涉及一种自旋阀型磁阻复合材料CoFe2O4-Fe3O4的简易合成方法。
背景技术
磁电阻(MR)效应是指导体或半导体在磁场作用下其电阻值发生变化的现象。Thomson 于1857年发现了铁磁晶体的各向异性磁电阻效应(AnisotropicMagnetoresistance,AMR;Thomson W.Effects of magnetization on the electricconductivity of Nickel and of Iron.Proc. Roy.Soc.1857,8:546-550)。1988年法国巴黎大学Fert研究小组M.N.Baibich等人开展了有关Fe/Cr超晶格的物性研究,该研究最终导致了GMR效应的发现(Baibich M N,Broto J M,Fert A,et al.Giant magnetoresistanceof(001)Fe/(001)Cr magnetic superlattices.Phys.Rev. Lett.1988,61:2472-2475)。1991年,美国IBM实验室的B.Dieny独辟蹊径,利用反铁磁与铁磁之间的层间交换耦合,有效抑制了Barkhausen噪声,并根据多层膜巨磁电阻效应来源于最简单重复周期的磁电阻效应,提出了铁磁层/非磁隔离层/铁磁层/反铁磁层自旋阀 (Spin Valve,SV)结构(Dieny B,Speriosu V S,Parkin S S P,et al.Gaint magnetoresistance in soft ferromagneticmultilayers.Phys.Rev.B.1991,43:1297-1300)。从本质上说,零磁阻状态的偏离可以认为是由晶界材料控制的,这被认为是由一个像自旋阀一样起作用的硬磁绝缘体,这种新型机制被称为自旋阀式磁阻(SVMR)。自旋阀磁电阻(SVMR)由于其低场磁行为,已成为新一代磁记录、高密度读出磁头、自旋晶体管等自旋电子器件的首选方案。因此,探索、改进并设计出一种工艺简单的自旋阀型磁阻(SVMR)复合材料的合成方法显得尤为重要。
经查阅文献,D.D.Sarma等人采用胶体化学方法设计构建自旋阀磁电阻(SVMR)Fe3O4-CoFe2O4核-壳纳米晶体。其中反尖晶石结构软磁Fe3O4纳米晶体形成核心,具有硬磁和高度绝缘性的尖晶石结构CoFe2O4作为壳层,提供磁控开关隧道势垒,控制系统的磁阻,从而证实了SVMR结构的可行性(Anil Kumar P,SugataRay,Chakraverty S and Sarma DD.Engineered spin-valve type magnetoresistance in Fe3O4-CoFe2O4core-shellnanoparticles. Applied Physics Letters.2013,103,102406),但是上述方法繁琐且重复性较低。而本发明仅通过传统的固相反应法并通过人为控制不同质量百分比的CoO-Fe2O3前驱体,在特定条件下烧结,即可制备出一系列自旋阀型磁阻(SVMR)复合材料CoFe2O4-Fe3O4,其方法简单且重复性较好。
发明内容
本发明解决的技术问题是提供了一种工艺简单且成本低廉的自旋阀型磁阻复合材料 CoFe2O4-Fe3O4的简易合成方法。
本发明为解决上述技术问题采用如下技术方案,一种自旋阀型磁阻复合材料CoFe2O4-Fe3O4的简易合成方法,其特征在于具体步骤为:
步骤S1:将经过干燥处理的纯度为99.5%的纳米磁性氧化铁γ-Fe2O3粉末加入酒精后球磨处理10-24h得到泥状物;
步骤S2:将步骤S1得到的泥状物进行干燥处理后用玛瑙研钵研磨均匀得到处理后的纳米磁性氧化铁γ-Fe2O3粉末;
步骤S3:将纯度为99%的CoO粉末干燥处理后与步骤S2得到的处理后的纳米磁性氧化铁γ-Fe2O3粉末混合,再将混合后的粉末加入酒精后置于球磨罐内球磨处理10-24h使粉末混合均匀,然后干燥处理得到混合粉末;
步骤S4:将步骤S3得到的混合粉末用4MPa的压力压成直径为10mm±1mm、厚度为1mm±0.1mm的圆形薄片;
步骤S5:将步骤S3得到的混合粉末置于磁舟内,再将步骤S4得到的圆形薄片埋入磁舟内的混合粉末中,然后在氩气气氛下以5℃/min的升温速率升温至800℃并保温1h,最后随炉冷却至室温得到自旋阀型磁阻复合材料CoFe2O4-Fe3O4。
进一步优选,步骤S3中干燥处理后CoO粉末与处理后的纳米磁性氧化铁γ-Fe2O3粉末的投料质量比为4-16:100。
本发明与现有技术相比具有以下有益效果:本发明合成过程及所需的设备简单,仅通过传统的固相反应法,在特定的烧结条件下烧结掺杂得到的不同质量比的CoO-Fe2O3前驱体,即可得到一系列自旋阀型磁阻复合材料CoFe2O4-Fe3O4。
附图说明
图1是实施例合成的CoFe2O4-Fe3O4复合材料以及对比例中未烧结CoO-Fe2O3前驱体混合粉末的XRD图谱;
图2是实施例中使用CoO-Fe2O3为不同质量百分比的前驱体合成的CoFe2O4-Fe3O4复合材料的磁滞回旋(M-H)曲线(50K、300K);
图3是实施例中使用CoO-Fe2O3为不同质量百分比的前驱体合成的CoFe2O4-Fe3O4复合材料的(MR-H)曲线(50K、300K)。
具体实施方式
以下通过实施例对本发明的上述内容做进一步详细说明,但不应该将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明上述内容实现的技术均属于本发明的范围。
实施例
步骤S1:将经过干燥处理的纯度为99.5%的纳米磁性氧化铁γ-Fe2O3粉末加入酒精后球磨处理10-24h得到泥状物;
步骤S2:将步骤S1得到的泥状物进行干燥处理后用玛瑙研钵研磨均匀得到处理后的纳米磁性氧化铁γ-Fe2O3粉末;
步骤S3:将纯度为99%的CoO粉末干燥处理后与步骤S2得到的处理后的纳米磁性氧化铁γ-Fe2O3粉末混合(其中CoO与γ-Fe2O3的投料质量比分别为0:100、4:100、8:100、12:100、16:100,对应标记为0wt%、4wt%、8wt%、12wt%、16wt%),再将混合后的粉末加入酒精后置于球磨罐内球磨处理10-24h使粉末混合均匀,然后干燥处理得到混合粉末;
步骤S4:将步骤S3得到的混合粉末用4MPa的压力压成直径为10mm±1mm、厚度为1mm±0.1mm的圆形薄片;
步骤S5:将步骤S3得到的混合粉末置于磁舟内,再将步骤S4得到的圆形薄片埋入磁舟内的混合粉末中,然后在氩气气氛下以5℃/min的升温速率升温至800℃并保温1h,最后随炉冷却至室温得到自旋阀型磁阻复合材料CoFe2O4-Fe3O4。将烧结处理后的的复合材料进行XRD测试,再将烧结处理后的复合材料进行M-H及MR-H测试。
对比例
步骤S1:将经过干燥处理的纯度为99.5%的纳米磁性氧化铁γ-Fe2O3粉末加入酒精后球磨处理10-24h得到泥状物;
步骤S2:将步骤S1得到的泥状物进行干燥处理后用玛瑙研钵研磨均匀得到处理后的纳米磁性氧化铁γ-Fe2O3粉末;
步骤S3:将纯度为99%的CoO粉末干燥处理后与步骤S2得到的处理后的纳米磁性氧化铁γ-Fe2O3粉末混合(其中CoO与γ-Fe2O3的投料质量比分别为0:100、4:100、8:100、12:100、16:100,对应标记为0wt%、4wt%、8wt%、12wt%、16wt%),再将混合后的粉末加入酒精后置于球磨罐内球磨处理10-24h使粉末混合均匀,然后干燥处理得到混合粉末。将处理后的混合粉末进行XRD测试。
测试结果:
图1(a)是对比例中未烧结CoO-Fe2O3前驱体混合粉末的XRD图谱,图谱显示随着CoO掺杂量的增加,CoO的衍射峰逐渐增强,并且验证了未烧结样品中存在CoO和Fe2O3两套衍射峰;图1(b)是实施例合成的CoFe2O4-Fe3O4复合材料的XRD图谱。对比图1 (a)和图1(b),在图1(b)中可以明显观察到CoO的衍射峰已经消失,同时图1(b) 中为CoFe2O4和Fe3O4两套衍射峰,说明利用本发明简单易行的实验方案可以制备出一系列自旋阀磁阻复合材料CoFe2O4-Fe3O4。
图2是实施例中使用CoO-Fe2O3质量百分比为0wt%、8wt%和16wt%的前驱体合成的 CoFe2O4-Fe3O4复合材料的磁滞回旋(M-H)曲线(50K、300K)。50K的M-H曲线显示合成的CoFe2O4-Fe3O4复合材料的Ms分别为71.98emu/g、75.87emu/g和79.71emu/g,Hc分别为226.9Oe、2249.4Oe和5213.2Oe;300K的M-H曲线显示合成的CoFe2O4-Fe3O4复合材料的Ms分别为67.30emu/g、71.23emu/g和76.46emu/g,Hc分别为146.7Oe、304.0Oe 和739.7Oe;可以看出随着CoO掺杂量的提高,CoFe2O4-Fe3O4复合材料的磁性越来越好,矫顽磁场(Hc)也越来越大。
图3是实施例中使用CoO-Fe2O3质量百分比为0wt%、8wt%和16wt%的前驱体合成的 CoFe2O4-Fe3O4复合材料的(MR-H)曲线(50K、300K)。50K的MR-H曲线显示合成的 CoFe2O4-Fe3O4复合材料的分别为199.8Oe、2463.7Oe和7524.1Oe,8wt%和16wt%合成的CoFe2O4-Fe3O4复合材料的分别为0wt%的12.3倍和37.6倍;300K的MR-H曲线显示合成的CoFe2O4-Fe3O4复合材料的分别为208.3Oe、223.8Oe和554.2Oe,8wt%和16wt%合成的CoFe2O4-Fe3O4复合材料的分别为0wt%的1.07倍和2.66倍;可以看出随着CoO掺杂量的提高,自旋阀类型磁阻(SVMR)特征越来越明显,表明合成了一系列自旋阀型磁阻复合材料CoFe2O4-Fe3O4。
以上实施例描述了本发明的基本原理、主要特征及优点,本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明原理的范围下,本发明还会有各种变化和改进,这些变化和改进均落入本发明保护的范围内。
Claims (2)
1.一种自旋阀型磁阻复合材料CoFe2O4-Fe3O4的简易合成方法,其特征在于具体步骤为:
步骤S1:将经过干燥处理的纯度为99.5%的纳米磁性氧化铁γ-Fe2O3粉末加入酒精后球磨处理10-24h得到泥状物;
步骤S2:将步骤S1得到的泥状物进行干燥处理后用玛瑙研钵研磨均匀得到处理后的纳米磁性氧化铁γ-Fe2O3粉末;
步骤S3:将纯度为99%的CoO粉末干燥处理后与步骤S2得到的处理后的纳米磁性氧化铁γ-Fe2O3粉末混合,再将混合后的粉末加入酒精后置于球磨罐内球磨处理10-24h使粉末混合均匀,然后干燥处理得到混合粉末;
步骤S4:将步骤S3得到的混合粉末用4MPa的压力压成直径为10mm±1mm、厚度为1mm±0.1mm的圆形薄片;
步骤S5:将步骤S3得到的混合粉末置于磁舟内,再将步骤S4得到的圆形薄片埋入磁舟内的混合粉末中,然后在氩气气氛下以5℃/min的升温速率升温至800℃并保温1h,最后随炉冷却至室温得到自旋阀型磁阻复合材料CoFe2O4-Fe3O4。
2.根据权利要求1所述的自旋阀型磁阻复合材料CoFe2O4-Fe3O4的简易合成方法,其特征在于:步骤S3中干燥处理后CoO粉末与处理后的纳米磁性氧化铁γ-Fe2O3粉末的投料质量比为4-16:100。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811228707.2A CN109279888B (zh) | 2018-10-22 | 2018-10-22 | 一种自旋阀型磁阻复合材料CoFe2O4-Fe3O4的简易合成方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811228707.2A CN109279888B (zh) | 2018-10-22 | 2018-10-22 | 一种自旋阀型磁阻复合材料CoFe2O4-Fe3O4的简易合成方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109279888A CN109279888A (zh) | 2019-01-29 |
CN109279888B true CN109279888B (zh) | 2022-01-21 |
Family
ID=65177783
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811228707.2A Active CN109279888B (zh) | 2018-10-22 | 2018-10-22 | 一种自旋阀型磁阻复合材料CoFe2O4-Fe3O4的简易合成方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109279888B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112374877B (zh) * | 2020-10-09 | 2022-05-13 | 河南师范大学 | 具有磁阻转换行为的CoFe2O4-CrO2复合材料的制备方法 |
CN112331435B (zh) * | 2020-10-09 | 2024-01-19 | 河南师范大学 | Sr2FeMoO6(1-x)-CoFe2O4(x)复合材料磁阻转换行为的调控方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1352791A (zh) * | 1999-07-05 | 2002-06-05 | 富士通株式会社 | 自旋阀磁阻效应磁头和使用该磁头的复合磁头及磁记录介质驱动装置 |
CN101265084A (zh) * | 2008-04-15 | 2008-09-17 | 南京大学 | (1-x)(Ba,Bi,Na)TiO3-xCoFe2O4复合多铁陶瓷及其制备方法 |
CN104973859A (zh) * | 2015-06-29 | 2015-10-14 | 安徽工业大学 | 一种具有交换耦合作用的复合铁氧体粉末的制备方法 |
CN106630992A (zh) * | 2016-09-29 | 2017-05-10 | 安徽理工大学 | 一种高性能SrFe12O19/CoFe2O4复合铁氧体材料及制备方法 |
-
2018
- 2018-10-22 CN CN201811228707.2A patent/CN109279888B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1352791A (zh) * | 1999-07-05 | 2002-06-05 | 富士通株式会社 | 自旋阀磁阻效应磁头和使用该磁头的复合磁头及磁记录介质驱动装置 |
CN101265084A (zh) * | 2008-04-15 | 2008-09-17 | 南京大学 | (1-x)(Ba,Bi,Na)TiO3-xCoFe2O4复合多铁陶瓷及其制备方法 |
CN104973859A (zh) * | 2015-06-29 | 2015-10-14 | 安徽工业大学 | 一种具有交换耦合作用的复合铁氧体粉末的制备方法 |
CN106630992A (zh) * | 2016-09-29 | 2017-05-10 | 安徽理工大学 | 一种高性能SrFe12O19/CoFe2O4复合铁氧体材料及制备方法 |
Non-Patent Citations (1)
Title |
---|
Magnetic properties of hard (CoFe2O4)–soft (Fe3O4) composite ceramics;FAN Li;《Ceramics International》;20140831;第40卷(第6期);第7837-7840页 * |
Also Published As
Publication number | Publication date |
---|---|
CN109279888A (zh) | 2019-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Synthesis and magnetic characterization of novel CoFe2O4–BiFeO3 nanocomposites | |
Niarchos et al. | Toward rare-earth-free permanent magnets: a combinatorial approach exploiting the possibilities of modeling, shape anisotropy in elongated nanoparticles, and combinatorial thin-film approach | |
Wei et al. | Net-shaped barium and strontium ferrites by 3D printing with enhanced magnetic performance from milled powders | |
Cruz-Franco et al. | Magnetic properties of nanostructured spinel ferrites | |
Anjum et al. | Enhancement of structural and magnetic properties of M-type hexaferrite permanent magnet based on synthesis temperature | |
Liu et al. | Influence of nickel-zinc ratio on microstructure, magnetic and dielectric properties of Ni (1− x) ZnxFe2O4 ferrites | |
Ahmed et al. | Characterization and dramatic variations of the magnetic properties of Cu-doped nanometric Co ferrite | |
CN109279888B (zh) | 一种自旋阀型磁阻复合材料CoFe2O4-Fe3O4的简易合成方法 | |
Khan et al. | Reentrant spin glass behavior and large initial permeability of Co0. 5− xMnxZn0. 5Fe2O4 | |
Seal | Functional nanostructures: processing, characterization, and applications | |
Wang et al. | Investigation of magnetic response of charge ordering in half-doped La 0.5 Ca 0.5 MnO 3 manganite | |
Liu et al. | Synthesis, structure, and magnetic studies on the CoFe2O4–BiFeO3 nanocomposite films with different number of CoFe2O4 layers | |
Gupta et al. | Structural and magnetic properties of phase controlled iron oxide rods | |
Sharma et al. | Effect of processing parameters on the magnetic properties of strontium ferrite sintered magnets using Taguchi orthogonal array design | |
CN111732127B (zh) | 磁场辅助溶剂热合成铁氧体的方法以及磁性晶粒大小与形貌特征调控方法 | |
JP2009188044A (ja) | 異方性磁性材料の製造方法および異方性磁性材料 | |
Breitwieser et al. | Ferrite nanostructures consolidated by spark plasma sintering (SPS) | |
Trần et al. | Structure and magnetic properties of SrFe12O19/CoFe2O4 nanocomposite ferrite | |
Baldini et al. | Magnetic properties of bulk nanocrystalline cobalt ferrite obtained by high-pressure field assisted sintering | |
Chen et al. | Anisotropic magnetic property and exchange bias effect in a homogeneous Sillen-Aurivillius layered oxide | |
García‐Gallegos et al. | Magnetic properties of SrFe12O19 covered with copper by electrodeposition and sputtering | |
Hur et al. | Magnetic and microstructural properties on Mn-and Ru-doped hexagonal barium ferrites | |
Hennes et al. | Strain, magnetic anisotropy, and composition modulation in hybrid metal–oxide vertically assembled nanocomposites | |
Freire et al. | Bimagnetic core/shell nanoparticles: current status and future possibilities | |
Sahib et al. | Synthesis of double lanthanide doped nano ferrite meta material for microstrip patch antenna application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |