CN108126728B - 一种g-C3N4/g-C3N4无金属同质异构结的制备方法及所得产品和应用 - Google Patents

一种g-C3N4/g-C3N4无金属同质异构结的制备方法及所得产品和应用 Download PDF

Info

Publication number
CN108126728B
CN108126728B CN201711462847.1A CN201711462847A CN108126728B CN 108126728 B CN108126728 B CN 108126728B CN 201711462847 A CN201711462847 A CN 201711462847A CN 108126728 B CN108126728 B CN 108126728B
Authority
CN
China
Prior art keywords
metal
melamine
calcination
temperature
calcining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711462847.1A
Other languages
English (en)
Other versions
CN108126728A (zh
Inventor
杨萍
刘志国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201711462847.1A priority Critical patent/CN108126728B/zh
Publication of CN108126728A publication Critical patent/CN108126728A/zh
Application granted granted Critical
Publication of CN108126728B publication Critical patent/CN108126728B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30
    • B01J35/39
    • B01J35/613
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1088Non-supported catalysts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

本发明公开了一种g‑C3N4/g‑C3N4无金属同质异构结的制备方法及所得产品和应用,其制备过程为:含氮前驱体在550‑600℃下煅烧,获得初始g‑C3N4,将初始g‑C3N4在700‑750℃煅烧,得高温g‑C3N4;将高温g‑C3N4与三聚氰胺混合均匀,再以550‑650℃的温度煅烧,获得最终产品。本发明制备工艺简单,成本低,重复性好。由于g‑C3N4具有良好的稳定性,且制备出的g‑C3N4/g‑C3N4产品具有分散性较好和比表面积较大的特点,在大批量工业化生产及光催化降解有机物和光解水制氢等实际应用中具有重要意义。

Description

一种g-C3N4/g-C3N4无金属同质异构结的制备方法及所得产 品和应用
技术领域
本发明涉及一种g-C3N4/g-C3N4无金属同质异构结的制备方法及按照该方法制得的g-C3N4/g-C3N4无金属同质异构结及其应用,属于氮化碳同质异构结技术领域。
背景技术
半导体光催化剂作为一种极有前景的技术,在解决环境危机和太阳能转化方面有广阔的应用,尤其是可见光驱动光催化剂广泛引起了人们的研究兴趣。众所周知,TiO2光催化剂相对较大的带隙和光生电子空穴对的快速复合,使其在可见光下光催化活性受到限制。因此,寻找一种新型可见光响应的光催化材料是至关重要的。石墨相氮化碳(g-C3N4)作为一种不含金属离子的有机可见光驱动的半导体,因其良好的稳定性和适中带隙(2.7eV)的电子结构而备受关注,它可用于光催化降解有机污染物和光解水等。
g-C3N4可以简单通过含氮前驱体直接聚合得到,这类含氮前驱体有双氰胺、三聚氰胺、尿素、硫脲等。然而,这种直接煅烧的方法仅能得到块体g-C3N4,其量子效率较低、光生电子和空穴对重组率高、难以被460nm以上波长的光激发。为克服这些缺点和提高光化学反应,人们采用很多方法来提高g-C3N4的光催化活性,常用的有过渡金属掺杂、贵金属沉积、构建异质结构等。其中,构筑g-C3N4异质结构的复合材料是研究热点之一。例如g-C3N4/Bi2WO6,g-C3N4/Co3O4, g-C3N4/Fe2O3和 g-C3N4/NiS等g-C3N4基杂化光催化剂均被研究用以进一步增强g-C3N4的可见光吸收,促进光生电子空穴分离。
目前,也有石墨相氮化碳同质异构结的相关报道,例如专利CN201611042136.4 公开了一种具有多层级结构的石墨相氮化碳同质异构结光催化材料的制备方法,其步骤是:制备三聚氰胺/三聚氰酸悬浮液和尿素水溶液;利用三聚氰胺/三聚氰酸悬浮液制备得到完成组装反应的三聚氰胺/三聚氰酸大分子晶体,并将其加入到尿素水溶液中,得到尿素‐(三聚氰胺/三聚氰酸)复合前驱体,将该前驱体进行煅烧,得到石墨相氮化碳纳米颗粒沉积在石墨相氮化碳 微米管上的多层级结构的石墨相氮化碳同质异构结光催化材料。该方法通过不同的原料产生不同形貌的石墨相氮化碳,并复合形成异质结,在液相中进行,产生大量废水。专利CN201610161753.X 公开了一种氮化碳异质结光催化剂的制备方法,步骤是:将三聚氰胺在550℃煅烧,得到块体石墨相氮化碳;将石墨相氮化碳加入发烟硫酸中处理,得到g-C3N4纳米片;将g-C3N4纳米片和g-C3N4分别分散于50mL 甲醇中,超声1h,然后挥发甲醇,得到由g-C3N4纳米片和g-C3N4复合而成的异质结光催化剂。该方法以三聚氰胺为原料,得到不同形状的氮化碳异质结,制备过程使用发烟硫酸、硫酸等试剂,操作危险,对环境不利。
发明内容
针对现有技术中制备同型g-C3N4异质结构存在的试剂危险、液相反应产生大量废水、对环境不利的不足,本发明提供了一种g-C3N4/g-C3N4无金属同质异构结的制备方法,该方法利用不同温度煅烧的g-C3N4具有不同的带隙和结晶性的特点,将不同温度下形成的g-C3N4复合,得到了g-C3N4/g-C3N4无金属
Figure DEST_PATH_IMAGE001
型异质结,该方法原料单一,反应在固相下进行,不需要溶剂和表面活性剂,操作简便、安全,不会产生废水,环保性好。
本发明还提供了按照上述方法制得的g-C3N4/g-C3N4无金属同质异构结及其应用,该产品促进了g-C3N4的电子和空穴的分离,降低了g-C3N4电子和空穴的复合率,提高了光催化效果,在光催化降解有机污染物及光解水制氢等领域具有潜在的应用价值。
本发明具体技术方案如下:
一种g-C3N4/g-C3N4无金属同质异构结的制备方法,该方法包括以下步骤:
(1)将含氮前驱体升至550-600℃进行煅烧,得到初始g-C3N4
(2)将步骤(1)的初始g-C3N4升至700-750℃进行煅烧,得到高温g-C3N4
(3)将步骤(2)的高温g-C3N4与三聚氰胺混合均匀,升至550-650℃进行煅烧,得g-C3N4/g-C3N4无金属同质异构结。
本发明采用先形成高温的g-C3N4,然后再以高温的g-C3N4作为模板,和原料一起在低温下煅烧形成g-C3N4/ g-C3N4同质异构结的方法制备同质异构结,高温的g-C3N4作为种子,煅烧后形成的低温g-C3N4在其上生长,得到同质异构结。因为不同温度下形成的g-C3N4结构类似,都是共轭芳香体系,因此不同温度下的g-C3N4通过芳香环之间的π-π堆积来连接形成异质结,避免了使用表面活性剂。上述步骤(3)中,高温g-C3N4和三聚氰胺的质量比为0.1-1:100,优选为0.5:100。上述步骤(3)中,优选升至650℃进行煅烧。通过控制高温g-C3N4和三聚氰胺的用量比例、煅烧温度可以得到不同的g-C3N4/g-C3N4无金属同质异构结,其中,750℃高温g-C3N4和三聚氰胺按照0.5:100的质量比在650℃煅烧所得的产品性能最佳。
上述制备方法中,通过两步煅烧得到高温g-C3N4,提高了其结晶度。上述步骤(1)中,煅烧时间为1-2h。步骤(2)中,煅烧时间为1-2h。步骤(3)中,煅烧时间为1-2h。
上述步骤(1)中,所述含氮前驱体可以是三聚氰胺、尿素或硫脲等氮化碳常用前驱体。各前驱体效果类似。
上述步骤(1)-(3)中,升温速度均为2-10℃/min。
上述步骤(1)-(3)中,煅烧均在保护气氛下进行,例如氩气或氮气。
上述步骤(1)-(3)中,所用反应容器为管式炉。
本发明上述方法制得的g-C3N4/g-C3N4无金属同质异构结也在保护范围之内。本发明所得产品为纳米片状,纳米片大小为2-10微米,厚度为3-100纳米。该同质异构结由700-750℃煅烧形成的g-C3N4和550-650℃煅烧形成的g-C3N4通过芳香环之间的π-π堆积连接而成,不同温度下煅烧的g-C3N4具有不同的带隙,通过实验发现,本发明提供的这两种特殊温度段下形成的g-C3N4的同质异构结具有更高的C/N,更有利于电子的传输,有利于催化活性的提高。
本发明未使用表面活性剂和溶剂即可制得g-C3N4/g-C3N4无金属同质异构结纳米片,避免了表面活性剂和溶剂分子对光催化性质的影响,使g-C3N4/ g-C3N4同质异构结构界面处的电子迁移效率提高,光催化性能得到很好的改善,在光降解有机物和光解水制氢等方面具有重要的研究及应用意义。
本发明具有以下优点:
1、本发明无须表面活性剂和溶剂,在固相下高效合成了g-C3N4/g-C3N同质异构结,成本低,操作简单,而且制备过程可重复性好,容易控制,适合大批量工业化生产,克服了使用表面活性剂和溶剂时制备工艺复杂、成本高等不足,而且避免了光催化反应过程中表面活性剂和溶剂对电子转移效率的影响,大大提高了光催化性能。对g-C3N4/ g-C3N4同质异构结样品的大批量工业化生产及其光催化降解有机物和光解水制氢等实际应用具有重要意义。
2、本发明制备的g-C3N4具有良好的稳定性,所得g-C3N4/g-C3N4无金属同质异构结产品为
Figure 115124DEST_PATH_IMAGE001
型异质结,有利于电子和空穴的分离,降低了电子和空穴的复合率,且分散均匀,有较大的比表面积,因此在光催化降解有机物和光解水制氢等方面具有重要意义。
附图说明
图1为本发明实施例1合成的g-C3N4/ g-C3N4纳米片的高分辨透射电镜(HRTEM)照片。
图2为本发明实施例1合成的g-C3N4/ g-C3N4纳米片的X射线衍射(XRD)图谱。
图3为本发明实施例1、对比例1和对比例2合成的产品的光催化效果图。
图4为本发明实施例1合成的产品的比表面积测试图。
具体实施方式
下面通过实施例对本发明进行进一步的阐述,应该表明的是,下述说明仅是为了解释本发明,并不对其内容进行限定。
实施例1
1.1将2g三聚氰胺以2 ℃/min的升温速率升到600 ℃的温度,在氩气气氛下煅烧2h,得到600 ℃的g-C3N4(即初始g-C3N4,下同),备用;
1.2取2g步骤(1)制备的600 ℃的g-C3N4,以2 ℃/min的升温速率升到750 ℃,在氩气气氛下煅烧1h,得到750 ℃的g-C3N4,备用;
1.3取0.010g的步骤(2)中制备的样品(750 ℃的g-C3N4)和2g的三聚氰胺混合均匀,以2 ℃/min的升温速率升到650 ℃的温度,在氩气气氛下煅烧2h,煅烧产物即为g-C3N4(650 ℃)/ g-C3N4(750 ℃)纳米片(即g-C3N4/g-C3N4无金属同质异构结),尺寸为2-5微米,厚度为3-5纳米。图1为所得纳米片的高分辨透射电镜(HRTEM)照片,从图中可以看出750 ℃氮化碳具有较好的结晶性,有明显的晶格条纹,650 ℃是非晶氮化碳,为无定型的,两种g-C3N4具有明显的区别。图2为所得纳米片的X射线衍射(XRD)图谱,从图中可以看出不同温度的氮化碳和复合的氮化碳均为石墨相的氮化碳。图4为所得纳米片的比表面积测试图,经BET测试,所得产品比表面积为87.6 m2. g-1
实施例2
按照实施例1的方法制备g-C3N4/g-C3N4无金属同质异构结,不同的是:取0.010g的750℃的g-C3N4和2g的三聚氰胺混合均匀,以2 ℃/min的升温速率升到550 ℃的温度,在氩气气氛下煅烧2h,煅烧产物即为g-C3N4(550 ℃)/ g-C3N4(750 ℃)纳米片,尺寸为5-10微米,厚度为70-100纳米。经BET测试,所得产品比表面积为32.3 m2. g-1
实施例3
按照实施例1的方法制备g-C3N4/g-C3N4无金属同质异构结,不同的是:取0.010g的750 ℃的g-C3N4和2g的三聚氰胺混合均匀,以2 ℃/min的升温速率升到600 ℃的温度,在氩气气氛下煅烧2h,煅烧产物即为g-C3N4(600 ℃)/ g-C3N4(750 ℃)纳米片,尺寸为3-7微米,厚度为20-40纳米。经BET测试,所得产品比表面积为50.7 m2. g-1
实施例4
按照实施例1的方法制备g-C3N4/g-C3N4无金属同质异构结,不同的是:750 ℃的g-C3N4的用量为0.002g,煅烧产物即为g-C3N4(650 ℃)/ g-C3N4(750 ℃)纳米片,尺寸为3-6微米,厚度为10-20纳米。经BET测试,所得产品比表面积为57.7 m2. g-1
实施例5
按照实施例1的方法制备g-C3N4/g-C3N4无金属同质异构结,不同的是:750 ℃的g-C3N4的用量为0.020g,煅烧产物即为g-C3N4(650 ℃)/ g-C3N4(750 ℃)纳米片,尺寸为2-5微米,厚度为10-20纳米。经BET测试,所得产品比表面积为68.2 m2. g-1
实施例6
6.1将2g三聚氰胺以10 ℃/min的升温速率升到600 ℃的温度,在氩气气氛下煅烧2h,得到600 ℃的g-C3N4,备用;
6.2取2g步骤(1)制备的600 ℃的g-C3N4,以10 ℃/min的升温速率升到750 ℃,在氩气气氛下煅烧1h,得到750 ℃的g-C3N4,备用;
6.3取0.010g的步骤(2)中制备的样品和2g的三聚氰胺混合均匀,以10 ℃/min的升温速率升到650 ℃的温度,在氩气气氛下煅烧2h,煅烧产物即为g-C3N4(650 ℃)/ g-C3N4(750 ℃)纳米片,尺寸为3-8微米,厚度为30-40纳米,经BET测试,所得产品比表面积为45.2m2. g-1
实施例7
7.1将2g三聚氰胺以8 ℃/min的升温速率升到600 ℃的温度,在氩气气氛下煅烧2h,得到600 ℃的g-C3N4,备用;
7.2取2g步骤(1)制备的600 ℃的g-C3N4,以8 ℃/min的升温速率升到750 ℃,在氩气气氛下煅烧1h,得到750 ℃的g-C3N4,备用;
7.3取0.010g的步骤(2)中制备的样品和2g的三聚氰胺混合均匀,以8 ℃/min的升温速率升到650 ℃的温度,在氩气气氛下煅烧2h,煅烧产物即为g-C3N4(650 ℃)/ g-C3N4(750 ℃)纳米片,尺寸为4-7微米,厚度为10-20纳米。经BET测试,所得产品比表面积为54.5 m2. g-1
实施例8
8.1将2g三聚氰胺以4 ℃/min的升温速率升到600 ℃的温度,在氩气气氛下煅烧2h,得到600 ℃的g-C3N4,备用;
8.2取2g步骤(1)制备的600 ℃的g-C3N4,以4 ℃/min的升温速率升到750 ℃,在氩气气氛下煅烧1h,得到750 ℃的g-C3N4,备用;
8.3取0.010g的步骤(2)中制备的样品和2g的三聚氰胺混合均匀,以4 ℃/min的升温速率升到650 ℃的温度,在氩气气氛下煅烧2h,煅烧产物即为g-C3N4(650 ℃)/ g-C3N4(750 ℃)纳米片,尺寸为3-5微米,厚度为10-15纳米。经BET测试,所得产品比表面积为67.2 m2. g-1
实施例9
9.1将2g三聚氰胺以2 ℃/min的升温速率升到600 ℃的温度,在氩气气氛下煅烧1h,得到600 ℃的g-C3N4,备用;
9.2取2g步骤(1)制备的600 ℃的g-C3N4,以2 ℃/min的升温速率升到750 ℃,在氩气气氛下煅烧2h,得到750 ℃的g-C3N4,备用;
9.3取0.010g的步骤(2)中制备的样品和2g的三聚氰胺混合均匀,以2 ℃/min的升温速率升到650 ℃的温度,在氩气气氛下煅烧1h,煅烧产物即为g-C3N4(650 ℃)/ g-C3N4(750 ℃)纳米片,尺寸为3-8微米,厚度为20-30纳米,经BET测试,所得产品比表面积为55.2 m2. g-1
对比例 1
1.1将2g三聚氰胺在管式炉中以2 ℃/min的升温速率升到650 ℃的温度,在氩气气氛下煅烧2h;
1.2煅烧产物即为纯的g-C3N4(650 ℃)纳米片,尺寸为3-7微米,厚度为15-30纳米,经BET测试,所得产品比表面积为57.2 m2. g-1
对比例2
2.1将2g三聚氰胺以2 ℃/min的升温速率升到600 ℃的温度,在氩气气氛下煅烧2h,得到600 ℃的g-C3N4,备用;
2.2取2g步骤(1)制备的600 ℃的g-C3N4,以2 ℃/min的升温速率升到750 ℃,在氩气气氛下煅烧1h,煅烧产物即为纯的g-C3N4(750 ℃)纳米片,尺寸为2-5微米,厚度为3-5纳米,经BET测试,所得产品比表面积为77.2 m2. g-1
对比例3
3.1将2g三聚氰胺以2 ℃/min的升温速率升到550 ℃的温度,在氩气气氛下煅烧2h,得到550 ℃的g-C3N4,备用;
3.2取2g步骤(1)制备的550 ℃的g-C3N4,以2 ℃/min的升温速率升到800 ℃,在氩气气氛下煅烧1h,无样品获得。
对比例4
4.1将2g三聚氰胺以10 ℃/min的升温速率升到600 ℃的温度,在氩气气氛下煅烧2h,得到600 ℃的g-C3N4,备用;
4.2取2g步骤(1)制备的600 ℃的g-C3N4,以2 ℃/min的升温速率升到750 ℃,在氩气气氛下煅烧1h,得到750 ℃的g-C3N4,备用;
4.3取0.002g的步骤(2)中制备的样品和2g的步骤(1)的600 ℃的g-C3N4混合均匀,以2 ℃/min的升温速率升到650 ℃的温度,在氩气气氛下煅烧2h,得煅烧产物。所得产品为两种温度的g-C3N4简单混合的样品,没有形成
Figure 501106DEST_PATH_IMAGE001
型异质结。
光催化实验
以实施例1-5、对比例1、2、4的产品为光催化剂,验证它们的催化效果,步骤为:分别取30 mg上述实施例与对比例的样品作为催化剂,分别加入50 mL 10 mg/L的罗丹明b溶液中;将罗丹明b溶液在黑暗处搅拌30 min,使溶液处于吸附平衡状态,然后在可见光(光源300 W)下照射,光源与目标溶液的距离为30 cm,每隔5 min取出2 mL样品进行吸收测试,测出此时溶液中罗丹明b的吸光度,根据朗伯比尔定律算出浓度,计算降解率。结果显示,降解率为100%时实施例1-5的催化剂的催化时间分别为10 min,60 min,45 min,30 min和25min,对比例1,2,4的催化剂的催化时间分别为80 min,20 min和65 min。通过实施例1-3的对比可以看出,步骤(3)中煅烧温度为650℃最佳,通过实施例1、4、5的对比可以看出,750℃的g-C3N4和三聚氰胺的质量比为0.5:100时最佳。
此外,计算取样浓度与初始罗丹明b浓度比值,以时间为横坐标,取样浓度与初始浓度比值为纵坐标,绘制实施例1和对比例1、2的催化效果曲线,如图3所示。从图中可以明显看出,本发明产品的光催化效率远高于对比例1和2。同样的,通过实施例1和对比例4的对比也能看出,本发明方法制得的产品具有优越的催化性能。

Claims (12)

1.一种g-C3N4/g-C3N4无金属同质异构结的制备方法,其特征是,包括以下步骤:
(1)将含氮前驱体升至550-600℃进行煅烧,得到初始g-C3N4
(2)将步骤(1)的初始g-C3N4升至700-750℃进行煅烧,得到高温g-C3N4
(3)将步骤(2)的高温g-C3N4与三聚氰胺混合均匀,升至550-650℃进行煅烧,得g-C3N4/g-C3N4无金属同质异构结。
2.根据权利要求1所述的制备方法,其特征是:步骤(3)中,高温g-C3N4和三聚氰胺的质量比为0.1-1:100。
3.根据权利要求2所述的制备方法,其特征是:步骤(3)中,高温g-C3N4和三聚氰胺的质量比为0.5:100。
4.根据权利要求1、2或3所述的制备方法,其特征是:步骤(1)中,煅烧时间为1-2h;步骤(2)中,煅烧时间为1-2h;步骤(3)中,煅烧时间为1-2h。
5.根据权利要求1-3中任一项所述的制备方法,其特征是:步骤(1)-(3)中,升温速度均为2-10℃/min。
6.根据权利要求1-3中任一项所述的制备方法,其特征是:步骤(1)-(3)中,煅烧均在保护气氛下进行。
7.根据权利要求1-3中任一项所述的制备方法,其特征是:步骤(1)中,含氮前驱体包括三聚氰胺、尿素或硫脲。
8.根据权利要求1-3中任一项所述的制备方法,其特征是:所得g-C3N4/g-C3N4无金属同质异构结为纳米片状。
9.根据权利要求8所述的制备方法,其特征是: g-C3N4/g-C3N4无金属同质异构结大小为2-10微米,厚度为3-100纳米。
10.按照权利要求1-9中任一项所述的g-C3N4/g-C3N4无金属同质异构结的制备方法制得的g-C3N4/g-C3N4无金属同质异构结。
11.权利要求10所述的g-C3N4/g-C3N4无金属同质异构结作为光催化剂的应用。
12.根据权利要求11所述的应用,其特征是:g-C3N4/g-C3N4无金属同质异构结作为光降解有机污染物的催化剂或作为光解水制氢的催化剂。
CN201711462847.1A 2017-12-28 2017-12-28 一种g-C3N4/g-C3N4无金属同质异构结的制备方法及所得产品和应用 Active CN108126728B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711462847.1A CN108126728B (zh) 2017-12-28 2017-12-28 一种g-C3N4/g-C3N4无金属同质异构结的制备方法及所得产品和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711462847.1A CN108126728B (zh) 2017-12-28 2017-12-28 一种g-C3N4/g-C3N4无金属同质异构结的制备方法及所得产品和应用

Publications (2)

Publication Number Publication Date
CN108126728A CN108126728A (zh) 2018-06-08
CN108126728B true CN108126728B (zh) 2020-05-26

Family

ID=62393670

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711462847.1A Active CN108126728B (zh) 2017-12-28 2017-12-28 一种g-C3N4/g-C3N4无金属同质异构结的制备方法及所得产品和应用

Country Status (1)

Country Link
CN (1) CN108126728B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109534307B (zh) * 2019-01-16 2022-03-29 济南大学 一种g-C3N4晶相/非晶相同质结及其制备方法和应用
CN109806901A (zh) * 2019-02-26 2019-05-28 江苏大学 一种中空管状g-C3N4光催化剂及制备方法及应用
CN113976161B (zh) * 2021-11-16 2023-08-22 江苏科技大学 一种同质结光催化剂及其制备方法
CN114790011B (zh) * 2022-03-29 2023-04-07 电子科技大学 一种CoS2同质异构复合材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103145108A (zh) * 2013-02-07 2013-06-12 重庆工商大学 一种c3n4有机异质结的制备方法
CN106629638A (zh) * 2016-10-10 2017-05-10 合肥工业大学 一种单分散结构g‑C3N4纳米片及其制备方法
CN106732712A (zh) * 2016-11-11 2017-05-31 天津大学 具有多层级结构的石墨相氮化碳同型异质结光催化材料的合成方法及应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103145108A (zh) * 2013-02-07 2013-06-12 重庆工商大学 一种c3n4有机异质结的制备方法
CN106629638A (zh) * 2016-10-10 2017-05-10 合肥工业大学 一种单分散结构g‑C3N4纳米片及其制备方法
CN106732712A (zh) * 2016-11-11 2017-05-31 天津大学 具有多层级结构的石墨相氮化碳同型异质结光催化材料的合成方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
In situ Construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis;Fan Dong et al.,;《ACS Applied Materials & Interfaces》;20131021;第5卷;11392-11401 *

Also Published As

Publication number Publication date
CN108126728A (zh) 2018-06-08

Similar Documents

Publication Publication Date Title
Zhou et al. Template-free one-step synthesis of g-C3N4 nanosheets with simultaneous porous network and S-doping for remarkable visible-light-driven hydrogen evolution
Wang et al. Supramolecular precursor strategy for the synthesis of holey graphitic carbon nitride nanotubes with enhanced photocatalytic hydrogen evolution performance
Huo et al. Efficient interfacial charge transfer of 2D/2D porous carbon nitride/bismuth oxychloride step-scheme heterojunction for boosted solar-driven CO2 reduction
Jiang et al. Understanding dual-vacancy heterojunction for boosting photocatalytic CO2 reduction with highly selective conversion to CH4
Liu et al. Facile synthesis of C-doped hollow spherical g-C3N4 from supramolecular self-assembly for enhanced photoredox water splitting
Dong et al. Enhanced visible light photocatalytic activity and oxidation ability of porous graphene-like g-C3N4 nanosheets via thermal exfoliation
Yu et al. In situ self-transformation synthesis of g-C3N4-modified CdS heterostructure with enhanced photocatalytic activity
Liu et al. Modulation of the excited-electron recombination process by introduce g-C3N4 on Bi-based bimetallic oxides photocatalyst
CN108126728B (zh) 一种g-C3N4/g-C3N4无金属同质异构结的制备方法及所得产品和应用
Gong et al. The synthesis of graphene-TiO 2/gC 3 N 4 super-thin heterojunctions with enhanced visible-light photocatalytic activities
Zhu et al. Construction of 2D/2D TiO2/g-C3N4 nanosheet heterostructures with improved photocatalytic activity
Wang et al. Emerging carbon-based quantum dots for sustainable photocatalysis
Lin et al. Epitaxy of radial high‐energy‐facetted ultrathin TiO2 nanosheets onto nanowires for enhanced photoreactivities
Li et al. Facile synthesis of ZnO/g-C3N4 composites with honeycomb-like structure by H2 bubble templates and their enhanced visible light photocatalytic performance
CN108246331B (zh) 石墨烯碳化氮量子点修饰的ZnS微米复合材料及其制备方法和应用
Chen et al. Efficient charge separation between ZnIn 2 S 4 nanoparticles and polyaniline nanorods for nitrogen photofixation
CN109012731B (zh) 海胆状CoZnAl-LDH/RGO/g-C3N4Z型异质结及其制备方法和应用
CN110975886B (zh) 一种多孔二维硫化锌镉纳米片及其制备方法和应用
CN107537501B (zh) 一种分级结构ZnO/CuO复合材料及其制备方法
CN107983387B (zh) 一种氮化碳/硒酸铋复合材料的制备方法与应用
CN104986742A (zh) 一种类珠链状石墨化氮化碳纳米材料及其制备方法
CN104785280A (zh) 一种片状二氧化钛/溴氧化铋复合光催化剂及其制备方法
Pi et al. Properly aligned band structures in B-TiO2/MIL53 (Fe)/g-C3N4 ternary nanocomposite can drastically improve its photocatalytic activity for H2 evolution: Investigations based on the experimental results
CN107433203B (zh) 一种Z-Scheme复合体系及制备方法和应用
Wu et al. New insights into interfacial photocharge transfer in TiO 2/C 3 N 4 heterostructures: effects of facets and defects

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant