CN108122996A - 一种适用于中高温太阳能选择性吸收的热喷涂涂层减反保护层及其制备方法 - Google Patents

一种适用于中高温太阳能选择性吸收的热喷涂涂层减反保护层及其制备方法 Download PDF

Info

Publication number
CN108122996A
CN108122996A CN201711489308.7A CN201711489308A CN108122996A CN 108122996 A CN108122996 A CN 108122996A CN 201711489308 A CN201711489308 A CN 201711489308A CN 108122996 A CN108122996 A CN 108122996A
Authority
CN
China
Prior art keywords
layer
coal
hot
spraying coating
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711489308.7A
Other languages
English (en)
Other versions
CN108122996B (zh
Inventor
程旭东
张学敏
曾鲜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201711489308.7A priority Critical patent/CN108122996B/zh
Publication of CN108122996A publication Critical patent/CN108122996A/zh
Application granted granted Critical
Publication of CN108122996B publication Critical patent/CN108122996B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/048Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with layers graded in composition or physical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Sustainable Development (AREA)
  • Computer Hardware Design (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Sustainable Energy (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

本发明属于太阳能选择性吸收减反材料领域,具体涉及一种适用于中高温太阳能选择性吸收的热喷涂涂层减反保护层及其制备方法。所述的热喷涂涂层减反保护层是内层由高吸收的40wt%Co3O4‑CoAl2O4薄膜,外层是由低吸收的20wt%Co3O4‑CoAl2O4复合双层组成。本发明所制备的热喷涂涂层减反保护层,不仅具有优异的光学选择性能,还能缓解涂层在热处理过程中的应力作用,降低热喷涂涂层的孔隙率,提高涂层的吸收发射比,在高温下也具有较好的热稳定性,同时起到保护、连接和减反的多重效果,结构致密,性能稳定。

Description

一种适用于中高温太阳能选择性吸收的热喷涂涂层减反保护 层及其制备方法
技术领域
本发明属于太阳能选择性吸收减反材料领域,具体涉及一种适用于中高温太阳能选择性吸收的热喷涂涂层减反保护层及其制备方法。
背景技术
太阳能资源作为地球上最丰富的能源之一,被转换成各种形式的能量加以利用。其中光热转换技术被广泛的运用在太阳能集热器上,太阳能集热器表面是吸收太阳能转换成热能的关键部分,多数由导热性好的金属基体和表面的吸收层组成,尽可能获得高的吸收率,将不同波段的太阳光吸收;低的发射率确保低的热辐射散失,将太阳辐射更好的保留。目前国内外制备太阳能选择性吸收涂层的方法有很多,如磁控溅射,由于成本昂贵且只适用于真空中不能被广泛应用于大规模生产;多弧离子镀、涂料涂覆等方法也各有缺点。采用热喷涂技术制备的涂层成本低,耐候性强,但是热喷涂涂层存在结构不够致密、孔隙率高等问题。孔隙率的存在使热喷涂涂层在中高温大气环境下容易发生氧化导致涂层产生微裂纹,进一步使涂层剥落,降低涂层的使用寿命和光学性能,增加红外发射率,因此要对热喷涂涂层表面进行改善。在制备太阳能选择性吸收涂层中发现一个光学性能优异的涂层一般都不是单一的,而是多层的堆栈结构。
热喷涂工艺制备的太阳能选择性吸收涂层在中高温大气环境下服役,涂层的选择吸收性能会快速下降。常见的单层减反层,如Al2O3,TiO2,SiO2等对涂层的保护并不理想;多层结构的涂层又存在层与层之间是否相互匹配的问题,因此需要一个中间层既起到提高选择吸收性能的作用又起到一个过渡连接作用,让最外层的减反层既能够保护内层结构不被破坏又能够增大对可见光的透过率。热喷涂涂层减反保护层的层与层之间的结合力和致密性良好是保证其光学性能优良、使用寿命长的关键。
发明内容
本发明针对现有技术的不足,目的在于提供一种适用于中高温太阳能选择性吸收的热喷涂涂层减反保护层及其制备方法。
为实现上述发明目的,本发明采用的技术方案为:
一种适用于太阳能选择性吸收的热喷涂涂层减反保护层,由内层40wt%Co3O4-CoAl2O4层、外层20wt%Co3O4-CoAl2O4层的复合双层组成。
上述方案中,所述40wt%Co3O4-CoAl2O4层(Co3O4所占质量百分比为40%)和20wt%Co3O4-CoAl2O4层(Co3O4所占质量百分比为20%)由Co3O4-CoAl2O4溶胶制备而成。
上述适用于太阳能选择性吸收的热喷涂涂层减反保护层的制备方法,包括如下步骤:
(1)Co3O4-CoAl2O4溶胶的制备:①将硝酸钴加入到乙醇溶液中形成A溶液;②将异丙醇铝加入到去离子水中充分搅拌溶解得到B溶液;将A溶液缓慢加入B溶液中,搅拌加热升温至85℃,使大部分的醇蒸出,补充流失的水分到原来位置;③缓慢加入稀释后的硝酸,调节pH值为3.0~4.0,继续升温至88℃,高速搅拌12h,得到Co3O4-CoAl2O4溶胶;
(2)热喷涂涂层复合保护层的制备:①制备内层40wt%Co3O4-CoAl2O4层:热喷涂涂层试样经打磨清洗后,进行40wt%Co3O4-CoAl2O4溶胶的提拉镀膜处理,提拉镀膜1次;然后经干燥处理、真空退火热处理后,在热喷涂涂层试样表面上得到内层40wt%Co3O4-CoAl2O4层;②制备外层20wt%Co3O4-CoAl2O4层:表面覆有内层40wt%Co3O4-CoAl2O4层的热喷涂涂层试样经清洁处理后,进行20wt%Co3O4-CoAl2O4溶胶提拉镀膜处理,再经快速干燥处理、真空退火热处理后,在热喷涂涂层试样表面得到内层为40wt%Co3O4-CoAl2O4、外层为20wt%Co3O4-CoAl2O4层的热喷涂涂层减反保护层;③在表面覆有内层40wt%Co3O4-CoAl2O4层、外层为20wt%Co3O4-CoAl2O4层的热喷涂涂层减反保护层的热喷涂涂层试样经清洁处理,在大气环境下退火热处理后,在热喷涂涂层试样表面得到结构稳定的内层40wt%Co3O4-CoAl2O4、外层20wt%Co3O4-CoAl2O4层的热喷涂涂层减反保护层。
上述方案中,步骤(1)中,当Co元素与Al元素的摩尔比为1.23:1时,所述Co3O4-CoAl2O4溶胶为40wt%Co3O4-CoAl2O4层;当Co元素与Al元素的摩尔比为0.77:1时,所述Co3O4-CoAl2O4溶胶为20wt%Co3O4-CoAl2O4层。
上述方案中,步骤(2)中在制备内层40wt%Co3O4-CoAl2O4层的过程中,所述热喷涂涂层试样经表面处理后涂层试样表面的粗糙度控制在1.0~2.0μm。
上述方案中,步骤(2)中在制备内层40wt%Co3O4-CoAl2O4层的过程中,所述提拉镀膜处理的工艺为:以1mm/s的速度浸入到40wt%Co3O4-CoAl2O4溶胶中,浸渍时间为40s,提拉速度为2mm/s。
上述方案中,步骤(2)中在制备外层20wt%Co3O4-CoAl2O4层的过程中,所述提拉镀膜处理的工艺为:以2mm/s的速度浸入到20wt%Co3O4-CoAl2O4溶胶中,浸渍时间为20s,提拉速度为2mm/s。
上述方案中,步骤(2)中在制备内层40wt%Co3O4-CoAl2O4层的过程中,所述干燥处理的温度为100~120℃,时间为60~120min;所述真空退火热处理为:升温速度为4℃/min,热处理温度为600~650℃,热处理时间为1h。
上述方案中,步骤(2)中在制备外层20wt%Co3O4-CoAl2O4层的过程中,所述干燥处理的温度为100~120℃,时间为60~120min;所述真空退火热处理为:升温速度为4℃/min,热处理温度为600~650℃,热处理时间为1h。
上述方案中,步骤(2)中所述大气环境下退火热处理为:升温速度为4℃/min,热处理温度为600~650℃,热处理时间为1h。
本发明中Co3O4作为过渡族金属钴的氧化物,它的禁带宽度大约在1.4~1.8eV,截止波长在680~880nm范围内;空气质量为1.5(AM1.5)的太阳辐出度的峰值波长集中在460~510nm,当小于截止波长的可见、紫外光照射到热喷涂涂层减反保护层表面时,利用Co3O4空的d轨道产生类似半导体材料的电子跃迁且会与晶格中质点发生碰撞,产生热能,通过这一过程实现光能转化为热能,那就意味着能量集中的波段都能够被吸收,所以内层由高含量的Co3O4形成高吸收的内层。由于Al2O3常被用作减反层材料,原因是由于Al2O3的消光系数为零,禁带宽度为8.3eV,截止波长是149nm,当大于截止波长的可见、紫外、红外光照射到热喷涂涂层减反保护层表面时,不能够被吸收且Al2O3的这种高增透作用能够减少入射到表面上光束能量不再被反射出去,掺杂形成的CoAl2O4既是一种耐高温的物质,又有着和Al2O3相似的性质,外层高含量的CoAl2O4发挥了减反的作用以及利用其耐高温的性质保护了内层结构。
本发明的有益效果如下:
(1)本发明采用溶胶凝胶法制备Co3O4-CoAl2O4溶胶,以超音速喷涂技术制备的太阳能选择性吸收热喷涂涂层为基底,由于热喷涂涂层表面粗糙度较高与Co3O4-CoAl2O4溶胶之间具有很好的亲和性,使得内层与基底之间具有良好的结合力,采用不同质量分数的Co3O4-CoAl2O4溶胶,发挥了内层高吸收的作用以及外层保护内层结构和减反的作用,并且内层和外层由于物质一样,结晶温度相同,不会由于退火温度之间的差异引起层间的应力,发生剥落、起皮;
(2)本发明采用浸渍提拉法在热喷涂涂层表面提拉镀膜,后期经过干燥、高温真空热处理下内层40wt%Co3O4-CoAl2O4层形成多孔网状结构,具有优良的热稳定性;这种表面对于短波来说是粗糙表面,对其充分吸收;对于长波来说是光滑表面,将其反射,并且能够改善热喷涂涂层表面状态,降低红外发射率,所以说内层40wt%Co3O4-CoAl2O4层是一个高吸收的薄膜层;
(3)本发明所述双层结构中外层20wt%Co3O4-CoAl2O4层真空热处理下保护内层网状结构并且可以进一步提高涂层的吸收率,同时利用20wt%Co3O4-CoAl2O4薄膜对红外辐射高的增透性作用达到减反的目的,并且20wt%Co3O4-CoAl2O4层与40wt%Co3O4-CoAl2O4内层有良好的匹配性,使内层与外层之间具有高的结合力;在具多孔网络状40wt%Co3O4-CoAl2O4内层和外层20wt%Co3O4-CoAl2O4层的热喷涂试样经过大气热处理下外层形成尖晶石结构,尖晶石结构在高温下很稳定,对在大气环境下使用的涂层被氧化作用破坏的行为起到了很好的屏蔽作用,还能够达到一定的减反效果;
(4)本发明所制备的热喷涂涂层减反保护层,不仅具有优异的光学选择性能,还能缓解涂层在热处理过程中的应力作用,降低热喷涂涂层的孔隙率,提高涂层的吸收发射比,在高温下也具有较好的热稳定性,同时起到保护、连接和减反的多重效果,结构致密,性能稳定。
附图说明
图1为实施例1中未涂覆和涂覆减反保护层的Co-WC热喷涂涂层的反射曲线。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。
实施例1
一种适用于太阳能选择性吸收Co-WC热喷涂涂层减反保护层,通过如下方法制备得到:
(1)40wt%Co3O4-CoAl2O4溶胶的制备:称取6.909g Co(NO3)2·6H2O、3.918gC9H21AlO3,量取139ml无水乙醇,将称取好的Co(NO3)2·6H2O加入到无水乙醇中,制备成0.138mol/L的A溶液;量取172ml去离子水,将称取好的C9H21AlO3加入去离子水中,80℃磁力搅拌至完全溶解,制备得到相同浓度的溶液B;将溶液A缓慢加入到悬浮液B中得到溶液C,调节水浴锅温度为85℃,敞口恒温搅拌1h,使醇蒸发,加快水解速度,然后补水到原来位置;接着升温到90℃,搅拌过程中逐滴加入稀释3倍的浓硝酸,调节溶液pH值到3.0,持续搅拌12h停止即得到40wt%Co3O4-CoAl2O4溶胶;
(2)溶胶-凝胶法制备20wt%Co3O4-CoAl2O4溶胶:称取5.784g Co(NO3)2·6H2O、5.242gC9H21AlO3,量取186ml无水乙醇,将称取好的Co(NO3)2·6H2O加入到无水乙醇中,制备成0.138mol/L的A溶液;量取144ml去离子水,将称取好的C9H21AlO3加入去离子水中,80℃磁力搅拌至完全溶解,制备得到相同浓度的溶液B;将溶液A缓慢加入到溶液B中得到溶液C,调节水浴锅温度为85℃,敞口恒温搅拌1h,使醇蒸发,加快水解速度,然后补水到原来位置;接着升温到90℃,搅拌过程中逐滴加入稀释3倍的浓硝酸,调节溶液pH值到3.0,持续搅拌12h停止即得到20wt%Co3O4-CoAl2O4溶胶;
(3)Co-WC热喷涂涂层减反层由内层40wt%Co3O4-CoAl2O4层、外层20wt%Co3O4-CoAl2O4层的复合双层组成,其制备方法为:①制备内层40wt%Co3O4-CoAl2O4层:对太阳能选择性吸收Co-WC热喷涂涂层试样进行机械抛磨,涂层试样表面粗糙度控制在1.0μm,然后在60℃皂化液中浸泡30min,取出后置于50℃乙醇中超声清洗15min备用;取清洁干净的涂层试样快速吹干后置于提拉机上方,以1mm/s的速度浸入到40wt%Co3O4-CoAl2O4溶胶中,浸渍时间为40s,提拉速度为2mm/s,提拉1次;将提拉后的试样置于鼓风机干燥箱中120℃干燥120min,之后置于真空管式炉中,以4℃/min的升温速度升到650℃,保温60min,得到多孔网络状内层40wt%Co3O4-CoAl2O4层;②制备外层20wt%Co3O4-CoAl2O4层:将表面覆有内层40wt%Co3O4-CoAl2O4层的Co-WC热喷涂涂层试样置于乙醇中超声清洗30min,快速烘干后以2mm/s的速度浸入20wt%Co3O4-CoAl2O4溶胶中,浸渍20s,2mm/s的速度提拉1次;然后放入120℃干燥箱中干燥时间为120min,取出样片置于真空管式炉中以4℃/min的升温速度升到650℃,保温1h,制备得到内层为40wt%Co3O4-CoAl2O4层、外层为20wt%Co3O4-CoAl2O4层的减反保护层薄膜;③制备稳定结构的内层40wt%Co3O4-CoAl2O4层、外层20wt%Co3O4-CoAl2O4层:将表面覆有内层40wt%Co3O4-CoAl2O4层、外层20wt%Co3O4-CoAl2O4层的Co-WC热喷涂涂层试样置于乙醇中超声清洗30min,快速烘干后置于马费炉中以4℃/min的升温速度升到650℃,保温1h,制备得到稳定结构的内层40wt%Co3O4-CoAl2O4层、尖晶石结构的外层20wt%Co3O4-CoAl2O4层的减反保护层薄膜。
紫外-可见-近红外分光光度计测试涂层吸收率,傅里叶变换红外光谱仪测试涂层发射率,热震试验测试涂层抗热震性,将试样放入的马沸炉中650℃保温5min,取出后空冷5min,如此循环直至涂层出现大面积剥落且光学性能低于未涂覆减反保护层试样。本实施例的测试结果见下表1,涂覆了减反保护层的Co-WC试样的吸收率上升,发射率降低,光学选择性提高。未涂覆和涂覆减反保护层的反射曲线如图1所示,在0.3~2.5μm的可见光和近红外波段,涂覆了减反保护层的Co-WC涂层反射曲线低于未涂覆的涂层,说明涂层的吸收率提高;在2.5~25μm的红外波段,涂覆了减反保护层的Co-WC涂层反射曲线高于未涂覆的涂层,说明涂层的发射率降低,涂层的光学选择性提高。
表1热喷涂涂层减反保护层的性能
实施例2
一种适用于太阳能选择性吸收Co-WC热喷涂涂层减反保护层,通过如下方法制备得到:
(1)溶胶-凝胶法制备40wt%Co3O4-CoAl2O4溶胶:称取6.909g Co(NO3)2·6H2O、3.918gC9H21AlO3,量取139ml无水乙醇,将称取好Co(NO3)2·6H2O加入到无水乙醇中,制备成0.138mol/L的A溶液;量取172ml去离子水,将称取好的C9H21AlO3加入去离子水中,80℃磁力搅拌至完全溶解,制备得到相同浓度的溶液B;将溶液A缓慢加入到悬浮液B中得到溶液C,调节水浴锅温度为85℃,敞口恒温搅拌1h,使醇蒸发,加快水解速度,然后补水到原来位置;接着升温到90℃,搅拌过程中逐滴加入稀释3倍的浓硝酸,调节溶液pH值到3.0,持续搅拌12h停止即得到40wt%Co3O4-CoAl2O4溶胶;
(2)溶胶-凝胶法制备20wt%Co3O4-CoAl2O4溶胶:称取5.784g Co(NO3)2·6H2O、5.242gC9H21AlO3,量取186ml无水乙醇,将称取好的Co(NO3)2·6H2O加入到无水乙醇中,制备成0.138mol/L的A溶液;量取144ml去离子水,将称取好的C9H21AlO3加入去离子水中,80℃磁力搅拌至完全溶解,制备得到相同浓度的溶液B;将溶液A缓慢加入到溶液B中得到溶液C,调节水浴锅温度为85℃,敞口恒温搅拌1h,使醇蒸发,加快水解速度,然后补水到原来位置;接着升温到90℃,搅拌过程中逐滴加入稀释3倍的浓硝酸,调节溶液pH值到3.0,持续搅拌12h停止即得到20wt%Co3O4-CoAl2O4溶胶;
(3)Co-WC热喷涂涂层减反层由内层40wt%Co3O4-CoAl2O4层、外层20wt%Co3O4-CoAl2O4层的复合双层组成,其制备方法为:①制备内层40wt%Co3O4-CoAl2O4层:对太阳能选择性吸收Co-WC热喷涂涂层试样进行机械抛磨,涂层试样表面粗糙度控制在2.0μm,然后在60℃皂化液中浸泡30min,取出后置于50℃乙醇中超声清洗15min备用;取清洁干净的涂层试样快速吹干后置于提拉机上方,以1mm/s的速度浸入到40wt%Co3O4-CoAl2O4溶胶中,浸渍时间为40s,提拉速度为2mm/s,提拉1次;将提拉后的试样置于鼓风机干燥箱中120℃干燥120min,之后置于真空管式炉中,以4℃/min的升温速度升到650℃,保温60min,得到多孔网络状内层40wt%Co3O4-CoAl2O4层;②制备外层20wt%Co3O4-CoAl2O4层:将表面覆有内层40wt%Co3O4-CoAl2O4层的Co-WC热喷涂涂层试样置于乙醇中超声清洗30min,快速烘干后以2mm/s的速度浸入20wt%Co3O4-CoAl2O4溶胶中,浸渍20s,2mm/s的速度提拉1次;然后放入120℃干燥箱中干燥时间为120min,取出样片置于真空管式炉中以4℃/min的升温速度升到650℃,保温1h,制备得到内层为40wt%Co3O4-CoAl2O4层、外层为20wt%Co3O4-CoAl2O4层的减反保护层薄膜;③制备稳定结构的内层40wt%Co3O4-CoAl2O4层、外层20wt%Co3O4-CoAl2O4层:将表面覆有内层40wt%Co3O4-CoAl2O4层、外层20wt%Co3O4-CoAl2O4层的Co-WC热喷涂涂层试样置于乙醇中超声清洗30min,快速烘干后置于马费炉中以4℃/min的升温速度升到650℃,保温1h,制备得到稳定结构的内层40wt%Co3O4-CoAl2O4层、尖晶石结构的外层20wt%Co3O4-CoAl2O4层的减反保护层薄膜。
紫外-可见-近红外分光光度计测试涂层吸收率,傅里叶变换红外光谱仪测试涂层发射率,热震试验测试涂层抗热震性,将试样放入的马沸炉中650℃保温5min,取出后空冷5min,如此循环直至涂层出现大面积剥落且光学性能低于未涂覆减反保护层试样。本实施例的测试结果见下表1,涂覆了减反保护层的Co-WC试样的吸收率上升,发射率降低,光学选择性提高。
表2热喷涂涂层减反保护层的性能
实施例3
一种适用于太阳能选择性吸收Co-WC热喷涂涂层减反保护层,通过如下方法制备得到:
(1)溶胶-凝胶法制备40wt%Co3O4-CoAl2O4溶胶:称取6.909g Co(NO3)2·6H2O、3.918gC9H21AlO3,量取139ml无水乙醇,将称取好Co(NO3)2·6H2O加入到无水乙醇中,制备成0.138mol/L的A溶液;量取172ml去离子水,将称取好的C9H21AlO3加入去离子水中,80℃磁力搅拌至完全溶解,制备得到相同浓度的溶液B;将溶液A缓慢加入到悬浮液B中得到溶液C,调节水浴锅温度为85℃,敞口恒温搅拌1h,使醇蒸发,加快水解速度,然后补水到原来位置;接着升温到90℃,搅拌过程中逐滴加入稀释3倍的浓硝酸,调节溶液pH值到3.0,持续搅拌12h停止即得到40wt%Co3O4-CoAl2O4溶胶;
(2)溶胶-凝胶法制备20wt%Co3O4-CoAl2O4溶胶:称取5.784g Co(NO3)2·6H2O、5.242gC9H21AlO3,量取186ml无水乙醇,将称取好的Co(NO3)2·6H2O加入到无水乙醇中,制备成0.138mol/L的A溶液;量取144ml去离子水,将称取好的C9H21AlO3加入去离子水中,80℃磁力搅拌至完全溶解,制备得到相同浓度的溶液B;将溶液A缓慢加入到溶液B中得到溶液C,调节水浴锅温度为85℃,敞口恒温搅拌1h,使醇蒸发,加快水解速度,然后补水到原来位置;接着升温到90℃,搅拌过程中逐滴加入稀释3倍的浓硝酸,调节溶液pH值到4.0,持续搅拌12h停止即得到20wt%Co3O4-CoAl2O4溶胶;
(3)Co-WC热喷涂涂层减反层由内层40wt%Co3O4-CoAl2O4层、外层20wt%Co3O4-CoAl2O4层的复合双层组成,其制备方法为:①制备内层40wt%Co3O4-CoAl2O4层:对太阳能选择性吸收Co-WC热喷涂涂层试样进行机械抛磨,涂层试样表面粗糙度控制在1.0μm,然后在60℃皂化液中浸泡30min,取出后置于50℃乙醇中超声清洗15min备用;取清洁干净的涂层试样快速吹干后置于提拉机上方,以1mm/s的速度浸入到40wt%Co3O4-CoAl2O4溶胶中,浸渍时间为40s,提拉速度为2mm/s,提拉1次;将提拉后的试样置于鼓风机干燥箱中120℃干燥120min,之后置于真空管式炉中,以4℃/min的升温速度升到650℃,保温60min,得到多孔网络状内层40wt%Co3O4-CoAl2O4层;②制备外层20wt%Co3O4-CoAl2O4层:将表面覆有内层40wt%Co3O4-CoAl2O4层的Co-WC热喷涂涂层试样置于乙醇中超声清洗30min,快速烘干后以2mm/s的速度浸入20wt%Co3O4-CoAl2O4溶胶中,浸渍20s,2mm/s的速度提拉1次;然后放入120℃干燥箱中干燥时间为120min,取出样片置于真空管式炉中以4℃/min的升温速度升到650℃,保温1h,制备得到内层为40wt%Co3O4-CoAl2O4层、外层为20wt%Co3O4-CoAl2O4层的减反保护层薄膜;③制备稳定结构的内层40wt%Co3O4-CoAl2O4层、外层20wt%Co3O4-CoAl2O4层:将表面覆有内层40wt%Co3O4-CoAl2O4层、外层20wt%Co3O4-CoAl2O4层的Co-WC热喷涂涂层试样置于乙醇中超声清洗30min,快速烘干后置于马费炉中以4℃/min的升温速度升到650℃,保温1h,制备得到稳定结构的内层40wt%Co3O4-CoAl2O4层、尖晶石结构的外层20wt%Co3O4-CoAl2O4层的减反保护层薄膜。
紫外-可见-近红外分光光度计测试涂层吸收率,傅里叶变换红外光谱仪测试涂层发射率,热震试验测试涂层抗热震性,将试样加热到650℃温度后空冷,如此反复直至涂层出现大面积剥落且光学性能低于未涂覆减反保护层试样。本实施例的测试结果见下表3,涂覆了减反保护层的Co-WC试样的吸收率上升,发射率降低,光学选择性提高。
表3热喷涂涂层减反保护层的性能
实施例4
一种适用于太阳能选择性吸收Co-WC热喷涂涂层减反保护层,通过如下方法制备得到:
(1)溶胶-凝胶法制备40wt%Co3O4-CoAl2O4溶胶:称取6.909g Co(NO3)2·6H2O、3.918gC9H21AlO3,量取139ml无水乙醇,将称取好Co(NO3)2·6H2O加入到无水乙醇中,制备成0.138mol/L的A溶液;量取172ml去离子水,将称取好的C9H21AlO3加入去离子水中,80℃磁力搅拌至完全溶解,制备得到相同浓度的溶液B;将溶液A缓慢加入到悬浮液B中得到溶液C,调节水浴锅温度为85℃,敞口恒温搅拌1h,使醇蒸发,加快水解速度,然后补水到原来位置;接着升温到90℃,搅拌过程中逐滴加入稀释3倍的浓硝酸,调节溶液pH值到3.0,持续搅拌12h停止即得到40wt%Co3O4-CoAl2O4溶胶;
(2)溶胶-凝胶法制备20wt%Co3O4-CoAl2O4溶胶:称取5.784g Co(NO3)2·6H2O、5.242gC9H21AlO3,量取186ml无水乙醇,将称取好的Co(NO3)2·6H2O加入到无水乙醇中,制备成0.138mol/L的A溶液;量取144ml去离子水,将称取好的C9H21AlO3加入去离子水中,80℃磁力搅拌至完全溶解,制备得到相同浓度的溶液B;将溶液A缓慢加入到溶液B中得到溶液C,调节水浴锅温度为85℃,敞口恒温搅拌1h,使醇蒸发,加快水解速度,然后补水到原来位置;接着升温到90℃,搅拌过程中逐滴加入稀释3倍的浓硝酸,调节溶液pH值到4.0,持续搅拌12h停止即得到20wt%Co3O4-CoAl2O4溶胶;
(3)Co-WC热喷涂涂层减反层由内层40wt%Co3O4-CoAl2O4层、外层20wt%Co3O4-CoAl2O4层的复合双层组成,其制备方法为:①制备内层40wt%Co3O4-CoAl2O4层:对太阳能选择性吸收Co-WC热喷涂涂层试样进行机械抛磨,涂层试样表面粗糙度控制在2.0μm,然后在60℃皂化液中浸泡30min,取出后置于50℃乙醇中超声清洗15min备用;取清洁干净的涂层试样快速吹干后置于提拉机上方,以1mm/s的速度浸入到40wt%Co3O4-CoAl2O4溶胶中,浸渍时间为40s,提拉速度为2mm/s,提拉1次;将提拉后的试样置于鼓风机干燥箱中120℃干燥120min,之后置于真空管式炉中,以4℃/min的升温速度升到650℃,保温60min,得到多孔网络状内层40wt%Co3O4-CoAl2O4层;②制备外层20wt%Co3O4-CoAl2O4层:将表面覆有内层40wt%Co3O4-CoAl2O4层的Co-WC热喷涂涂层试样置于乙醇中超声清洗30min,快速烘干后以2mm/s的速度浸入20wt%Co3O4-CoAl2O4溶胶中,浸渍20s,2mm/s的速度提拉1次;然后放入120℃干燥箱中干燥时间为120min,取出样片置于真空管式炉中以4℃/min的升温速度升到650℃,保温1h,制备得到内层为40wt%Co3O4-CoAl2O4层、外层为20wt%Co3O4-CoAl2O4层的减反保护层薄膜;③制备稳定结构的内层40wt%Co3O4-CoAl2O4层、外层20wt%Co3O4-CoAl2O4层:将表面覆有内层40wt%Co3O4-CoAl2O4层、外层20wt%Co3O4-CoAl2O4层的Co-WC热喷涂涂层试样置于乙醇中超声清洗30min,快速烘干后置于马费炉中以4℃/min的升温速度升到650℃,保温1h,制备得到稳定结构的内层40wt%Co3O4-CoAl2O4层、尖晶石结构的外层20wt%Co3O4-CoAl2O4层的减反保护层薄膜。
紫外-可见-近红外分光光度计测试涂层吸收率,傅里叶变换红外光谱仪测试涂层发射率,热震试验测试涂层抗热震性,将试样加热到650℃温度后空冷,如此反复直至涂层出现大面积剥落且光学性能低于未涂覆减反保护层试样。本实施例的测试结果见下表4,涂覆了减反保护层的Co-WC试样的吸收率上升,发射率降低,光学选择性提高。
表4热喷涂涂层减反保护层的性能
实施例5
一种适用于太阳能选择性吸收Co-WC热喷涂涂层减反保护层,通过如下方法制备得到:
(1)溶胶-凝胶法制备40wt%Co3O4-CoAl2O4溶胶:称取6.909g Co(NO3)2·6H2O、3.918gC9H21AlO3,量取139ml无水乙醇,将称取好Co(NO3)2·6H2O加入到无水乙醇中,制备成0.138mol/L的A溶液;量取172ml去离子水,将称取好的C9H21AlO3加入去离子水中,80℃磁力搅拌至完全溶解,制备得到相同浓度的溶液B;将溶液A缓慢加入到悬浮液B中得到溶液C,调节水浴锅温度为85℃,敞口恒温搅拌1h,使醇蒸发,加快水解速度,然后补水到原来位置;接着升温到90℃,搅拌过程中逐滴加入稀释3倍的浓硝酸,调节溶液pH值到4.0,持续搅拌12h停止即得到40wt%Co3O4-CoAl2O4溶胶;
(2)溶胶-凝胶法制备20wt%Co3O4-CoAl2O4溶胶:称取5.784g Co(NO3)2·6H2O、5.242gC9H21AlO3,量取186ml无水乙醇,将称取好的Co(NO3)2·6H2O加入到无水乙醇中,制备成0.138mol/L的A溶液;量取144ml去离子水,将称取好的C9H21AlO3加入去离子水中,80℃磁力搅拌至完全溶解,制备得到相同浓度的溶液B;将溶液A缓慢加入到溶液B中得到溶液C,调节水浴锅温度为85℃,敞口恒温搅拌1h,使醇蒸发,加快水解速度,然后补水到原来位置;接着升温到90℃,搅拌过程中逐滴加入稀释3倍的浓硝酸,调节溶液pH值到4.0,持续搅拌12h停止即得到20wt%Co3O4-CoAl2O4溶胶;
(3)Co-WC热喷涂涂层减反层由内层40wt%Co3O4-CoAl2O4层、外层20wt%Co3O4-CoAl2O4层的复合双层组成,其制备方法为:①制备内层40wt%Co3O4-CoAl2O4层:对太阳能选择性吸收Co-WC热喷涂涂层试样进行机械抛磨,涂层试样表面粗糙度控制在1.0μm,然后在60℃皂化液中浸泡30min,取出后置于50℃乙醇中超声清洗15min备用;取清洁干净的涂层试样快速吹干后置于提拉机上方,以1mm/s的速度浸入到40wt%Co3O4-CoAl2O4溶胶中,浸渍时间为40s,提拉速度为2mm/s,提拉1次;将提拉后的试样置于鼓风机干燥箱中120℃干燥120min,之后置于真空管式炉中,以4℃/min的升温速度升到650℃,保温60min,得到多孔网络状内层40wt%Co3O4-CoAl2O4层;②制备外层20wt%Co3O4-CoAl2O4层:将表面覆有内层40wt%Co3O4-CoAl2O4层的Co-WC热喷涂涂层试样置于乙醇中超声清洗30min,快速烘干后以2mm/s的速度浸入20wt%Co3O4-CoAl2O4溶胶中,浸渍20s,2mm/s的速度提拉1次;然后放入120℃干燥箱中干燥时间为120min,取出样片置于真空管式炉中以4℃/min的升温速度升到650℃,保温1h,制备得到内层为40wt%Co3O4-CoAl2O4层、外层为20wt%Co3O4-CoAl2O4层的减反保护层薄膜;③制备稳定结构的内层40wt%Co3O4-CoAl2O4层、外层20wt%Co3O4-CoAl2O4层:将表面覆有内层40wt%Co3O4-CoAl2O4层、外层20wt%Co3O4-CoAl2O4层的Co-WC热喷涂涂层试样置于乙醇中超声清洗30min,快速烘干后置于马费炉中以4℃/min的升温速度升到650℃,保温1h,制备得到稳定结构的内层40wt%Co3O4-CoAl2O4层、尖晶石结构的外层20wt%Co3O4-CoAl2O4层的减反保护层薄膜。
紫外-可见-近红外分光光度计测试涂层吸收率,傅里叶变换红外光谱仪测试涂层发射率,热震试验测试涂层抗热震性,将试样加热到650℃温度后空冷,如此反复直至涂层出现大面积剥落且光学性能低于未涂覆减反保护层试样。本实施例的测试结果见下表5,涂覆了减反保护层的Co-WC试样的吸收率上升,发射率降低,光学选择性提高。
表5热喷涂涂层减反保护层的性能
实施例6
一种适用于太阳能选择性吸收Co-WC热喷涂涂层减反保护层,通过如下方法制备得到:
(1)溶胶-凝胶法制备40wt%Co3O4-CoAl2O4溶胶:称取6.909g Co(NO3)2·6H2O、3.918gC9H21AlO3,量取139ml无水乙醇,将称取好Co(NO3)2·6H2O加入到无水乙醇中,制备成0.138mol/L的A溶液;量取172ml去离子水,将称取好的C9H21AlO3加入去离子水中,80℃磁力搅拌至完全溶解,制备得到相同浓度的溶液B;将溶液A缓慢加入到悬浮液B中得到溶液C,调节水浴锅温度为85℃,敞口恒温搅拌1h,使醇蒸发,加快水解速度,然后补水到原来位置;接着升温到90℃,搅拌过程中逐滴加入稀释3倍的浓硝酸,调节溶液pH值到4.0,持续搅拌12h停止即得到40wt%Co3O4-CoAl2O4溶胶;
(2)溶胶-凝胶法制备20wt%Co3O4-CoAl2O4溶胶:称取5.784g Co(NO3)2·6H2O、5.242gC9H21AlO3,量取186ml无水乙醇,将称取好的Co(NO3)2·6H2O加入到无水乙醇中,制备成0.138mol/L的A溶液;量取144ml去离子水,将称取好的C9H21AlO3加入去离子水中,80℃磁力搅拌至完全溶解,制备得到相同浓度的溶液B;将溶液A缓慢加入到溶液B中得到溶液C,调节水浴锅温度为85℃,敞口恒温搅拌1h,使醇蒸发,加快水解速度,然后补水到原来位置;接着升温到90℃,搅拌过程中逐滴加入稀释3倍的浓硝酸,调节溶液pH值到4.0,持续搅拌12h停止即得到20wt%Co3O4-CoAl2O4溶胶;
(3)Co-WC热喷涂涂层减反层由内层40wt%Co3O4-CoAl2O4层、外层20wt%Co3O4-CoAl2O4层的复合双层组成,其制备方法为:①制备内层40wt%Co3O4-CoAl2O4层:对太阳能选择性吸收Co-WC热喷涂涂层试样进行机械抛磨,涂层试样表面粗糙度控制在2.0μm,然后在60℃皂化液中浸泡30min,取出后置于50℃乙醇中超声清洗15min备用;取清洁干净的涂层试样快速吹干后置于提拉机上方,以1mm/s的速度浸入到40wt%Co3O4-CoAl2O4溶胶中,浸渍时间为40s,提拉速度为2mm/s,提拉1次;将提拉后的试样置于鼓风机干燥箱中120℃干燥120min,之后置于真空管式炉中,以4℃/min的升温速度升到650℃,保温60min,得到多孔网络状内层40wt%Co3O4-CoAl2O4层;②制备外层20wt%Co3O4-CoAl2O4层:将表面覆有内层40wt%Co3O4-CoAl2O4层的Co-WC热喷涂涂层试样置于乙醇中超声清洗30min,快速烘干后以2mm/s的速度浸入20wt%Co3O4-CoAl2O4溶胶中,浸渍20s,2mm/s的速度提拉1次;然后放入120℃干燥箱中干燥时间为120min,取出样片置于真空管式炉中以4℃/min的升温速度升到650℃,保温1h,制备得到内层为40wt%Co3O4-CoAl2O4层、外层为20wt%Co3O4-CoAl2O4层的减反保护层薄膜;③制备稳定结构的内层40wt%Co3O4-CoAl2O4层、外层20wt%Co3O4-CoAl2O4层:将表面覆有内层40wt%Co3O4-CoAl2O4层、外层20wt%Co3O4-CoAl2O4层的Co-WC热喷涂涂层试样置于乙醇中超声清洗30min,快速烘干后置于马费炉中以4℃/min的升温速度升到650℃,保温1h,制备得到稳定结构的内层40wt%Co3O4-CoAl2O4层、尖晶石结构的外层20wt%Co3O4-CoAl2O4层的减反保护层薄膜。
紫外-可见-近红外分光光度计测试涂层吸收率,傅里叶变换红外光谱仪测试涂层发射率,热震试验测试涂层抗热震性,将试样加热到650℃温度后空冷,如此反复直至涂层出现大面积剥落且光学性能低于未涂覆减反保护层试样。本实施例的测试结果见下表6,涂覆了减反保护层的Co-WC试样的吸收率上升,发射率降低,光学选择性提高。
表6热喷涂涂层减反保护层的性能
实施例7
一种适用于太阳能选择性吸收Co-WC热喷涂涂层减反保护层,通过如下方法制备得到:
(1)溶胶-凝胶法制备40wt%Co3O4-CoAl2O4溶胶:称取6.909g Co(NO3)2·6H2O、3.918gC9H21AlO3,量取139ml无水乙醇,将称取好Co(NO3)2·6H2O加入到无水乙醇中,制备成0.138mol/L的A溶液;量取172ml去离子水,将称取好的C9H21AlO3加入去离子水中,80℃磁力搅拌至完全溶解,制备得到相同浓度的溶液B;将溶液A缓慢加入到悬浮液B中得到溶液C,调节水浴锅温度为85℃,敞口恒温搅拌1h,使醇蒸发,加快水解速度,然后补水到原来位置;接着升温到90℃,搅拌过程中逐滴加入稀释3倍的浓硝酸,调节溶液pH值到4.0,持续搅拌12h停止即得到40wt%Co3O4-CoAl2O4溶胶;
(2)溶胶-凝胶法制备20wt%Co3O4-CoAl2O4溶胶:称取5.784g Co(NO3)2·6H2O、5.242gC9H21AlO3,量取186ml无水乙醇,将称取好的Co(NO3)2·6H2O加入到无水乙醇中,制备成0.138mol/L的A溶液;量取144ml去离子水,将称取好的C9H21AlO3加入去离子水中,80℃磁力搅拌至完全溶解,制备得到相同浓度的溶液B;将溶液A缓慢加入到溶液B中得到溶液C,调节水浴锅温度为85℃,敞口恒温搅拌1h,使醇蒸发,加快水解速度,然后补水到原来位置;接着升温到90℃,搅拌过程中逐滴加入稀释3倍的浓硝酸,调节溶液pH值到3.0,持续搅拌12h停止即得到20wt%Co3O4-CoAl2O4溶胶;
(3)Co-WC热喷涂涂层减反层由内层40wt%Co3O4-CoAl2O4层、外层20wt%Co3O4-CoAl2O4层的复合双层组成,其制备方法为:①制备内层40wt%Co3O4-CoAl2O4层:对太阳能选择性吸收Co-WC热喷涂涂层试样进行机械抛磨,涂层试样表面粗糙度控制在1.0μm,然后在60℃皂化液中浸泡30min,取出后置于50℃乙醇中超声清洗15min备用;取清洁干净的涂层试样快速吹干后置于提拉机上方,以1mm/s的速度浸入到40wt%Co3O4-CoAl2O4溶胶中,浸渍时间为40s,提拉速度为2mm/s,提拉1次;将提拉后的试样置于鼓风机干燥箱中120℃干燥120min,之后置于真空管式炉中,以4℃/min的升温速度升到650℃,保温60min,得到多孔网络状内层40wt%Co3O4-CoAl2O4层;②制备外层20wt%Co3O4-CoAl2O4层:将表面覆有内层40wt%Co3O4-CoAl2O4层的Co-WC热喷涂涂层试样置于乙醇中超声清洗30min,快速烘干后以2mm/s的速度浸入20wt%Co3O4-CoAl2O4溶胶中,浸渍20s,2mm/s的速度提拉1次;然后放入120℃干燥箱中干燥时间为120min,取出样片置于真空管式炉中以4℃/min的升温速度升到650℃,保温1h,制备得到内层为40wt%Co3O4-CoAl2O4层、外层为20wt%Co3O4-CoAl2O4层的减反保护层薄膜;③制备稳定结构的内层40wt%Co3O4-CoAl2O4层、外层20wt%Co3O4-CoAl2O4层:将表面覆有内层40wt%Co3O4-CoAl2O4层、外层20wt%Co3O4-CoAl2O4层的Co-WC热喷涂涂层试样置于乙醇中超声清洗30min,快速烘干后置于马费炉中以4℃/min的升温速度升到650℃,保温1h,制备得到稳定结构的内层40wt%Co3O4-CoAl2O4层、尖晶石结构的外层20wt%Co3O4-CoAl2O4层的减反保护层薄膜。
紫外-可见-近红外分光光度计测试涂层吸收率,傅里叶变换红外光谱仪测试涂层发射率,热震试验测试涂层抗热震性,将试样加热到650℃温度后空冷,如此反复直至涂层出现大面积剥落且光学性能低于未涂覆减反保护层试样。本实施例的测试结果见下表7,涂覆了减反保护层的Co-WC试样的吸收率上升,发射率降低,光学选择性提高。
表7热喷涂涂层减反保护层的性能
实施例8
一种适用于太阳能选择性吸收Co-WC热喷涂涂层减反保护层,通过如下方法制备得到:
(1)溶胶-凝胶法制备40wt%Co3O4-CoAl2O4溶胶:称取6.909g Co(NO3)2·6H2O、3.918gC9H21AlO3,量取139ml无水乙醇,将称取好Co(NO3)2·6H2O加入到无水乙醇中,制备成0.138mol/L的A溶液;量取172ml去离子水,将称取好的C9H21AlO3加入去离子水中,80℃磁力搅拌至完全溶解,制备得到相同浓度的溶液B;将溶液A缓慢加入到悬浮液B中得到溶液C,调节水浴锅温度为85℃,敞口恒温搅拌1h,使醇蒸发,加快水解速度,然后补水到原来位置;接着升温到90℃,搅拌过程中逐滴加入稀释3倍的浓硝酸,调节溶液pH值到4.0,持续搅拌12h停止即得到40wt%Co3O4-CoAl2O4溶胶;
(2)溶胶-凝胶法制备20wt%Co3O4-CoAl2O4溶胶:称取5.784g Co(NO3)2·6H2O、5.242gC9H21AlO3,量取186ml无水乙醇,将称取好的Co(NO3)2·6H2O加入到无水乙醇中,制备成0.138mol/L的A溶液;量取144ml去离子水,将称取好的C9H21AlO3加入去离子水中,80℃磁力搅拌至完全溶解,制备得到相同浓度的溶液B;将溶液A缓慢加入到溶液B中得到溶液C,调节水浴锅温度为85℃,敞口恒温搅拌1h,使醇蒸发,加快水解速度,然后补水到原来位置;接着升温到90℃,搅拌过程中逐滴加入稀释3倍的浓硝酸,调节溶液pH值到3.0,持续搅拌12h停止即得到20wt%Co3O4-CoAl2O4溶胶;
(3)Co-WC热喷涂涂层减反层由内层40wt%Co3O4-CoAl2O4层、外层20wt%Co3O4-CoAl2O4层的复合双层组成,其制备方法为:①制备内层40wt%Co3O4-CoAl2O4层:对太阳能选择性吸收Co-WC热喷涂涂层试样进行机械抛磨,涂层试样表面粗糙度控制在2.0μm,然后在60℃皂化液中浸泡30min,取出后置于50℃乙醇中超声清洗15min备用;取清洁干净的涂层试样快速吹干后置于提拉机上方,以1mm/s的速度浸入到40wt%Co3O4-CoAl2O4溶胶中,浸渍时间为40s,提拉速度为2mm/s,提拉1次;将提拉后的试样置于鼓风机干燥箱中120℃干燥120min,之后置于真空管式炉中,以4℃/min的升温速度升到650℃,保温60min,得到多孔网络状内层40wt%Co3O4-CoAl2O4层;②制备外层20wt%Co3O4-CoAl2O4层:将表面覆有内层40wt%Co3O4-CoAl2O4层的Co-WC热喷涂涂层试样置于乙醇中超声清洗30min,快速烘干后以2mm/s的速度浸入20wt%Co3O4-CoAl2O4溶胶中,浸渍20s,2mm/s的速度提拉1次;然后放入120℃干燥箱中干燥时间为120min,取出样片置于真空管式炉中以4℃/min的升温速度升到650℃,保温1h,制备得到内层为40wt%Co3O4-CoAl2O4层、外层为20wt%Co3O4-CoAl2O4层的减反保护层薄膜;③制备稳定结构的内层40wt%Co3O4-CoAl2O4层、外层20wt%Co3O4-CoAl2O4层:将表面覆有内层40wt%Co3O4-CoAl2O4层、外层20wt%Co3O4-CoAl2O4层的Co-WC热喷涂涂层试样置于乙醇中超声清洗30min,快速烘干后置于马费炉中以4℃/min的升温速度升到650℃,保温1h,制备得到稳定结构的内层40wt%Co3O4-CoAl2O4层、尖晶石结构的外层20wt%Co3O4-CoAl2O4层的减反保护层薄膜。
紫外-可见-近红外分光光度计测试涂层吸收率,傅里叶变换红外光谱仪测试涂层发射率,热震试验测试涂层抗热震性,将试样加热到650℃温度后空冷,如此反复直至涂层出现大面积剥落且光学性能低于未涂覆减反保护层试样。本实施例的测试结果见下表8,涂覆了减反保护层的Co-WC试样的吸收率上升,发射率降低,光学选择性提高。
表8热喷涂涂层减反保护层的性能
显然,上述实施例仅仅是为清楚地说明所作的实例,而并非对实施方式的限制。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而因此所引申的显而易见的变化或变动仍处于本发明创造的保护范围之内。

Claims (10)

1.一种适用于太阳能选择性吸收的热喷涂涂层减反保护层,其特征在于,所述热喷涂涂层减反保护层是由内层40wt% Co3O4-CoAl2O4层、外层20wt% Co3O4-CoAl2O4层的复合双层结构组成。
2.根据权利要求1所述的适用于太阳能选择性吸收的热喷涂涂层减反保护层,其特征在于,所述40wt% Co3O4-CoAl2O4层和20wt% Co3O4-CoAl2O4层均由Co3O4-CoAl2O4溶胶制备而成。
3.权利要求1~2任一所述适用于太阳能选择性吸收的热喷涂涂层减反保护层的制备方法,其特征在于,包括如下步骤:
(1)Co3O4-CoAl2O4溶胶的制备:将硝酸钴加入到乙醇溶液中形成A溶液;将异丙醇铝加入到去离子水中充分搅拌溶解得到B溶液;将A溶液缓慢加入B溶液中,搅拌加热升温至85℃,使大部分的醇蒸出,补充流失的水分到原来位置;缓慢加入稀释后的硝酸,调节pH值为3.0~4.0,继续升温至88℃,高速搅拌12h,得到Co3O4-CoAl2O4溶胶;
(2)热喷涂涂层复合保护层的制备:①制备内层40wt% Co3O4-CoAl2O4层:热喷涂涂层试样经打磨清洗后,进行40wt% Co3O4-CoAl2O4溶胶的提拉镀膜处理,提拉镀膜1次;然后经干燥处理、真空退火热处理后,在热喷涂涂层试样表面上得到内层40wt% Co3O4-CoAl2O4层;②制备外层20wt% Co3O4-CoAl2O4层:表面覆有内层40wt% Co3O4-CoAl2O4层的热喷涂涂层试样经清洁处理后,进行20wt% Co3O4-CoAl2O4溶胶提拉镀膜处理,再经快速干燥处理、真空退火热处理后,在热喷涂涂层试样表面得到内层为40wt% Co3O4-CoAl2O4、外层为20wt% Co3O4-CoAl2O4层的热喷涂涂层减反保护层;在表面覆有内层40wt% Co3O4-CoAl2O4层、外层为20wt% Co3O4-CoAl2O4层的热喷涂涂层减反保护层的热喷涂涂层试样经清洁处理,在大气环境下退火热处理后,在热喷涂涂层试样表面得到结构稳定的内层40wt% Co3O4-CoAl2O4、外层20wt% Co3O4-CoAl2O4层的热喷涂涂层减反保护层。
4.根据权利要求3所述制备方法,其特征在于,步骤(1)中,当Co元素与Al元素的摩尔比为1.23:1时,所述Co3O4-CoAl2O4溶胶为40wt% Co3O4-CoAl2O4层;当Co元素与Al元素的摩尔比为0.77:1时,所述Co3O4-CoAl2O4溶胶为20wt% Co3O4-CoAl2O4层。
5.根据权利要求3所述制备方法,其特征在于,步骤(2)中在制备内层40wt% Co3O4-CoAl2O4层的过程中,所述热喷涂涂层试样经表面处理后涂层试样表面的粗糙度控制在1.0~2.0μm。
6.根据权利要求3所述制备方法,其特征在于,步骤(2)中在制备内层40wt% Co3O4-CoAl2O4层的过程中,所述提拉镀膜处理的工艺为:以1mm/s 的速度浸入到40wt% Co3O4-CoAl2O4溶胶中,浸渍时间为40s,提拉速度为2mm/s。
7.根据权利要求3所述制备方法,其特征在于,步骤(2)中在制备外层20wt% Co3O4-CoAl2O4层的过程中,所述提拉镀膜处理的工艺为:以2mm/s 的速度浸入到20wt% Co3O4-CoAl2O4溶胶中,浸渍时间为20s,提拉速度为2mm/s。
8.根据权利要求3所述制备方法,其特征在于,步骤(2)中在制备内层40wt% Co3O4-CoAl2O4层的过程中,所述干燥处理的温度为100~120℃,时间为60~120min ;所述真空退火热处理为:升温速度为4℃ /min,热处理温度为600~650℃,热处理时间为1h。
9.根据权利要求3所述制备方法,其特征在于,步骤(2)中在制备外层20wt% Co3O4-CoAl2O4层的过程中,所述干燥处理的温度为100~120℃,时间为60~120min ;所述真空退火热处理为:升温速度为4℃/min,热处理温度为600~650℃,热处理时间为1h。
10.根据权利要求3所述制备方法,其特征在于,步骤(2)中所述大气环境下退火热处理为:升温速度为4℃/min,热处理温度为600~650℃,热处理时间为1h~2h。
CN201711489308.7A 2017-12-30 2017-12-30 一种适用于中高温太阳能选择性吸收的热喷涂涂层减反保护层及其制备方法 Expired - Fee Related CN108122996B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711489308.7A CN108122996B (zh) 2017-12-30 2017-12-30 一种适用于中高温太阳能选择性吸收的热喷涂涂层减反保护层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711489308.7A CN108122996B (zh) 2017-12-30 2017-12-30 一种适用于中高温太阳能选择性吸收的热喷涂涂层减反保护层及其制备方法

Publications (2)

Publication Number Publication Date
CN108122996A true CN108122996A (zh) 2018-06-05
CN108122996B CN108122996B (zh) 2019-10-01

Family

ID=62232615

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711489308.7A Expired - Fee Related CN108122996B (zh) 2017-12-30 2017-12-30 一种适用于中高温太阳能选择性吸收的热喷涂涂层减反保护层及其制备方法

Country Status (1)

Country Link
CN (1) CN108122996B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109385627A (zh) * 2018-12-07 2019-02-26 郴州市泰益表面涂层技术有限公司 适用于中高温太阳能选择性微气孔薄膜及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1860383A (zh) * 2003-07-29 2006-11-08 埃西勒国际通用光学公司 包含多层抗反射叠层的光学制品和其制造方法
US20100103524A1 (en) * 2007-03-27 2010-04-29 Carl Zeiss Ag Method for producing an anti-reflection surface on an optical element, and optical elements comprising an anti-reflection surface
CN106992252A (zh) * 2015-11-30 2017-07-28 三星电子株式会社 有机光电器件、图像传感器和电子设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1860383A (zh) * 2003-07-29 2006-11-08 埃西勒国际通用光学公司 包含多层抗反射叠层的光学制品和其制造方法
US20100103524A1 (en) * 2007-03-27 2010-04-29 Carl Zeiss Ag Method for producing an anti-reflection surface on an optical element, and optical elements comprising an anti-reflection surface
CN106992252A (zh) * 2015-11-30 2017-07-28 三星电子株式会社 有机光电器件、图像传感器和电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张学敏 等: "Co-Co3O4-Al2O3太阳能选择性吸收涂层的制备和光学性能的研究", 《全国第十六届红外加热暨红外医学发展研讨会论文及论文摘要集》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109385627A (zh) * 2018-12-07 2019-02-26 郴州市泰益表面涂层技术有限公司 适用于中高温太阳能选择性微气孔薄膜及其制备方法

Also Published As

Publication number Publication date
CN108122996B (zh) 2019-10-01

Similar Documents

Publication Publication Date Title
CN105239060B (zh) 一种适用于太阳能选择性吸收的热喷涂涂层减反层及其制备方法
US8197884B2 (en) Process for producing a sol-gel-based absorber coating for solar heating
CN107243697A (zh) 一种无掩膜的飞秒激光制造超疏水及抗反射表面的方法
CN104959168B (zh) 一种Cu2O/CH3NH3PbI3/TiO2复合光催化剂及其制备方法和应用
CN109811319A (zh) 一种基于Al纳米颗粒光热的智能温控薄膜及其制备方法
CN112043135B (zh) 一种多级红外辐射茶座
CN107523827A (zh) 一种中高温太阳选择性吸收复合涂层及其制备方法
CN101308878A (zh) 均匀大面积光线增透镀膜太阳能电池封装玻璃及制作方法
CN103691647B (zh) 一种具有尖晶石结构的太阳能选择吸收薄膜的制备方法
CN105789340B (zh) 一种高强度双层减反膜的制备方法
CN108122996B (zh) 一种适用于中高温太阳能选择性吸收的热喷涂涂层减反保护层及其制备方法
CN109786493A (zh) 一种高附着力陶瓷及玻璃反射涂层浆料及其制备方法和应用
CN103320776B (zh) 一种非真空中高温太阳能选择性吸收涂层复合减反膜及其制备方法
CN104124286B (zh) 一种利用自生长贵金属等离基元纳米结构
CN103794377B (zh) 一种染料敏化太阳能电池光阳极及其制备方法和应用
CN105031950B (zh) 一种基于多孔复合材料的可控蒸发表面温度的方法
CN107400848B (zh) 一种多层结构的太阳能选择性吸收涂层及其制备方法
CN104437516B (zh) 一种CuCrO2/TiO2复合光催化剂及其制备方法
CN105970146B (zh) 塔式太阳能光热电站吸热器选择性吸收涂层、其制备方法及吸热器
CN104576070A (zh) 二氧化钛纳米棒-金空心球-CdS复合光阳极的制备方法
CN105040070B (zh) 一种钛合金ta2表面高太阳吸收率低发射率膜层的制备方法
CN104928636A (zh) 一种利用抗反射仿生表面制备二氧化钒增透薄膜的方法
CN109631370A (zh) 中高温太阳能吸收涂层及其制备方法
CN109991689A (zh) 一种蓝宝石表面仿生抗反射微纳结构的制备方法
CN106167414B (zh) 一种具有热-反射率响应的二氧化钒薄膜的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191001

Termination date: 20201230