CN108110058A - 一种非对称mosfet器件及其制备方法 - Google Patents

一种非对称mosfet器件及其制备方法 Download PDF

Info

Publication number
CN108110058A
CN108110058A CN201711342250.3A CN201711342250A CN108110058A CN 108110058 A CN108110058 A CN 108110058A CN 201711342250 A CN201711342250 A CN 201711342250A CN 108110058 A CN108110058 A CN 108110058A
Authority
CN
China
Prior art keywords
conductive
cellular
epitaxial layer
cellular groove
conductive type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711342250.3A
Other languages
English (en)
Inventor
陈利
张军亮
姜帆
刘玉山
徐承福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Jin Xing Semiconductor Technology Co Ltd
Original Assignee
Fujian Jin Xing Semiconductor Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Jin Xing Semiconductor Technology Co Ltd filed Critical Fujian Jin Xing Semiconductor Technology Co Ltd
Priority to CN201711342250.3A priority Critical patent/CN108110058A/zh
Publication of CN108110058A publication Critical patent/CN108110058A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66666Vertical transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明涉及一种非对称MOSFET器件及其制备方法,其包括半导体基板和位于半导体基板中心区的元胞区;所述元胞区的元胞沟槽位于相邻第二导电类型柱之间,所述第二导电类型柱从所述第一导电类型外延层的顶部垂直向下延伸,所述元胞沟槽内设置有绝缘氧化层,所述绝缘氧化层覆盖元胞沟槽的侧壁和底壁,还覆盖在元胞沟槽槽口外侧的第一导电类型外延层上;所述元胞沟槽内填充有导电多晶硅,所述导电多晶硅覆盖在元胞沟槽槽口外的绝缘氧化层上。采用这种非对称结构后,左边元胞结构可以改变雪崩时电流的流经通道,使得MOSFET器件关断时规避第一导电类型外延层的电阻,避免NPN管开启,从而提高雪崩耐量;而右边的元胞结构又可以保证导通电阻不会太小。

Description

一种非对称MOSFET器件及其制备方法
技术领域
本发明涉及一种MOSFET器件,尤其是一种非对称MOSFET器件及其制备方法,属于半导体器件的技术领域。
背景技术
目前,现有的普通N型MOSFET器件包括N+型衬底、N-型外延层(N-epi)、栅氧化层、多晶硅栅极(Poly Gate)、P型体区(Pbody);要想降低MOSFET器件的导通电阻,必须将元胞密度做大,但是元胞密度越大,电流密度越大,雪崩耐量能力就越弱。这两个参数是互相影响的。
发明内容
本发明的目的是克服现有技术中存在的不足,提供一种非对称MOSFET器件及其制备方法,其结构紧凑,能有效降低通道电阻,提高雪崩耐量,安全可靠。
本发明提供采用的技术方案是:一种非对称MOSFET器件,包括半导体基板和位于半导体基板中心区的元胞区,所述半导体基板包括第一导电类型衬底和位于第一导电类型衬底上方的第一导电类型外延层;其特征在于:所述元胞区的元胞沟槽位于相邻第二导电类型柱之间,所述第二导电类型柱从所述第一导电类型外延层的顶部垂直向下延伸;所述元胞沟槽的深度小于第二导电类型柱在第一导电类型外延层内的深度;所述元胞沟槽的侧壁外上方设置第二导电类型基区,所述第二导电类型基区与元胞沟槽的侧壁以及相应的第二导电类型柱接触;在第二导电类型基区内设置第一导电类型源区;所述元胞沟槽内设置有绝缘氧化层,所述绝缘氧化层覆盖元胞沟槽的侧壁和底壁,还覆盖在元胞沟槽槽口外侧的第一导电类型外延层上;所述元胞沟槽内填充有导电多晶硅,所述导电多晶硅覆盖在元胞沟槽槽口外的绝缘氧化层上;所述第一导电类型外延层上设置有金属层,所述金属层包括源极金属和栅极金属,所述源极金属与第一导电类型源区、第二导电类型基区和第二导电类型柱欧姆接触,通过绝缘介质层与导电多晶硅绝缘隔离,并填充在接触孔内;所述栅极金属与导电多晶硅欧姆接触;所述绝缘介质层覆盖在第一导电类型外延层以及导电多晶硅上;所述接触孔贯通所述绝缘介质层,对准第二导电类型柱、第二导电类型基区和第一导电类型源区。
进一步地,所述绝缘氧化层与第二导电类型基区内的第一导电类型源区部分交叠。
进一步地,左边的元胞多晶硅延伸到硅表面,右边的元胞多晶硅没有到硅表面。
进一步地,所述半导体基板的材料包括硅。
进一步地,所述第一导电类型衬底的背面设置有漏电极结构。
进一步地,所述元胞沟槽的宽度小于相邻第二导电类型柱间的距离。
进一步地,所述的一种非对称MOSFET器件的制备方法,主要步骤如下:
步骤1,对第一导电类型外延层进行选择性地掩蔽和刻蚀;
步骤2,在元胞沟槽内生长绝缘氧化层;
步骤3,在元胞沟槽内进行导电多晶硅材料的淀积;
步骤4,在元胞沟槽内进行导电多晶硅材料的选择性刻蚀;
步骤5,在所述第一导电类型外延层上方进行第二导电类型杂质离子的注入,扩散后得到第二导电类型基区;
步骤6,在所述第一导电类型外延层上方进行第一导电类型杂质离子的注入,扩散后在第二导电类型基区内形成第一导电类型源区;
步骤7,在所述第一导电类型外延层上设置绝缘介质层,并对绝缘介质层进行刻蚀,得到贯通绝缘介质层的接触孔和绝缘氧化层;
步骤8,在所述第一导电类型外延层上方淀积金属层。
本发明具有以下有益效果:第二导电类型柱与第一导电类型外延层能形成超结结构,在相邻的第二导电类型柱间设置元胞沟槽,元胞沟槽内设置绝缘氧化层以及导电多晶硅,利用超级结构以及沟槽栅结构能有效降低导通电阻;绝缘氧化层覆盖元胞沟槽槽口外的第一导电类型外延层,导电多晶硅同时覆盖在元胞沟槽槽口外的绝缘氧化层上,利用元胞沟槽槽口外的绝缘氧化层以及导电多晶硅可以提高雪崩耐量,结构紧凑,安全可靠。
附图说明
附图为N型功率MOSFET器件,所述“第一导电类型”和“第二导电类型”两者中,对于N型功率MOSFET器件,第一导电类型指N型,第二导电类型为P型;对于P型功率MOSFET器件,第一导电类型与第二导电类型所指的类型与N型半导体器件正好相反。
图1为本发明的结构示意图。
图2-图9为本发明具体实施工艺步骤剖视图;其中:图2为本发明得到元胞沟槽的剖视图;图3为本发明得到元胞沟槽内绝缘氧化材料层后的剖视图;图4为本发明得到元胞沟槽内导电多晶硅材料的淀积后的剖视图;图5为本发明得到多晶硅材料的刻蚀后的剖视图;图6为本发明得到第二导电类型基区的剖视图;图7为本发明得到第一导电类型源区后的剖视图;图8为本发明对绝缘介质层刻蚀得到接触孔后的剖视图;图9为本发明得到源极金属后的剖视图。
图中:1第一导电类型衬底、2第一导电类型外延层、3绝缘氧化层、4导电多晶硅、5第二导电类型基区、6第一导电类型源区、7绝缘介质层、8源极金属。
具体实施方式
下面结合具体附图和实施例对本发明作进一步说明。
如图1所示,本发明提出的一种非对称MOSFET器件,包括半导体基板和位于半导体基板中心区的元胞区,所述半导体基板包括第一导电类型衬底和位于第一导电类型衬底上方的第一导电类型外延层;其特征在于:所述元胞区的元胞沟槽位于相邻第二导电类型柱之间,所述第二导电类型柱从所述第一导电类型外延层的顶部垂直向下延伸;所述元胞沟槽的深度小于第二导电类型柱在第一导电类型外延层内的深度;所述元胞沟槽的侧壁外上方设置第二导电类型基区,所述第二导电类型基区与元胞沟槽的侧壁以及相应的第二导电类型柱接触;在第二导电类型基区内设置第一导电类型源区;所述元胞沟槽内设置有绝缘氧化层,所述绝缘氧化层覆盖元胞沟槽的侧壁和底壁,还覆盖在元胞沟槽槽口外侧的第一导电类型外延层上;所述元胞沟槽内填充有导电多晶硅,所述导电多晶硅覆盖在元胞沟槽槽口外的绝缘氧化层上;所述第一导电类型外延层上设置有金属层,所述金属层包括源极金属和栅极金属,所述源极金属与第一导电类型源区、第二导电类型基区和第二导电类型柱欧姆接触,通过绝缘介质层与导电多晶硅绝缘隔离,并填充在接触孔内;所述栅极金属与导电多晶硅欧姆接触;所述绝缘介质层覆盖在第一导电类型外延层以及导电多晶硅上;所述接触孔贯通所述绝缘介质层,对准第二导电类型柱、第二导电类型基区和第一导电类型源区。
所述绝缘氧化层与第二导电类型基区内的第一导电类型源区部分交叠。
左边的元胞多晶硅延伸到硅表面,右边的元胞多晶硅没有到硅表面。
所述半导体基板的材料包括硅。
所述第一导电类型衬底的背面设置有漏电极结构。
所述元胞沟槽的宽度小于相邻第二导电类型柱间的距离。
所述的一种非对称MOSFET器件的制备方法,主要步骤如下:
步骤1,对第一导电类型外延层进行选择性地掩蔽和刻蚀,以在相邻的第二导电类型柱间得到所需的元胞沟槽,如图2;
步骤2,在元胞沟槽内生长绝缘氧化层,如图3;
步骤3,在元胞沟槽内进行导电多晶硅材料的淀积,以得到填满元胞沟槽及表面一层的导电多晶硅,如图4;
步骤4,在元胞沟槽内进行导电多晶硅材料的选择性刻蚀,以得到如图5所示的形貌;
步骤5,在所述第一导电类型外延层上方进行第二导电类型杂质离子的注入,扩散后得到第二导电类型基区,如图6;
步骤6,在所述第一导电类型外延层上方进行第一导电类型杂质离子的注入,扩散后在第二导电类型基区内形成第一导电类型源区,如图7;
步骤7,在所述第一导电类型外延层上设置绝缘介质层,并对绝缘介质层进行刻蚀,得到贯通绝缘介质层的接触孔和绝缘氧化层,如图8;
步骤8,在所述第一导电类型外延层上方淀积金属层,如图9。
采用这种非对称结构后,左边元胞结构可以改变雪崩时电流的流经通道,使得MOSFET器件关断时规避第一导电类型外延层的电阻,避免NPN管开启,从而提高雪崩耐量;而右边的元胞结构又可以保证导通电阻不会太小。
此外,在所述第一导电类型衬底的背面设置的漏电极结构的具体形式以及栅极金属与导电多晶硅间的具体配合等均为本技术领域人员所熟知,此处不再赘述。
本发明还可有其它实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。比如,参照本实施例,将各区或部位的材料导电类型做N<—>P的互换所形成之MOSFET器件,应该理解为本发明所附权利要求的等同技术方案。

Claims (7)

1.一种非对称MOSFET器件,包括半导体基板和位于半导体基板中心区的元胞区,所述半导体基板包括第一导电类型衬底和位于第一导电类型衬底上方的第一导电类型外延层;其特征在于:所述元胞区的元胞沟槽位于相邻第二导电类型柱之间,所述第二导电类型柱从所述第一导电类型外延层的顶部垂直向下延伸;所述元胞沟槽的深度小于第二导电类型柱在第一导电类型外延层内的深度;所述元胞沟槽的侧壁外上方设置第二导电类型基区,所述第二导电类型基区与元胞沟槽的侧壁以及相应的第二导电类型柱接触;在第二导电类型基区内设置第一导电类型源区;所述元胞沟槽内设置有绝缘氧化层,所述绝缘氧化层覆盖元胞沟槽的侧壁和底壁,还覆盖在元胞沟槽槽口外侧的第一导电类型外延层上;所述元胞沟槽内填充有导电多晶硅,所述导电多晶硅覆盖在元胞沟槽槽口外的绝缘氧化层上;所述第一导电类型外延层上设置有金属层,所述金属层包括源极金属和栅极金属,所述源极金属与第一导电类型源区、第二导电类型基区和第二导电类型柱欧姆接触,通过绝缘介质层与导电多晶硅绝缘隔离,并填充在接触孔内;所述栅极金属与导电多晶硅欧姆接触;所述绝缘介质层覆盖在第一导电类型外延层以及导电多晶硅上;所述接触孔贯通所述绝缘介质层,对准第二导电类型柱、第二导电类型基区和第一导电类型源区。
2.根据权利要求1所述的一种非对称MOSFET器件,其特征在于:所述绝缘氧化层与第二导电类型基区内的第一导电类型源区部分交叠。
3.根据权利要求1所述的一种非对称MOSFET器件,其特征在于:左边的元胞多晶硅延伸到硅表面,右边的元胞多晶硅没有到硅表面。
4.根据权利要求1所述的一种非对称MOSFET器件,其特征在于:所述半导体基板的材料包括硅。
5.根据权利要求1所述的一种非对称MOSFET器件,其特征在于:所述第一导电类型衬底的背面设置有漏电极结构。
6.根据权利要求1所述的一种非对称MOSFET器件,其特征在于:所述元胞沟槽的宽度小于相邻第二导电类型柱间的距离。
7.根据权利要求1至7所述的一种非对称MOSFET器件的制备方法,主要步骤如下:
步骤1,对第一导电类型外延层进行选择性地掩蔽和刻蚀;
步骤2,在元胞沟槽内生长绝缘氧化层;
步骤3,在元胞沟槽内进行导电多晶硅材料的淀积;
步骤4,在元胞沟槽内进行导电多晶硅材料的选择性刻蚀;
步骤5,在所述第一导电类型外延层上方进行第二导电类型杂质离子的注入,扩散后得到第二导电类型基区;
步骤6,在所述第一导电类型外延层上方进行第一导电类型杂质离子的注入,扩散后在第二导电类型基区内形成第一导电类型源区;
步骤7,在所述第一导电类型外延层上设置绝缘介质层,并对绝缘介质层进行刻蚀,得到贯通绝缘介质层的接触孔和绝缘氧化层;
步骤8,在所述第一导电类型外延层上方淀积金属层。
CN201711342250.3A 2017-12-14 2017-12-14 一种非对称mosfet器件及其制备方法 Pending CN108110058A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711342250.3A CN108110058A (zh) 2017-12-14 2017-12-14 一种非对称mosfet器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711342250.3A CN108110058A (zh) 2017-12-14 2017-12-14 一种非对称mosfet器件及其制备方法

Publications (1)

Publication Number Publication Date
CN108110058A true CN108110058A (zh) 2018-06-01

Family

ID=62216997

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711342250.3A Pending CN108110058A (zh) 2017-12-14 2017-12-14 一种非对称mosfet器件及其制备方法

Country Status (1)

Country Link
CN (1) CN108110058A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090053869A1 (en) * 2007-08-22 2009-02-26 Infineon Technologies Austria Ag Method for producing an integrated circuit including a trench transistor and integrated circuit
US20100078708A1 (en) * 2008-09-30 2010-04-01 Infineon Technologies Austria Ag Mos transistor having an increased gate-drain capacitance
CN102456580A (zh) * 2010-10-25 2012-05-16 韩国电子通信研究院 半导体器件及其制造方法
CN106104808A (zh) * 2014-03-20 2016-11-09 株式会社电装 半导体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090053869A1 (en) * 2007-08-22 2009-02-26 Infineon Technologies Austria Ag Method for producing an integrated circuit including a trench transistor and integrated circuit
US20100078708A1 (en) * 2008-09-30 2010-04-01 Infineon Technologies Austria Ag Mos transistor having an increased gate-drain capacitance
CN102456580A (zh) * 2010-10-25 2012-05-16 韩国电子通信研究院 半导体器件及其制造方法
CN106104808A (zh) * 2014-03-20 2016-11-09 株式会社电装 半导体装置

Similar Documents

Publication Publication Date Title
CN102403315B (zh) 半导体装置
CN103456791B (zh) 沟槽功率mosfet
CN102254944A (zh) 一种沟槽mosfet功率整流器件及制造方法
US20190280119A1 (en) Super junction power transistor and preparation method thereof
CN103579339A (zh) 半导体器件
CN107591453A (zh) 沟槽栅超结mosfet器件及其制备方法
CN107910267A (zh) 功率半导体器件及其制造方法
CN106129105B (zh) 沟槽栅功率mosfet及制造方法
CN103956388A (zh) 肖特基二极管半导体器件及其制备方法
CN108428743A (zh) 金属/多晶硅栅极沟槽功率mosfet及其形成方法
CN105762182B (zh) 具有高抗闩锁能力的igbt器件
CN105409006A (zh) 半导体装置
CN109801911A (zh) 一种混合元胞型集成igbt器件
CN103208529A (zh) 半导体二极管以及用于形成半导体二极管的方法
CN107644903A (zh) 具有高抗短路能力的沟槽栅igbt器件及其制备方法
CN113889523A (zh) 基于立体栅场板结构的半导体器件及其制作方法
CN207398150U (zh) 功率半导体器件
CN104332488B (zh) 半导体器件终端、半导体器件及其制造方法
CN1938860B (zh) 半导体装置、半导体装置的制造方法
CN107658343A (zh) 一种优化器件特性的半导体结构及其制造方法
CN108110058A (zh) 一种非对称mosfet器件及其制备方法
CN206250203U (zh) 半导体器件
CN206003772U (zh) 一种半导体器件
CN211265483U (zh) 一种功率半导体器件
CN104282689A (zh) 嵌入frd的igbt器件及制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180601

WD01 Invention patent application deemed withdrawn after publication