CN108102750A - 一种合成气制天然气的工艺 - Google Patents

一种合成气制天然气的工艺 Download PDF

Info

Publication number
CN108102750A
CN108102750A CN201611051746.0A CN201611051746A CN108102750A CN 108102750 A CN108102750 A CN 108102750A CN 201611051746 A CN201611051746 A CN 201611051746A CN 108102750 A CN108102750 A CN 108102750A
Authority
CN
China
Prior art keywords
gas
methanator
technique
product
preparing natural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611051746.0A
Other languages
English (en)
Other versions
CN108102750B (zh
Inventor
宫万福
闫兵海
吕建宁
侯宁
圭多·科洛迪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amec Forster Wheeler
Wison Engineering Ltd
Original Assignee
Amec Forster Wheeler
Wison Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amec Forster Wheeler, Wison Engineering Ltd filed Critical Amec Forster Wheeler
Priority to CN201611051746.0A priority Critical patent/CN108102750B/zh
Publication of CN108102750A publication Critical patent/CN108102750A/zh
Application granted granted Critical
Publication of CN108102750B publication Critical patent/CN108102750B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/08Production of synthetic natural gas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及一种合成气制天然气的工艺,先脱除原料合成气中的含硫组分,含CO2的脱硫气进入甲烷化装置内发生甲烷化反应,得到粗SNG产品气。粗SNG产品气再脱除CO2制得合格的SNG产品,在CO2脱除过程中得到的富甲烷气体返回至甲烷化反应器,用作稀释气,起到控制甲烷化反应器反应温升的作用。与现有技术相比,本发明不仅起到控制甲烷化反应器反应温升的作用,同时可以大幅度降低循环气压缩机的循环气量,从而显著降低了系统能耗和设备投资。

Description

一种合成气制天然气的工艺
技术领域
本发明涉及合成天然气技术领域,具体涉及一种合成气制天然气的工艺。
背景技术
天然气是一种使用安全、热值高的清洁能源,广泛应用于发电、化工、城市燃气、汽车燃料等行业,是世界上主要的清洁能源之一。目前,在国内天然气供应紧张和天然气价格连续上涨情况下,国内许多公司将目光转向煤制天然气的项目。我国的能源结构是“缺油、少气、富煤”,煤炭资源相对丰富。因此,根据我国的能源结构特点,积极发展煤制合成天然气(SNG),不仅可以满足国内日益增长的市场需求,而且对于保障我国的能源安全,意义重大。
德国金属公司申请了用于生产可替代天然气的生产工艺专利US4016189。在该专利申请中,原料气分别在一个高温主甲烷化反应器和一个低温副甲烷化反应器中发生甲烷化反应,通过将主甲烷化反应器出口的部分产品气由气体压缩机加压后循环至高温主甲烷化反应器入口,来控制主甲烷化反应器的温升。
德国金属公司申请了合成天然气的生产工艺专利US4205961。在该专利申请中,原料气依次经过两个高温甲烷化反应器和两个低温甲烷化反应器发生甲烷化反应,通过将第一甲烷化反应器或第二甲烷化反应器出口的部分产品气由气体压缩机加压后循环至第一甲烷化反应器入口,来控制第一甲烷化反应器的温升。
丹麦托普索公司申请了生产富甲烷气的工艺和装置专利US4298694。在该专利申请中,原料气分别在一个绝热高温甲烷化反应器和一个低温冷却甲烷化反应器中发生甲烷化反应,通过将低温冷却甲烷化反应器出口的部分产品气由气体压缩机加压后循环至绝热高温甲烷化反应器入口,来控制绝热高温甲烷化反应器的温升。为防止低温和高CO浓度下甲烷化催化剂生成羰基镍,该工艺在甲烷化催化剂床层上部增加变换催化剂床层,使进料合成气先发生变换反应,利用变换反应热来预热进入甲烷化催化剂床层的工艺气。通过这一方法,一方面可以降低甲烷化反应器入口处的合成气的进料温度,另一方面可以降低循环气压缩机处理的循环气量,降低压缩机的能耗。
五环工程公司申请的专利CN201310434044.0中,净化气依次通过四个甲烷化反应器发生甲烷化反应,用于制取SNG。其中,在第一和第二甲烷化反应器的甲烷化催化剂床层上部分别增加精脱硫催化剂层。第二甲烷化反应器出口的反应物料分成三股,一股送入3#甲烷化反应器,另两股经循环压缩机增压后循环送入第一和第二甲烷化反应器。
大唐国际化工研究院申请的专利CN201310000949.7中,原料气经预热后分成四股,其中第一股原料气与蒸汽、第一股循环气混合后进入第一段甲烷化反应器发生反应;第一段产品气、第二股原料气、蒸汽、第二股循环气混合进入第二段甲烷化反应器发生反应;第二段产品气、第三股原料气、蒸汽混合进入第三段甲烷化反应器发生反应;第三段产品气分成两股,循环气和第二股第三段产品气,循环气经循环压缩机升压后分成两股,第一股循环气和第二股循环气;第二股第三段产品气、第四股原料气、蒸汽混合进入第四段甲烷化反应器发生反应,第四段产品气经气液分离后得到产品气。
但是,现有的甲烷化工艺,绝大部分采用将第一级甲烷化或第二级甲烷化或后续甲烷化反应器出口的很大一部分产品气,通过压缩机加压后,循环至第一级甲烷化和/或第二级甲烷化反应器入口,通过产品气循环来稀释原料气,以达到控制第一级甲烷化和/或第二级甲烷化反应器反应温升的目的。由于甲烷化反应为强放热反应,为了有效控制第一级甲烷化和/或第二级甲烷化反应器的反应温升,现有的产品气循环工艺存在着循环气量过大,循环气压缩机能耗较大的问题。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种循环气量小、能耗小的合成气制天然气的工艺。
本发明的目的可以通过以下技术方案来实现:一种合成气制天然气的工艺,包括以下几个步骤:
(1)原料合成气经脱硫装置脱硫,得到脱硫气;
(2)步骤(1)所得脱硫气经过预热器换热后分成两股,第一股脱硫气通入第一甲烷化反应器的顶部,第二股脱硫气通入第二甲烷化反应器的顶部;
(3)第一甲烷化反应器到第N甲烷化反应器依次连接,前一甲烷化反应器的底部产品气经余热回收器换热后进入后一甲烷化反应器的顶部,其中第M甲烷化反应器底部产品气经余热回收器换热后分成两股,第一股产品气通入第M+1甲烷化反应器的顶部,第二股产品气经循环气压缩机压缩后通入第一甲烷化反应器的顶部;N>M;
(4)第N甲烷化反应器底部的产品气经余热回收器换热后进入气液分离罐中,气液分离罐底部得到的工艺凝液送至界外,气液分离罐顶部得到的粗SNG产品气通入脱CO2装置中;
(5)脱CO2装置将粗SNG产品气分离得到SNG产品气、CO2和甲烷解吸气,所述甲烷解吸气返回至第一甲烷化反应器的顶部或者返回至步骤(2)中所述预热器的入口。
优选的,N≥3,所述的甲烷化反应器为固定床绝热甲烷化反应器。
优选的,所述的第一股脱硫气和步骤(1)中所述的脱硫气的流量比为(0.2~1):1。
优选的,步骤(3)中所述的第二股产品气流量与第一股产品气和第二股产品气流量之和的比率为(0.05~0.8):1。
优选的,所述的脱硫装置和脱CO2装置采用的净化方式包括物理吸收和/或化学吸收。
更优选的,所述的脱硫装置和脱CO2装置采用的净化方式为物理吸收,吸收剂为低温甲醇。低温甲醇是指温度在-50℃以下的甲醇,此时的甲醇具有对酸性气体溶解度极大的优良特性,可以脱除原料气中的酸性气体,如CO2、H2S、COS等。
优选的,每一个所述的甲烷化反应器后连有一台或多台余热回收器。回收的余热可用于公用工程,实现热集成,减少总能耗。
所述的甲烷解吸气中包括甲烷、氢气、一氧化碳和二氧化碳,来自于脱CO2装置,在脱除CO2的过程中,为提高甲烷、氢气和一氧化碳等有效组分的回收率,通过闪蒸、气提、加热、压缩等方法从吸收剂富液或/和吸附剂中回收的气相物料,其气体组成包含但不限于甲烷、氢气、一氧化碳、二氧化碳等组分,其中甲烷的浓度为5%~40%,氢气的浓度为1%~15%,一氧化碳的浓度为0.1%~10%,二氧化碳的浓度为35%~85%。
优选的,N个甲烷化反应器的物料进口温度为190~350℃。
本发明通过对原料合成气先脱除含硫气体,先不脱除CO2,使含CO2的脱硫气经预热器预热后分为两股,一股与循环气压缩机出口的循环气以及与来自脱CO2装置的甲烷解吸气混合后,进入第一甲烷化反应器发生甲烷化反应,反应生成物进入第一余热回收器进行冷却;另一股与第一余热回收器出口的反应物料混合后,进入第二甲烷化反应器发生甲烷化反应。本发明采用含CO2的脱硫气,来自脱CO2装置的甲烷解吸气,循环气压缩机出口的循环气,三者混合后进入第一甲烷化反应器共同参与甲烷化反应,以达到控制甲烷化反应器反应温升的目的,最后再脱除粗SNG中的CO2,获得合格的SNG产品气。通过这一工艺,大大降低了循环气压缩机处理的循环气量,降低了循环气压缩机的过程能耗和设备投资。
与现有技术相比,本发明的有益效果体现在以下几方面:
(1)本发明大大降低了循环气压缩机处理的循环气量,降低了循环气压缩机的过程能耗和设备投资;
(2)在CO2脱除过程中得到的甲烷解吸气返回至甲烷化反应器,能有效的控制甲烷化反应器的反应温升。每一个甲烷化反应器后面均设有余热回收器,回收的余热用于公用工程,实现热集成,降低总能耗。
附图说明
图1为现有的合成气制天然气的流程示意图一;
图2位本发明的流程示意图一;
图3为现有的合成气制天然气的流程示意图二;
图4为本发明的流程示意图二;
图5为本发明的流程示意图三。
其中,1为原料合成气,2为第一主甲烷化反应器,3为第一余热回收器,4为第二主甲烷化反应器,5为第二余热回收器,6为第一副甲烷化反应器,7为第三余热回收器,8为第二副甲烷化反应器,9为第四余热回收器,10为气液分离罐,11为循环气压缩机,12为脱硫装置,13为脱CO2装置,14为甲烷解吸气,15为预热器,16为工艺凝液,17为粗SNG产品气,18为脱H2S和CO2装置,19为脱硫气,20为第一股脱硫气,21为第二股脱硫气,22为第一股产品气,23为第二股产品气,24为含硫气体,25为SNG产品气,26为CO2,27为净化气。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
当采用四级甲烷化反应,即N=4,M=1时,一种合成气制天然气的工艺,其流程如图2所示,包括以下步骤:
原料合成气1进料量449kNm3/h,温度40℃,压力3.4MPaG,体积百分比组成:H2:46.22,CO:14.28,CO2:38.40,CH4:0.00,N2:0.23,H2S:0.87。
原料合成气1经脱硫装置12脱除H2S等含硫组分,得到总硫含量<0.1ppm的脱硫气19,脱除的含硫气体24送至界区外;
得到的脱硫气19进入预热器15进行预热,预热后的气体分为两股,第一股脱硫气20与循环气压缩机11出口的循环气以及与来自脱CO2装置13的甲烷解吸气14混合后,混合气体的温度达到320℃,进入第一甲烷化反应器2发生甲烷化反应,第一甲烷化反应器2出口温度约620℃,反应生成物进入第一余热回收器3进行冷却,冷却后的反应物料分为两股,第二股产品气23a进入循环气压缩机11,经升压后循环至第一甲烷化反应器2入口,第一股产品气22a与第二股脱硫气21混合后,混合气体的温度达到320℃,进入第二甲烷化反应器4发生甲烷化反应,第二甲烷化反应器4出口温度约620℃,反应生成物进入第二余热回收器5进行冷却,冷却后的反应物料温度250℃,进入第三甲烷化反应器6发生进一步甲烷化反应,第三甲烷化反应器6出口温度约451℃,反应生成物进入第三余热回收器7进行冷却,冷却后的反应物料,温度240℃,进入第四甲烷化反应器8发生进一步甲烷化反应,第四甲烷化反应器8出口温度273℃,反应生成物进入第四余热回收器9进行冷却,冷却后的反应生成物进入气液分离罐10,底部得到工艺凝液16,送至界区外,顶部得到粗SNG产品气17;
得到的粗SNG产品气17进入脱CO2装置13脱除CO2,得到SNG产品气25,脱除的CO2 26送至界区外;得到SNG产品气25流量约70kNm3/h,温度40℃,压力2.2MPaG,体积百分比组成:H2:0.64,CO:0.03,CO2:0.00,CH4:97.89,N2:1.44,H2S:0.00;脱CO2过程中产生的甲烷解吸气14循环至第一甲烷化反应器2入口。
脱硫装置12选用物理吸收的方法脱除H2S等含硫组分,选用低温甲醇作为吸收剂。
脱CO2装置13选用物理吸收的方法脱除CO2,选用低温甲醇作为吸收剂。
第一甲烷化反应器2、第二甲烷化反应器4、第三甲烷化反应器6和第四甲烷化反应器8为固定床绝热甲烷化反应器。
在实施例1中,第一股脱硫气20和脱硫气19的流量比为0.55,第二股产品气23a流量与第一股产品气22a和第二股产品气23a流量之和的比率为0.50。
循环气压缩机11的循环气量约213kNm3/h,所需压缩功约1045kW。
对比例1
采用如图1所示的现有的合成气制天然气的工艺,包括以下步骤:
原料合成气1的进料量449kNm3/h,温度40℃,压力3.4MPaG,体积百分比组成:H2:46.22,CO:14.28,CO2:38.40,CH4:0.00,N2:0.23,H2S:0.87。
原料合成气1经脱硫和CO2装置18脱除H2S和CO2后,得到总硫含量<0.1ppm的净化气27,脱除的含硫气体24和CO2 26送至界区外;
得到的净化气27进入预热器15进行预热,预热后的气体分为两股,第一股净化气28与循环气压缩机11出口的循环气混合后,混合气体的温度达到320℃,进入第一甲烷化反应器2发生甲烷化反应,第一甲烷化反应器2出口温度约620℃,反应生成物进入第一余热回收器3进行冷却,冷却后分为两股,其中一股反应物料进入循环气压缩机11,经升压后循环至第一甲烷化反应器2入口,另一股反应物料与第二股净化气29混合,混合后气体的温度达到320℃,进入第二甲烷化反应器4发生甲烷化反应,第二甲烷化反应器4出口温度约620℃,反应生成物进入第二余热回收器5进行冷却,冷却后的反应物料温度250℃,进入第三甲烷化反应器6发生进一步甲烷化反应,第三甲烷化反应器6出口温度约436℃,反应生成物进入第三余热回收器7进行冷却,冷却后的反应物料,温度240℃,进入第四甲烷化反应器8发生进一步甲烷化反应,第四甲烷化反应器8出口温度318℃,反应生成物进入第四余热回收器9进行冷却,冷却后的反应生成物进入气液分离罐10,底部得到工艺凝液16,送至界区外,顶部得到SNG产品气25;SNG产品气25流量约70kNm3/h,温度40℃,压力2.2MPaG,体积百分比组成:H2:1.24,CO:0.00,CO2:0.00,CH4:97.28,N2:1.48,H2S:0.00。
脱硫和CO2装置18选用物理吸收的方法脱除H2S和CO2等组分,选用低温甲醇作为吸收剂。在对比例1中,循环气压缩机11的循环气量约663kNm3/h,所需压缩功约3316kW。
将实施例1和对比例1的能耗及产品进行对比,结果如表1所示:
表1 实施例1和对比例1的能耗及产品对比
项目 循环气量(kNm3/h) 压缩功(kW) CH4含量
实施例1 213 1045 97.89
对比例1 663 3316 97.28
减少/节省百分率(%) 67.9 68.5 ——
根据表1中的对比结果,可见,采用本发明的实施例1中的循环气压缩机的循环气量比采用现有技术的对比例1中的循环气量减少约67.9%,循环气压缩机的压缩功节省约68.5%,另外,采用本发明工艺所得的SNG产品气中CH4的含量更高。
实施例2
当采用四级甲烷化反应,即N=4,M=2时,一种合成气制天然气的工艺,其流程如图4所示,包括以下步骤:
原料合成气1进料量315kNm3/h,温度40℃,压力3.65MPaG,体积百分比组成:H2:40.31,CO:12.06,CO2:33.92,CH4:12.69,N2:0.23,H2S:0.78。
原料合成气1经脱硫装置12脱除H2S等含硫组分,得到总硫含量<0.1ppm的脱硫气19,脱除的含硫气体24送至界区外。
得到的脱硫气19与来自脱CO2装置13的甲烷解吸气14混合后,进入预热器15进行预热,预热后的气体分为两股,第一股脱硫气20与循环气压缩机11出口的循环气混合后,混合气体的温度达到320℃,进入第一甲烷化反应器2发生甲烷化反应,第一甲烷化反应器2出口温度约620℃,反应生成物进入第一余热回收器3进行冷却,第二股脱硫气21与第一余热回收器3出口的反应物料混合后,混合气体的温度达到320℃,进入第二甲烷化反应器4发生甲烷化反应,第二甲烷化反应器4出口温度约620℃,反应生成物进入第二余热回收器5进行冷却,冷却后的反应物料分为两股,第二股产品气23b进入循环气压缩机11,经升压后循环至第一甲烷化反应器2入口,第一股产品气22b以温度240℃进入第三甲烷化反应器6发生进一步甲烷化反应,第三甲烷化反应器6出口温度约453℃,反应生成物进入第三余热回收器7进行冷却,冷却后的反应物料,温度230℃,进入第四甲烷化反应器8发生进一步甲烷化反应,第四甲烷化反应器8出口温度265℃,反应生成物进入第四余热回收器9进行冷却,冷却后的反应生成物进入气液分离罐10,底部得到工艺凝液16,送至界区外,顶部得到粗SNG产品气17。
得到的粗SNG产品气17进入脱CO2装置13脱除CO2,得到SNG产品气25,脱除的CO2 26送至界区外;得到SNG产品气25量约83kNm3/h,温度40℃,压力2.4MPaG,体积百分比组成:H2:0.44,CO:0.02,CO2:0.00,CH4:98.67,N2:0.87,H2S:0.00;脱CO2过程中产生的甲烷解吸气14循环至预热器15的入口。
脱硫装置12选用物理吸收的方法脱除H2S等含硫组分,选用低温甲醇作为吸收剂。
脱CO2装置13选用物理吸收的方法脱除CO2,选用低温甲醇作为吸收剂。
第一甲烷化反应器2、第二甲烷化反应器4、第三甲烷化反应器6和第四甲烷化反应器8为固定床绝热甲烷化反应器。
在实施例2中,第一股脱硫气20和脱硫气19的流量比为0.25,第二股产品气23b流量与第一股产品气22b和第二股产品气23b流量之和的比率为0.12。循环气压缩机11的循环气量约37.3kNm3/h,所需压缩功约259kW。
对比例2
采用如图3所示的现有的合成气制天然气的工艺,包括以下步骤:
原料合成气1的进料量315kNm3/h,温度40℃,压力3.65MPaG,体积百分比组成:H2:40.31,CO:12.06,CO2:33.92,CH4:12.69,N2:0.23,H2S:0.78。
原料合成气1经脱H2S和CO2装置18脱除H2S和CO2后,得到总硫含量<0.1ppm的净化气27,脱除的含硫气体24和CO2 26送至界区外。
得到的净化气27进入预热器15进行预热,预热后的气体分为两股,第一股净化气28与循环气压缩机11出口的循环气混合后,混合气体的温度达到320℃,进入第一甲烷化反应器2发生甲烷化反应,第一甲烷化反应器2出口温度约620℃,反应生成物进入第一余热回收器3进行冷却,第二股净化气29与第一余热回收器3出口的反应物料混合后,混合气体的温度达到320℃,进入第二甲烷化反应器4发生甲烷化反应,第二甲烷化反应器4出口温度约620℃,反应生成物进入第二余热回收器5进行冷却,冷却后的反应物料分为两股,一股反应物料进入循环气压缩机11,经升压后循环至第一甲烷化反应器2入口,另一股反应物料,温度250℃,进入第三甲烷化反应器6发生进一步甲烷化反应,第三甲烷化反应器6出口温度约430℃,反应生成物进入第三余热回收器7进行冷却,冷却后的反应物料,温度240℃,进入第四甲烷化反应器8发生进一步甲烷化反应,第四甲烷化反应器8出口温度310℃,反应生成物进入第四余热回收器9进行冷却,冷却后的反应生成物进入气液分离罐10,底部得到工艺凝液16,送至界区外,顶部得到SNG产品气25;SNG产品气25量约83kNm3/h,温度40℃,压力2.4MPaG,体积百分比组成:H2:1.28,CO:0.00,CO2:0.00,CH4:97.84,N2:0.88,H2S:0.00。
脱硫和CO2装置18选用物理吸收的方法脱除H2S和CO2等组分,选用低温甲醇作为吸收剂。
在对比例2中,循环气压缩机11的循环气量约153.4kNm3/h,所需压缩功约1073kW。
将实施例2和对比例2的能耗及产品进行对比,结果如表2所示:
表2 实施例2和对比例2的能耗及产品对比
项目 循环气量(kNm3/h) 压缩功(kW) CH4含量
实施例2 37.3 259 98.67
对比例2 153.4 1073 97.84
减少/节省百分率(%) 75.7 75.9 ——
根据表2中的对比结果,可见,采用本发明的实施例2中的循环气压缩机的循环气量比采用现有技术的对比例2中的循环气量减少约75.7%,循环气压缩机的压缩功节省约75.9%,另外,采用本发明工艺所得的SNG产品气中CH4的含量更高。
实施例3
采用与实施例1相同的工艺装置及原料气,其流程如图2所示,不同之处在于:
(1)第一股脱硫气20和脱硫气19的流量比为0.2;
(2)第二股产品气23a流量与第一股产品气22a和第二股产品气23a流量之和的比率为0.1;
(3)第一甲烷化反应器的物料入口温度为250℃,第二甲烷化反应器的物料入口温度为190℃,第三甲烷化反应器的物料入口温度为200℃,第四甲烷化反应器的物料入口温度为190℃。
经测试,循环气压缩机11的循环气量约10.6kNm3/h,所需压缩功约52kW。
实施例4
采用与实施例2类似的工艺装置及原料气,其流程如图5所示,不同之处在于:
(1)实施例2中甲烷解吸气14返回至预热器15的入口,与脱硫气19混合后再进入预热器,而本实施例中甲烷解吸气14返回第一甲烷化反应器顶部入口;
(2)第一股脱硫气20和脱硫气19的流量比为1;
(3)第二股产品气23b流量与第一股产品气22b和第二股产品气23b流量之和的比率为0.05;
(4)第一甲烷化反应器的物料入口温度为190℃,第二甲烷化反应器的物料入口温度为320℃,第三甲烷化反应器的物料入口温度为350℃,第四甲烷化反应器的物料入口温度为250℃。
经测试,循环气压缩机11的循环气量约13.4kNm3/h,所需压缩功约92kW。
实施例5
采用与实施例1相同的原料气,不同之处在于:
(1)本实施例采用三级甲烷化反应,即N=3,M=1;
(2)第一股脱硫气20和脱硫气19的流量比为0.8;
(3)第二股产品气23a流量与第一股产品气22a和第二股产品气23a流量之和的比率为0.8;
(4)第一甲烷化反应器的物料入口温度为250℃,第二甲烷化反应器的物料入口温度为250℃,第三甲烷化反应器的物料入口温度为210℃。
经测试,循环气压缩机11的循环气量约1099kNm3/h,所需压缩功约3925kW。
本发明提出的一种利用合成气制天然气的节能工艺,已通过较佳的实施例子进行了描述,相关技术人员明显能在不脱离本发明内容、精神和范围内对本文所述的工艺方法进行改动或适当变更与组合,来实现本发明技术。特别需要指出的是,所有相类似的替换和改动对本领域的技术人员是显而易见的,它们都会被视为包含在本发明精神、范围和内容中。

Claims (9)

1.一种合成气制天然气的工艺,其特征在于,所述的工艺包括以下几个步骤:
(1)原料合成气(1)经脱硫装置(12)脱硫,得到脱硫气(19);
(2)步骤(1)所得脱硫气(19)经过预热器(15)换热后分成两股,第一股脱硫气(20)通入第一甲烷化反应器(2)的顶部,第二股脱硫气(21)通入第二甲烷化反应器(4)的顶部;
(3)第一甲烷化反应器到第N甲烷化反应器依次连接,前一甲烷化反应器的底部产品气经余热回收器换热后进入后一甲烷化反应器的顶部,其中第M甲烷化反应器底部产品气经余热回收器换热后分成两股,第一股产品气通入第M+1甲烷化反应器的顶部,第二股产品气经循环气压缩机(11)压缩后通入第一甲烷化反应器(2)的顶部;N>M;
(4)第N甲烷化反应器底部的产品气经余热回收器换热后进入气液分离罐(10)中,气液分离罐(10)底部得到的工艺凝液(16)送至界外,气液分离罐(10)顶部得到的粗SNG产品气(17)通入脱CO2装置(13)中;
(5)脱CO2装置(13)将粗SNG产品气(17)分离得到SNG产品气(25)、CO2(26)和甲烷解吸气(14),所述甲烷解吸气(14)返回至第一甲烷化反应器(2)的顶部或者返回至步骤(2)中所述预热器(15)的入口。
2.根据权利要求1所述的一种合成气制天然气的工艺,其特征在于,N≥3,所述的甲烷化反应器为固定床绝热甲烷化反应器。
3.根据权利要求1所述的一种合成气制天然气的工艺,其特征在于,所述的第一股脱硫气(20)和步骤(1)中所述的脱硫气(19)的流量比为(0.2~1):1。
4.根据权利要求1所述的一种合成气制天然气的工艺,其特征在于,步骤(3)中所述的第二股产品气流量与第一股产品气和第二股产品气流量之和的比率为(0.05~0.8):1。
5.根据权利要求1所述的一种合成气制天然气的工艺,其特征在于,所述的脱硫装置(12)和脱CO2装置(13)采用的净化方式包括物理吸收和/或化学吸收。
6.根据权利要求5所述的一种合成气制天然气的工艺,其特征在于,所述的脱硫装置(12)和脱CO2装置(13)采用的净化方式为物理吸收,吸收剂为低温甲醇。
7.根据权利要求1所述的一种合成气制天然气的工艺,其特征在于,每一个所述的甲烷化反应器后连有一台或多台余热回收器。
8.根据权利要求1所述的一种合成气制天然气的工艺,其特征在于,所述的甲烷解吸气(14)通过粗SNG气(17)在脱CO2装置(13)中进行闪蒸、气提、加热、压缩后得到,所述甲烷解吸气(14)包括甲烷、氢气、一氧化碳和二氧化碳。
9.根据权利要求1所述的一种合成气制天然气的工艺,其特征在于,N个甲烷化反应器的物料进口温度为190~350℃。
CN201611051746.0A 2016-11-25 2016-11-25 一种合成气制天然气的工艺 Active CN108102750B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611051746.0A CN108102750B (zh) 2016-11-25 2016-11-25 一种合成气制天然气的工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611051746.0A CN108102750B (zh) 2016-11-25 2016-11-25 一种合成气制天然气的工艺

Publications (2)

Publication Number Publication Date
CN108102750A true CN108102750A (zh) 2018-06-01
CN108102750B CN108102750B (zh) 2020-11-06

Family

ID=62204176

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611051746.0A Active CN108102750B (zh) 2016-11-25 2016-11-25 一种合成气制天然气的工艺

Country Status (1)

Country Link
CN (1) CN108102750B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4091008A (en) * 1974-08-23 1978-05-23 Linde Aktiengesellschaft Production of a gas rich in methane
CN101597527A (zh) * 2009-07-07 2009-12-09 山西科灵环境工程设计技术有限公司 一种利用焦炉气制取合成天然气的方法
CN103060035A (zh) * 2013-01-22 2013-04-24 新地能源工程技术有限公司 由煤基合成气生产lng的方法
CN103773524A (zh) * 2012-10-19 2014-05-07 中冶焦耐工程技术有限公司 液化天然气的制造方法
CN105561739A (zh) * 2014-10-11 2016-05-11 中国科学院大连化学物理研究所 一种密闭空间内co2富集与转化设备及方法
CN105820850A (zh) * 2015-01-05 2016-08-03 王连成 利用甲醇生产合成天然气的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4091008A (en) * 1974-08-23 1978-05-23 Linde Aktiengesellschaft Production of a gas rich in methane
CN101597527A (zh) * 2009-07-07 2009-12-09 山西科灵环境工程设计技术有限公司 一种利用焦炉气制取合成天然气的方法
CN103773524A (zh) * 2012-10-19 2014-05-07 中冶焦耐工程技术有限公司 液化天然气的制造方法
CN103060035A (zh) * 2013-01-22 2013-04-24 新地能源工程技术有限公司 由煤基合成气生产lng的方法
CN105561739A (zh) * 2014-10-11 2016-05-11 中国科学院大连化学物理研究所 一种密闭空间内co2富集与转化设备及方法
CN105820850A (zh) * 2015-01-05 2016-08-03 王连成 利用甲醇生产合成天然气的方法

Also Published As

Publication number Publication date
CN108102750B (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
CN109179320B (zh) 一种天然气现场制氢装置及方法
CN101508922B (zh) 一种利用焦炉气制备合成天然气的甲烷化反应工艺
CN102517108A (zh) 一种利用焦炉气制液化天然气联产液氨的工艺
CN102782161A (zh) 高炉的操作方法、炼钢厂的操作方法和含氧化碳气体的利用方法
CN102849680A (zh) 从天然气中合成及纯化氢气的方法
CN103820183B (zh) 一种焦炉气直接补二氧化碳制合成天然气的方法
CN103898265A (zh) 一种焦炉煤气改质直接还原铁矿石系统装置及方法
CN104357117A (zh) 一种煤制合成天然气和液化天然气的无循环甲烷化工艺
CN104479752A (zh) 一种气流床粉煤加氢气化方法
US20130097929A1 (en) Process for Producing Hydrogen
CN106554831A (zh) 一种沼气提纯及二氧化碳同步甲烷化转化的设备及工艺
CN105883851B (zh) 一种新型气化与热解耦合煤气多联产工艺
CN107032954A (zh) 利用煤炭地下气化产品气生产甲醇及其衍生物的方法
CN103946151B (zh) 用于增加合成气的氢含量的方法
CN104830391A (zh) 一种合成高品质煤制天然气的甲烷化装置及工艺
CN103421561B (zh) 合成气甲烷化反应的方法
CN102977958B (zh) 通过合成甲醇对煤制天然气进行调峰的制备方法
CN103571558A (zh) 外热式半焦尾气制lng的方法
Raza et al. Simulation of the pyrolysis process using blend of date seeds and coffee waste as biomass
CN103060035B (zh) 由煤基合成气生产lng的方法
CN101830434A (zh) 一种天然气转化制取合成气的方法
CN204509155U (zh) 一种以煤和天然气为原料经合成气制烯烃的系统
CN103540376A (zh) 合成气甲烷化制替代天然气的方法
CN108102750A (zh) 一种合成气制天然气的工艺
CN105647607B (zh) 一种低氢碳比兰炭尾气生产天然气的方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: No. 699 Zhongke Road, 201210 China (Shanghai) Free Trade Pilot Area

Applicant after: Wison Engineering (China) Ltd.

Applicant after: AMEC Forster Wheeler

Address before: 201203 No. 1399 Zhangheng Road, Zhangjiang High-tech Park, Pudong New Area, Shanghai

Applicant before: Wison Engineering (China) Ltd.

Applicant before: AMEC Forster Wheeler

GR01 Patent grant
GR01 Patent grant