CN108101094A - 一种氧化钙-碳酸钙核壳纳米颗粒组装结构的制备方法 - Google Patents

一种氧化钙-碳酸钙核壳纳米颗粒组装结构的制备方法 Download PDF

Info

Publication number
CN108101094A
CN108101094A CN201810116575.8A CN201810116575A CN108101094A CN 108101094 A CN108101094 A CN 108101094A CN 201810116575 A CN201810116575 A CN 201810116575A CN 108101094 A CN108101094 A CN 108101094A
Authority
CN
China
Prior art keywords
feed liquid
calcium oxide
deionized water
method described
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810116575.8A
Other languages
English (en)
Other versions
CN108101094B (zh
Inventor
唐洁净
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Huateng Nano Technology Co ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201810116575.8A priority Critical patent/CN108101094B/zh
Publication of CN108101094A publication Critical patent/CN108101094A/zh
Application granted granted Critical
Publication of CN108101094B publication Critical patent/CN108101094B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • C01F11/182Preparation of calcium carbonate by carbonation of aqueous solutions and characterised by an additive other than CaCO3-seeds
    • C01F11/183Preparation of calcium carbonate by carbonation of aqueous solutions and characterised by an additive other than CaCO3-seeds the additive being an organic compound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/02Oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Cosmetics (AREA)

Abstract

一种氧化钙‑碳酸钙核壳纳米颗粒组装结构的制备方法,包括如下步骤:将氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀,料液在微波下处理,料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,在超声条件下,对料液进行喷雾,离心分离,去离子水洗涤,重新分散在去离子水中,强力超声结合离心洗涤,重复3次,得氧化钙‑碳酸钙核壳纳米颗粒组装结构。

Description

一种氧化钙-碳酸钙核壳纳米颗粒组装结构的制备方法
技术领域
本发明属于碳酸钙材料制备领域,具体涉及一种制备氧化钙-碳酸钙核壳纳米颗粒组装结构的方法。
背景技术
碳酸钙被广泛用于橡胶、塑料、涂料、造纸、油墨、胶點剂、密封胶等行业,还可应用于牙膏、食品、医药、词料、建材、化纤等行业。碳酸钙的晶型包括方解石、文石、球霰石三种类型,其中方解石结构最稳定,文石和球霰石均属于非稳态。
核壳微粒一般是由通过化学键或其他作用力将一种纳米材料包覆在另一种纳米材料的表面形成的纳米结构。例如,在核结构上进行表面修饰,再通过表面修饰剂与核材料的相互作用,完成壳材料的包覆。然而,包覆过程通常需要克服表面修饰剂与核之间的包覆不完全,以及表面修饰剂与壳材料结合上的困难,每一个环节出现包覆不够全面的情况,都将导致核壳材料的包覆不完整。目前,制备碳酸钙的方法较多,但如何制备具有核壳结构的氧化钙-碳酸钙核壳纳米颗粒并实现完整包覆未见报道,本发明摒弃通过表面修饰合成核壳材料的思路,通过原位生长制备得到了完整包覆的氧化钙-碳酸钙核壳纳米颗粒,并将其组装为多孔结构的组装体。
发明内容
本发明的技术方案是为了克服已有技术的不足之处,提出一种制备氧化钙-碳酸钙核壳纳米颗粒组装结构的方法。
本发明提出了一种氧化钙-碳酸钙核壳纳米颗粒组装结构的制备方法,包括如下步骤:
1)将粒径为2-3μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;
2)将步骤1)得到的料液在微波下处理25-35min;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,在超声条件下,对料液进行喷雾;
4)收集喷雾后的料液,控制离心分离的转数,去离子水洗涤2-3次;
5)重新分散在去离子水中,强力超声结合离心洗涤,重复3次,得氧化钙-碳酸钙核壳纳米颗粒组装结构。
其中,所述复合表面活性剂由十二烷基二甲基苄基氯化铵和月桂酸咪唑啉表面活性剂组成。
其中,微波的功率为500-600W。
其中,氧化钙与十二烷基二甲基苄基氯化铵、月桂酸咪唑啉表面活性剂的摩尔比为1∶0.5-0.8∶0.2-0.4。
其中,步骤1)中,氧化钙与去离子水的质量比为1∶100-200。
其中,步骤3)中,料液与二氧化碳的进料比为1g∶200-400mL。
其中,步骤4)中,控制离心转数为4000-6000rpm。
其中,步骤3)中,超声功率为150-200W。
其中,步骤5)中,强力超声功率为400-600W。
本发明采用微波条件控制氧化钙颗粒的水化,使氧化钙表层形成氢氧化钙层,通过调控微波功率和时间,可以调节氢氧化钙层的厚度,进而控制碳酸钙壳层的厚度。颗粒表层的氢氧化钙在超声喷雾的条件下与二氧化碳反应,料液在湍流条件下被大量二氧化碳气体冲击、裹挟,在超声作用下被二氧化碳分散为极小的液滴,超声促进了气液相物料在接触的瞬间发生反应,并有利于在反应过程中避免颗粒的团聚。采用复合表面活性剂结合于颗粒表面,在稳定颗粒、避免团聚的同时,诱导碳酸钙形成文石相。在强力超声的作用下,声能产生的能量通过液体介质而变成一个个密集的小气泡,这些小气泡迅速炸裂,导致部分表面活性剂从颗粒表面脱落,造成颗粒表面能上升,进而组装成多孔微米球体。由于一级颗粒尺寸均匀,因此,形成的二级组装结构尺寸也较均一。
本发明的有益效果:本方法采用二氧化碳作为料液雾化的气体,相比于雾化后再与二氧化碳气体接触,得到的产物颗粒尺寸更加均一。由于微波法活化了颗粒的表面,结合超声喷雾下的瞬时反应,颗粒表面活性点多,反应快,导致颗粒表面凸凹不平,较相同尺寸、形貌的颗粒比表面积明显增大。得到具有稳定的文石相的碳酸钙层,核壳颗粒尺寸约为400-600nm,经组装后,形成约8-12微米的多孔球状结构。
具体实施方式
下面结合实施例,进一步说明本发明。
实施例1
1)将粒径为2μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;氧化钙与十二烷基二甲基苄基氯化铵、月桂酸咪唑啉表面活性剂的摩尔比为1∶0.5∶0.2;
2)将步骤1)得到的料液在微波下处理25min,微波功率为500W;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,料液与二氧化碳的进料比为1g∶200mL,在超声条件下,对料液进行喷雾;
4)收集喷雾后的料液,控制离心分离的转数,去离子水洗涤2-3次;
5)重新分散在去离子水中,400W功率下超声,然后离心洗涤,重复3次,得氧化钙-碳酸钙核壳纳米颗粒组装结构。
实施例2
1)将粒径为3μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;氧化钙与十二烷基二甲基苄基氯化铵、月桂酸咪唑啉表面活性剂的摩尔比为1∶0.8∶0.4;
2)将步骤1)得到的料液在微波下处理35min,微波功率为600W;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,料液与二氧化碳的进料比为1g∶400mL,在超声条件下,对料液进行喷雾;
4)收集喷雾后的料液,控制离心分离的转数,去离子水洗涤2-3次;
5)重新分散在去离子水中,600W功率下超声,然后离心洗涤,重复3次,得氧化钙-碳酸钙核壳纳米颗粒组装结构。
实施例3
1)将粒径为1μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;氧化钙与十二烷基二甲基苄基氯化铵、月桂酸咪唑啉表面活性剂的摩尔比为1∶0.5∶0.2;
2)将步骤1)得到的料液在微波下处理25min,微波功率为500W;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,料液与二氧化碳的进料比为1g∶200mL,在超声条件下,对料液进行喷雾;
4)收集喷雾后的料液,控制离心分离的转数,去离子水洗涤2-3次;
5)重新分散在去离子水中,400W功率下超声,然后离心洗涤,重复3次。
实施例4
1)将粒径为2μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;氧化钙与十二烷基二甲基苄基氯化铵、月桂酸咪唑啉表面活性剂的摩尔比为1∶0.5∶0.2;
2)将步骤1)得到的料液在微波下处理25min,微波功率为400W;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,料液与二氧化碳的进料比为1g∶200mL,在超声条件下,对料液进行喷雾;
4)收集喷雾后的料液,控制离心分离的转数,去离子水洗涤2-3次;
5)重新分散在去离子水中,400W功率下超声,然后离心洗涤,重复3次。
实施例5
1)将粒径为2μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;氧化钙与十二烷基二甲基苄基氯化铵、月桂酸咪唑啉表面活性剂的摩尔比为1∶0.5∶0.2;
2)将步骤1)得到的料液在微波下处理25min,微波功率为700W;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,料液与二氧化碳的进料比为1g∶200mL,在超声条件下,对料液进行喷雾;
4)收集喷雾后的料液,控制离心分离的转数,去离子水洗涤2-3次;
5)重新分散在去离子水中,400W功率下超声,然后离心洗涤,重复3次。
实施例6
1)将粒径为2μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;氧化钙与十二烷基二甲基苄基氯化铵、月桂酸咪唑啉表面活性剂的摩尔比为1∶0.5∶0.2;
2)将步骤1)得到的料液在微波下处理10min,微波功率为500W;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,料液与二氧化碳的进料比为1g∶200mL,在超声条件下,对料液进行喷雾;
4)收集喷雾后的料液,控制离心分离的转数,去离子水洗涤2-3次;
5)重新分散在去离子水中,400W功率下超声,然后离心洗涤,重复3次。
实施例7
1)将粒径为2μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;氧化钙与十二烷基二甲基苄基氯化铵、月桂酸咪唑啉表面活性剂的摩尔比为1∶0.5∶0.2;
2)将步骤1)得到的料液在微波下处理50min,微波功率为500W;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,料液与二氧化碳的进料比为1g∶200mL,在超声条件下,对料液进行喷雾;
4)收集喷雾后的料液,控制离心分离的转数,去离子水洗涤2-3次;
5)重新分散在去离子水中,400W功率下超声,然后离心洗涤,重复3次。
实施例8
1)将粒径为2μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;氧化钙与十二烷基二甲基苄基氯化铵、月桂酸咪唑啉表面活性剂的摩尔比为1∶0.5∶0.2;
2)将步骤1)得到的料液在微波下处理25min,微波功率为500W;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,料液与二氧化碳的进料比为1g∶100mL,在超声条件下,对料液进行喷雾;
4)收集喷雾后的料液,控制离心分离的转数,去离子水洗涤2-3次;
5)重新分散在去离子水中,400W功率下超声,然后离心洗涤,重复3次。
实施例9
1)将粒径为2μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;氧化钙与十二烷基二甲基苄基氯化铵、月桂酸咪唑啉表面活性剂的摩尔比为1∶0.5∶0.2;
2)将步骤1)得到的料液在微波下处理25min,微波功率为500W;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,料液与二氧化碳的进料比为1g∶500mL,在超声条件下,对料液进行喷雾;
4)收集喷雾后的料液,控制离心分离的转数,去离子水洗涤2-3次;
5)重新分散在去离子水中,400W功率下超声,然后离心洗涤,重复3次。
实施例10
1)将粒径为2μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;氧化钙与十二烷基二甲基苄基氯化铵、月桂酸咪唑啉表面活性剂的摩尔比为1∶0.4∶0.2;
2)将步骤1)得到的料液在微波下处理25min,微波功率为500W;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,料液与二氧化碳的进料比为1g∶200mL,在超声条件下,对料液进行喷雾;
4)收集喷雾后的料液,控制离心分离的转数,去离子水洗涤2-3次;
5)重新分散在去离子水中,400W功率下超声,然后离心洗涤,重复3次。
实施例11
1)将粒径为2μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;氧化钙与十二烷基二甲基苄基氯化铵、月桂酸咪唑啉表面活性剂的摩尔比为1∶1∶0.2;
2)将步骤1)得到的料液在微波下处理25min,微波功率为500W;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,料液与二氧化碳的进料比为1g∶200mL,在超声条件下,对料液进行喷雾;
4)收集喷雾后的料液,控制离心分离的转数,去离子水洗涤2-3次;
5)重新分散在去离子水中,400W功率下超声,然后离心洗涤,重复3次。
实施例12
1)将粒径为2μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;氧化钙与十二烷基二甲基苄基氯化铵、月桂酸咪唑啉表面活性剂的摩尔比为1∶0.5∶0.1;
2)将步骤1)得到的料液在微波下处理25min,微波功率为500W;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,料液与二氧化碳的进料比为1g∶200mL,在超声条件下,对料液进行喷雾;
4)收集喷雾后的料液,控制离心分离的转数,去离子水洗涤2-3次;
5)重新分散在去离子水中,400W功率下超声,然后离心洗涤,重复3次。
实施例13
1)将粒径为2μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;氧化钙与十二烷基二甲基苄基氯化铵、月桂酸咪唑啉表面活性剂的摩尔比为1∶0.5∶0.6;
2)将步骤1)得到的料液在微波下处理25min,微波功率为500W;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,料液与二氧化碳的进料比为1g∶200mL,在超声条件下,对料液进行喷雾;
4)收集喷雾后的料液,控制离心分离的转数,去离子水洗涤2-3次;
5)重新分散在去离子水中,400W功率下超声,然后离心洗涤,重复3次。
实施例14
1)将粒径为2μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;氧化钙与十二烷基二甲基苄基氯化铵、月桂酸咪唑啉表面活性剂的摩尔比为1∶0.5∶0.2;
2)将步骤1)得到的料液在微波下处理25min,微波功率为500W;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,料液与二氧化碳的进料比为1g∶200mL,在超声条件下,对料液进行喷雾;
4)收集喷雾后的料液,控制离心分离的转数,去离子水洗涤2-3次;
5)重新分散在去离子水中,300W功率下超声,然后离心洗涤,重复3次。
实施例15
1)将粒径为2μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;氧化钙与十二烷基二甲基苄基氯化铵、月桂酸咪唑啉表面活性剂的摩尔比为1∶0.5∶0.2;
2)将步骤1)得到的料液在微波下处理25min,微波功率为500W;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,料液与二氧化碳的进料比为1g∶200mL,在超声条件下,对料液进行喷雾;
4)收集喷雾后的料液,控制离心分离的转数,去离子水洗涤2-3次;
5)重新分散在去离子水中,700W功率下超声,然后离心洗涤,重复3次。
实施例1-15得到的产物的形貌见表1。
表1
实施例14
采用实施例1的工艺、参数,仅将实施例1中超声雾化的载气替换为氮气,使雾化后的液体与二氧化碳气体逆流接触。得到的氧化钙-碳酸钙核壳纳米颗粒为400-1200nm的尺寸不均一的颗粒,经组装,仅得到无规团聚体。

Claims (9)

1.一种氧化钙-碳酸钙核壳纳米颗粒组装结构的制备方法,其特征在于,包括如下步骤:
1)将粒径为2-3μm的氧化钙颗粒分散于去离子水中,加入复合表面活性剂,搅拌均匀;
2)将步骤1)得到的料液在微波下处理25-35min;
3)将步骤2)得到的料液引入雾化喷嘴的进液端,将二氧化碳气体引入雾化喷嘴的进气端,在超声条件下,对料液进行喷雾;
4)收集喷雾后的料液,控制离心分离的转数,去离子水洗涤2-3次;
5)重新分散在去离子水中,强力超声结合离心洗涤,重复3次,得氧化钙-碳酸钙核壳纳米颗粒组装结构。
2.根据权利要求1所述的方法,其特征在于:所述复合表面活性剂由十二烷基二甲基苄基氯化铵和月桂酸咪唑啉表面活性剂组成。
3.根据权利要求1所述的方法,其特征在于:微波的功率为500-600W。
4.根据权利要求2所述的方法,其特征在于:氧化钙与十二烷基二甲基苄基氯化铵、月桂酸咪唑啉表面活性剂的摩尔比为1∶0.5-0.8∶0.2-0.4。
5.根据权利要求1所述的方法,其特征在于:步骤1)中,氧化钙与去离子水的质量比为1∶100-200。
6.根据权利要求1所述的方法,其特征在于:步骤3)中,料液与二氧化碳的进料比为1g∶200-400mL。
7.根据权利要求1所述的方法,其特征在于:步骤4)中,控制离心转数为4000-6000rpm。
8.根据权利要求1所述的方法,其特征在于:步骤3)中,超声功率为150-200W。
9.根据权利要求1所述的方法,其特征在于:步骤5)中,强力超声功率为400-600W。
CN201810116575.8A 2018-01-28 2018-01-28 一种氧化钙-碳酸钙核壳纳米颗粒组装结构的制备方法 Active CN108101094B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810116575.8A CN108101094B (zh) 2018-01-28 2018-01-28 一种氧化钙-碳酸钙核壳纳米颗粒组装结构的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810116575.8A CN108101094B (zh) 2018-01-28 2018-01-28 一种氧化钙-碳酸钙核壳纳米颗粒组装结构的制备方法

Publications (2)

Publication Number Publication Date
CN108101094A true CN108101094A (zh) 2018-06-01
CN108101094B CN108101094B (zh) 2019-12-13

Family

ID=62222027

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810116575.8A Active CN108101094B (zh) 2018-01-28 2018-01-28 一种氧化钙-碳酸钙核壳纳米颗粒组装结构的制备方法

Country Status (1)

Country Link
CN (1) CN108101094B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109251557A (zh) * 2018-07-12 2019-01-22 广西华纳新材料科技有限公司 一种核-壳结构纳米沉淀碳酸钙的制备方法
CN116102329A (zh) * 2023-02-06 2023-05-12 武汉理工大学 一种原位高强碳化梯度材料及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040166047A1 (en) * 2001-07-04 2004-08-26 Claude Vogels Method for obtaining precipitated calcium carbonate particles of nanometric scale structure
CN102600878A (zh) * 2012-01-18 2012-07-25 上海交通大学 一种TiC-TiO2核壳型纳米材料的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040166047A1 (en) * 2001-07-04 2004-08-26 Claude Vogels Method for obtaining precipitated calcium carbonate particles of nanometric scale structure
CN102600878A (zh) * 2012-01-18 2012-07-25 上海交通大学 一种TiC-TiO2核壳型纳米材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
聂颖等: ""纳米碳酸钙的生产工艺及改性技术进展"", 《化工文摘》 *
蒋惠亮等: ""表面活性剂对纳米碳酸钙结晶过程的影响"", 《日用化学工业》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109251557A (zh) * 2018-07-12 2019-01-22 广西华纳新材料科技有限公司 一种核-壳结构纳米沉淀碳酸钙的制备方法
WO2020010689A1 (zh) * 2018-07-12 2020-01-16 广西华纳新材料科技有限公司 一种核-壳结构纳米沉淀碳酸钙的制备方法
CN116102329A (zh) * 2023-02-06 2023-05-12 武汉理工大学 一种原位高强碳化梯度材料及其制备方法和应用

Also Published As

Publication number Publication date
CN108101094B (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
CN101774623B (zh) 一种米粒状超细活性碳酸钙的工业化制备方法
CN108101094A (zh) 一种氧化钙-碳酸钙核壳纳米颗粒组装结构的制备方法
WO2017025961A1 (en) Process and system for homogenously distributing an additive within a matrix
CN108821322A (zh) 一种层状结构微球沉淀碳酸钙的制备方法
CN108264077A (zh) 一种具有碳酸钙壳层的核壳纳米颗粒组装结构的制备方法
CN108299811A (zh) 一种碳酸钙棒状纳米颗粒复合材料的制备方法
CN108249466A (zh) 一种氧化钙-碳酸钙核壳纳米颗粒的制备方法
CN108455643B (zh) 一种碳酸钙哑铃状纳米颗粒组装结构的制备方法
CN108314072A (zh) 一种具有碳酸钙壳层的核壳纳米颗粒的制备方法
CN111017973B (zh) 一种利用超声气溶胶制备中空纳米碳酸钙的方法
CN108358227B (zh) 一种碳酸钙骨棒状纳米颗粒组装结构的制备方法
CN107117639B (zh) 一种超声辅助制备球霰石型碳酸钙纳米组装结构的方法
CN107188998B (zh) 一种碳酸钙/聚合物核壳结构的制备方法
CN108328639B (zh) 一种碳酸钙骨棒状纳米颗粒的制备方法
CN108358228A (zh) 一种氧化钙-碳酸钙核壳纳米颗粒复合材料的制备方法
CN102910663A (zh) 一种连续制备纳米碳酸钙装置
CN108101092B (zh) 一种碳酸钙棒状纳米颗粒组装结构的制备方法
CN102963918B (zh) 一种纳米碳酸钙的碳酸化反应方法
CN108390031A (zh) 一种具有碳酸钙壳层的核壳纳米颗粒复合材料的制备方法
CN107162033B (zh) 一种球霰石型碳酸钙纳米颗粒自组装膜的制备方法
CN108455644B (zh) 一种碳酸钙花生状纳米颗粒的制备方法
CN108455646A (zh) 一种碳酸钙骨棒状纳米颗粒复合材料的制备方法
CN108101093B (zh) 一种碳酸钙哑铃状纳米颗粒的制备方法
CN107162032B (zh) 一种超声辅助制备球霰石型碳酸钙纳米颗粒的方法
CN108358226B (zh) 一种碳酸钙花生状纳米颗粒组装结构的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220824

Address after: 727000 sun Yuan Zhen Hui Yuan Cun, Yaozhou District, Tongchuan City, Shaanxi Province

Patentee after: Shaanxi Huateng Nano Technology Co.,Ltd.

Address before: 315400 room 315, 1 International Business Center, China Plastics City, Yuyao, Ningbo, Zhejiang

Patentee before: NINGBO PLASTIC METAL PRODUCT Co.,Ltd.

TR01 Transfer of patent right